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Abstract

Telomeres are repetitive nucleotide sequences that cap the end of eukaryotic chromosomes. Attrition of these
structures has been associated with carcinogenesis in many tissues, and therefore, they are essential for
chromosome stabilization. Telomeres are maintained by telomerase complexes, of which human telomerase reverse
transcriptase (hTERT) is an essential component. A functional polymorphism, -1327C>T (rs2735940), located in the
promoter of the hTERT gene is associated with telomere length in peripheral blood leukocytes. We hypothesized
that this polymorphism might affect susceptibility to various epithelial malignancies. The -1327C>T polymorphism
was examined in 1,551 consecutive autopsy cases (mean age, 80.3 years), and we focused on its effect on the risks
of overall and each primary malignancies. The polymorphism was further studied in 391 clinical prostate cancer
patients who were diagnosed via prostate biopsy, using autopsy cases as controls. In the autopsy cases, the risk of
epithelial malignancy, after adjusting for age, sex, smoking, and drinking habits, was significantly lower for the TT
genotype than the CC (reference) genotype (adjusted odds ratio = 0.61, 95% CI = 0.42-0.90). Among primary
malignancies, latent prostate cancer, colorectal cancer, and lung cancer were the most strongly associated with the
polymorphism. In the study using clinical prostate cancer patients, susceptibility to clinical prostate cancer was
lower for -1327 T carriers than for -1327 T non-carriers, but this finding was not significant. The data suggest that
the hTERT promoter polymorphism, -1327C>T, is an independent factor influencing the risk of various epithelial
malignancies in elderly Japanese.
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Background
Telomeres are special structures at the end of chromo-
somes in eukaryotic cells that are essential for the
chromosome stabilization. Erosion of telomeres leads to
chromosomal instability, i.e., formation of end-to-end
fusions, degradation, and rearrangement of chromoso-
mes (Greider 1991). Telomerase is a ribonucleoprotein
complex that elongates telomeres by adding TTAGGG
nucleotide repeats, thus maintaining telomere integrity.
Human telomerase-reverse transcriptase (hTERT) is the
rate limiting subunit of the telomerase complex and the
expression level of hTERT is primarily regulated at the
transcription level (Ducrest et al. 2002).

Telomere attrition can enhance the early stages of
carcinogenesis (Hackett and Greider 2002), and the
shortening of telomeres can increase genetic instability
and tumor formation in mice (Blasco et al. 1997;
Rudolph et al. 1999; Chin et al. 1999). Short telomeres
are also prevalent in precursors of many epithelial cancers
in humans (Meeker et al. 2004; Kammori et al. 2007; Aida
et al. 2010). Moreover, dysfunctional telomeres and muta-
tions in genes that encode the telomerase complex have
been described in congenital dyskeratosis, a human dis-
ease that confers an increased risk of developing certain
cancers (Vulliamy and Dokal 2008). Patients with con-
genital dyskeratosis are 11 times more susceptible to
cancer than the general population (Alter et al. 2009).
Human telomere length is characteristic of each indivi-

dual: a subject with long telomeres in one organ generally
has long telomeres in other organs (Takubo et al. 2002).
Differences in telomere length among individuals are
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attributable, to a large extent, to genetic factors (Slagboom
et al. 1994), raising the possibility that genetic polymor-
phisms influence cancer susceptibility through telomere
length.
Matsubara et al. reported that an hTERT -1327C>T

(rs2735940) polymorphism within the promoter region,
a T/C transition 1327 bp upstream of the transcription
start site, affects transcriptional activity (Matsubara et al.
2006). In their study, telomeres in the peripheral blood
leukocytes of -1327 T allele carriers were significantly
longer than those of -1327 T non-carriers. Because
changes in telomere length can affect cancer susceptibi-
lity, we hypothesized that the -1327C>T polymorphism
might affect susceptibility for various malignancies. To
test this hypothesis, we examined the relationship
between the -1327C>T polymorphism and malignancy
susceptibility in autopsy cases and in patients with cli-
nical prostate cancer.

Results
Characterization of the autopsy subjects
Of the 1,551 subjects, 960 had at least one malignancy.
The malignancies included gastric cancer (177 cases),
lung cancer (167 cases), colorectal cancer (147 cases),
leukemia (104 cases), prostate cancer (103 cases), and
malignant lymphoma (81 cases). In 89 of 103 prostate
cancer cases, the disease was first diagnosed at autopsy
(i.e., latent cancer) and found before death (i.e., clinical
cancer) in the remaining 14 cases. All of the malignan-
cies (epithelial and non-epithelial) found in the autopsy
cases are listed in Additional file 1: Table S1. The 591
cases with no malignancies were used as a control group
in subsequent statistical analyses. Clinical features of the
control group and malignant cases are shown in Table 1
and Additional file 2: Table S2 (analysis stratified by sex).
Although the mean age of all subjects was 80.3 years,
malignant cases were significantly younger than the con-
trol group (p = 0.0001), especially in female (p < 0.0001).
The male/female ratio of all subjects was 1.19 and was

significantly higher in cases with malignancy compared to
the control group (p = 0.0031). Smoking rate was signifi-
cantly higher in cases with malignancy than in the control
group (p = 0.028). Alcohol drinking rate was not sig-
nificantly different between cases with malignancy and
control group.

Characterization of the -1327C>T hTERT genotype in
autopsy subjects
\The genotypic frequencies of -1327C>T were 44% for
CC, 45% for CT, and 11% for TT. The minor allelic
frequency was 34%, and the allele distribution was consis-
tent with Hardy-Weinberg equilibrium (p = 0.79). The
genotypic distribution was similar to a previous finding
for the Japanese population (Matsubara et al. 2006). There
were no significant differences in the distribution of age,
sex, and smoking and drinking habits among the genotype
groups (Additional file 3: Table S3).

Association between the -1327C>T hTERT genotype and
the risk of overall malignancy in autopsy cases
Table 2 shows the genotype distribution in cases with no
malignancy, single malignancy and multiple malignan-
cies. Crude analysis did not uncover a significant asso-
ciation between genotype and the risk of having at least
one malignancy. However, adjustment for age, sex,
smoking status and alcohol consumption revealed a
significantly lower risk for the TT genotype compared
with CC (adjusted OR = 0.68, 95% CI = 0.48–0.98). In
the additive model, the T-allele was associated with a
lower risk of malignancy (adjusted OR = 0.70, 95% CI =
0.51–0.98). The risk of multiple malignancies was signifi-
cantly lower for the CT and TT genotypes compared
with CC (crude OR = 0.69, 0.48; 95% CI = 0.51–0.95, 0.27–
0.82; respectively), an association that was unchanged
following adjustment (adjusted OR = 0.68, 0.46; 95% CI =
0.48–0.95, 0.25–0.79). In the dominant, recessive and
additive models, the T-allele was associated with a lower
risk of multiple malignancies (crude OR = 0.65, 0.58, 0.69;
95% CI = 0.48–0.87, 0.33–0.96, 0.55–0.87; respectively);
after adjustment the association remained unchanged
(adjusted OR = 0.63, 0.55, 0.67; 95% CI = 0.45–0.86,
0.31–0.93, 0.53–0.86).

Association between the -1327C>T hTERT genotype and
the risk of epithelial/non-epithelial malignancies in
autopsy cases
An association between -1327C>T hTERT and malig-
nancy risk was further analyzed by dividing the tumors
into epithelial and non-epithelial classes (Table 3). In the
crude analysis, the risk of epithelial malignancy was
significantly lower for TT compared with CC (crude
OR = 0.65; 95% CI = 0.45–0.93), an association that was
unchanged after adjustment (adjusted OR = 0.61; 95%

Table 1 Characterization of the autopsy cases

Clinical features Controla

(n = 591)
Cases with
malignancy
(n = 960)

Total
(n = 1551)

p-value

Age (years, average ± SD) 81.4 ± 9.2 79.6 ± 8.6 80.3 ± 8.9 0.0001b

Male/Female ratio 0.98 1.34 1.19 0.0031c

Smoker / Totald 0.45 0.51 0.49 0.028c

Alcohol drinker / Totale 0.23 0.27 0.25 0.074c

aCases with no malignancy.
bp-value based on one-way ANOVA.
cp-value based on chi-square analysis.
dCalculated for cases whose smoking history was available (n = 1391). Smokers
were defined as those who smoked one or more cigarettes per day.
eCalculated for cases whose drinking history was available (n = 1433). Alcohol
drinkers were defined as those who consumed 15 grams or more alcohol
per day.
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Table 2 Association between the -1327C>T hTERT genotype and the risk of overall malignancy in autopsy cases

Genotype distribution, n (%) Risk for malignancya Risk for multiple malignanciesb

Controlc Single malignancy
cases

Multiple malignancy
cases

Crude OR
(95% CI)

p-value Adjusted ORd

(95% CI)
p-value Crude OR

(95% CI)
p-value Adjusted ORd

(95% CI)
p-value

CC 245 (41.5) 308 (43.3) 130 (52.2) 1 (reference) 1 (reference) 1 (reference) 1 (reference)

CT 272 (46.0) 324 (45.6) 100 (40.2) 0.87 0.22 0.86 0.22 0.69 0.021 0.68 0.024

(0.70 - 1.08) (0.68 - 1.09) (0.51 - 0.95) (0.548- 0.95)

TT 74 (12.5) 79 (11.1) 19 (7.6) 0.74 0.085 0.68 0.041 0.48 0.0065 0.46 0.0046

(0.53 - 1.04) (0.48 - 0.98) (0.27 - 0.82) (0.25 - 0.79)

Dominant model

CC 245 (41.5) 308 (43.3) 130 (52.2) 1 (reference) 1 (reference) 1 (reference) 1 (reference)

CT + TT 346 (58.5) 403 (56.7) 119 (47.8) 0.84 0.11 0.82 0.087 0.65 0.0043 0.63 0.0040

(0.69 - 1.04) (0.66 - 1.03) (0.48 - 0.87) (0.45 - 0.86)

Recessive model

CC + CT 517 (87.5) 632 (88.9) 230 (92.4) 1 (reference) 1 (reference) 1 (reference) 1 (reference)

TT 74 (12.5) 79 (11.1) 19 (7.6) 0.79 0.16 0.73 0.080 0.58 0.033 0.55 0.024

(0.58 - 1.10) (0.53 - 1.04) (0.33 - 0.96) (0.31 - 0.93)

Additive modele 0.86 0.063 0.70 0.036 0.69 0.0017 0.67 0.0014

(0.74 - 1.01) (0.51 - 0.98) (0.55 - 0.87) (0.53 - 0.86)

The risk of malignancy was estimated by calculating crude OR and OR adjusted for age, sex, smoking status and alcohol habit using a logistic regression model in autopsy cases (n = 1551). Significant associations
highlighted in bold.
OR odds ratio, CI confidence interval.
aCases with at least one malignancy were compared with control.
bCases with more than two malignancies were compared with control.
cCases with no malignancy (n = 591).
dCalculated for cases for whom smoking and drinking history was available (n = 1371).
eApplied by including the number of T-alleles (0,1,2) as a continuous variable in the logistic regression model.
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Table 3 Association between the -1327C>T hTERT genotype and the risks of epithelial/non-epithelial malignancy in autopsy cases

Genotype Genotype distribution, n(%) Risk of epithelial malignancya Risk of non-epithelial malignancyb

Controlc Epithelial
malignancy

Non-epithelial
malignancy

Crude OR (95% CI) p-value Adjusted ORd (95% CI) p-value Crude OR (95% CI) p-value Adjusted ORd (95% CI) p-value

CC 245 (41.5) 372 (47.2) 100 (42.6) 1 (reference) 1 (reference) 1 (reference) 1 (reference)

CT 272 (46.0) 343 (43.5) 102 (43.4) 0.83 0.11 0.83 0.13 0.92 0.61 0.90 0.58

(0.66 - 1.04) (0.65 - 1.06) (0.66 - 1.27) (0.63 - 1.29)

TT 74 (12.5) 73 (9.3) 33 (14.0) 0.65 0.020 0.61 0.012 1.09 0.71 0.94 0.80

(0.45 - 0.93) (0.42 - 0.90) (0.68 - 1.74) (0.55 - 1.56)

Dominant model

CC 245 (41.5) 372 (47.2) 100 (42.6) 1 (reference) 1 (reference) 1 (reference) 1 (reference)

CT + TT 346 (58.5) 416 (52.8) 135 (57.4) 0.79 0.033 0.78 0.033 0.96 0.77 0.91 0.58

(0.64 - 0.98) (0.62 - 0.98) (0.70 - 1.30) (0.65 - 1.27)

Recessive model

CC + CT 517 (87.5) 715 (90.7) 202 (86.0) 1 (reference) 1 (reference) 1 (reference) 1 (reference)

TT 74 (12.5) 73 (9.3) 33 (14.0) 0.71 0.054 0.68 0.033 1.14 0.56 0.98 0.95

(0.51 - 1.01) (0.47 - 0.97) (0.73 - 1.76) (0.60 - 1.59)

Additive modele

0.81 0.012 0.80 0.0096 1.01 0.94 0.95 0.67

(0.69 - 0.96) (0.67 - 0.95) (0.81 - 1.26) (0.74 - 1.21)

The risk of malignancy was estimated by calculating crude OR and OR adjusted for age, sex, smoking status and alcohol habit using a logistic regression model in autopsy cases (n = 1551).
Significant associations highlighted in bold. OR odds ratio, CI confidence interval.
aCases with epithelial malignancy were compared with control.
bCases with non-epithelial malignancy were compared with control.
cCases with no malignancy (n = 591).
dCalculated for cases for whom smoking and drinking history was available (n = 1371).
eApplied by including the number of T-alleles (0,1,2) as a continuous variable in the logistic regression model.
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CI = 0.42–0.90). In the dominant and additive models,
the T-allele was associated with a lower risk of epithe-
lial malignancy (crude OR = 0.79, 0.81; 95% CI = 0.64–
0.98, 0.69–0.96; respectively), which remained un-
changed after adjustment (adjusted OR = 0.78, 0.80;
95% CI = 0.62–0.98, 0.67–0.95). In contrast, -1327C>T
hTERT was not significantly associated with the risk of
developing a non-epithelial malignancy. Since two types
of cancer (epithelial and non-epithelial) were tested,
Bonferroni correction was performed. The association
was still significant after the correction, where a signi-
ficance level of 0.05/2 = 0.025 was used (TT vs CC, and
additive model).

Association between the -1327C>T hTERT genotype and
the risks of primary malignancies of various origins in
autopsy cases
The association between -1327C>T and the risks of
malignancies of various origins was analyzed. Genotypic
frequencies are shown for each type of cancer in
Additional file 4: Table S4. The association between
hTERT genotype and susceptibility to malignancy was
particularly strong for colorectal, lung and latent pros-
tate cancers (Table 4).
The risk of lung cancer was significantly lower for

cases with TT genotype compared with CC, before
(crude OR = 0.47, 95% CI = 0.23–0.90) and after (adjusted
OR = 0.48, 95% CI = 0.23–0.96) adjustment. In the reces-
sive model, the T-allele was associated with a lower risk
of lung cancer before (crude OR = 0.49, 95% CI = 0.24–
0.91) and after (adjusted OR = 0.49, 95% CI = 0.24–0.94)
adjustment.
The risk of colorectal cancer was significantly lower

for cases with TT genotype compared with CC, before
(crude OR = 0.38, 95% CI = 0.16–0.79) and after (adjusted
OR = 0.39, 95% CI = 0.17–0.82) adjustment. In the re-
cessive and additive models, the T-allele was associated
with a lower risk of colorectal cancer before (crude OR =
0.40, 0.74; 95% CI = 0.17–0.81, 0.56–0.98)) and after
(adjusted OR = 0.42, 0.72; 95% CI = 0.18–0.86, 0.53–0.97)
adjustment.
The crude risk of latent prostate cancer was signifi-

cantly lower for cases with the CT and TT genotype
compared to CC (crude OR = 0.57, 0.38; 95% CI = 0.34–
0.95, 0.14–0.89); adjustment did not alter this asso-
ciation (adjusted OR = 0.56, 0.27; 95% CI = 0.31–0.99,
0.078–0.73). In the dominant and additive models, theT-
allele was associated with a lower risk of latent cancer
before (crude OR = 0.53, 0.60; 95% CI = 0.33–0.85, 0.40–
0.87; respectively) and after (adjusted OR = 0.49, 0.54;
95% CI = 0.28–0.84, 0.35–0.82) adjustment.
When Bonferroni-corrected significance level (0.05 di-

vided by the number of cancer types tested, 0.05/11 =
0.0045) were used, the association for all cancer types

were insignificant. However, this correction might be too
conservative, because the risks for each type of malig-
nancy are supposed to be not independent.
The occurrence of other malignancies, including

leukemia, malignant lymphoma, and gastric, breast,
hepatocellular, pancreatic and bile duct carcinomas, did
not reveal significant associations with the hTERT geno-
type before Bonferroni correction (data not shown).

-1327C>T hTERT genotype and the risk of clinical prostate
cancer
Because only 14 cases of clinical prostate cancer were
included in the 1,551 autopsy cases, the polymorphism
was further studied in 391 patients diagnosed by pros-
tate biopsy before death. Residence-matched autopsy
cases of 323 males who did not have cancer were used
as control subjects. After adjusting for age by logistic
regression analysis, the risk of developing clinical pros-
tate cancer was lower in cases with a T-allele than in
cases without it, but the differences were not significant
(Table 5). No association was revealed after stratifying
the subjects by clinical stage or Gleason score (data not
shown).

Discussion
Matsubara et al. reported that the T allele in the hTERT
promoter polymorphism, -1327C>T, is associated with
longer telomeres in the peripheral blood leukocytes. The
presence of the T allele in the promoter corresponds to
higher transcriptional activity of the gene (Matsubara
et al. 2006). In this study, an examination of 1,551 autopsy
cases found that the T allele is also associated with a lower
risk of epithelial malignancy, particularly prostate (latent),
colorectal and lung cancers. The polymorphism was also
evaluated in 391 clinical prostate cancer patients using
autopsy cases as controls. Although the risk of clinical
prostate cancer was also lower for -1327 T carriers than
for non-carriers, the difference was not significant.
Telomere-shortening has been associated with epithe-

lial malignancy in humans and in animal models, but
the relationship has not been observed for non-epithelial
cancers. In humans, the spectrum of malignancies varies
considerably between pediatric and adult ages (DePinho
2000). The majority of malignancies in children are non-
epithelial, while epithelial malignancies predominate in
adults, as chromosomal instability induced by telomere
attrition is enhanced with age. Non-epithelial malignan-
cies are primarily found in p53 mutant mice. However, if
the mice also have dysfunctional telomeres, epithelial
malignancies predominate with non-reciprocal translo-
cations (Artandi et al. 2000). In the current study, the -
1327 T-allele was associated with a significantly lower risk
of epithelial malignancies, which was not observed with
non-epithelial malignancies. These data are consistent

Iizuka et al. SpringerPlus 2013, 2:249 Page 5 of 10
http://www.springerplus.com/content/2/1/249



Table 4 Association between the −1327 C>T hTERT genotype and the risks of various types of malignancies in autopsy cases

Genotype Lung cancera (n = 167) Colorectal cancera (n = 147) Latent prostate cancera (n = 89)

Crude OR
(95% CI)

p-value Adjusted ORb

(95% CI)
p-value Crude OR

(95% CI)
p-value Adjusted ORb

(95% CI)
p-value Crude OR

(95% CI)
p-value Adjusted ORb

(95% CI)
p-value

CC 1 (reference) 1 (reference) 1 (reference) 1 (reference) 1 (reference) 1 (reference)

CT 0.92 0.67 0.97 0.88 0.91 0.64 0.87 0.50 0.57 0.030 0.56 0.046

(0.65 - 1.32) (0.65 – 1.44) (0.63 - 1.33) (0.58 – 1.30) (0.34 - 0.95) (0.31 – 0.99)

TT 0.47 0.022 0.48 0.038 0.38 0.0081 0.39 0.0012 0.38 0.025 0.27 0.0083

(0.23 - 0.90) (0.23 – 0.96) (0.16 - 0.79) (0.17 – 0.82) (0.14 - 0.89) (0.078 – 0.73)

Dominant modelc 0.83 0.28 0.86 0.44 0.80 0.23 0.76 0.17 0.53 0.0090 0.49 0.0088

(0.59 - 1.17) (0.59 – 1.26) (0.56 - 1.15) ( 0.51 – 1.12) (0.33 - 0.85) (0.28 – 0.84)

Recessive modeld 0.49 0.024 0.49 0.032 0.40 0.0085 0.42 0.015 0.49 0.089 0.35 0.030

(0.24 - 0.91) (0.24 – 0.94) (0.17 - 0.81) (0.18 – 0.86) (0.18 - 1.11) (0.10 – 0.91)

Additive modele 0.78 0.066 0.80 0.12 0.74 0.037 0.72 0.032 0.60 0.0060 0.54 0.0033

(0.60 - 1.02) (0.59 – 1.06) (0.56 - 0.98) (0.53 - 0.97) (0.40 - 0.87) (0.35 – 0.82)

The risk of each type of malignancy was estimated by calculating crude OR and OR adjusted for age, sex, smoking status and alcohol habit using a logistic regression model in autopsy cases (n = 1551). Significant
associations highlighted in bold.
OR odds ratio, CI confidence interval.
a Cases with each type of malignancy were compared with control (cases with no malignancy).
bCalculated for cases for whom smoking and drinking history was available (n = 1371).
cCT + TT vs CC.
dTT vs CT + CC.
eApplied by including the number of T-alleles (0,1,2) as a continuous variable in the logistic regression model.
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with the premise that telomere-shortening is associated
with epithelial, but not non-epithelial, carcinogenesis.
Telomere-shortening is thought to occur early in the

initiation of epithelial malignancies (Meeker et al. 2004)
because telomere attrition is prevalent in many types of
precancerous lesions (Meeker 2006; Aida et al. 2010;
Kammori et al. 2007). It was reported that the telomere
length in the precursor lesion of prostate adenocarci-
noma (high-grade prostatic intraepithelial neoplasia) is
shorter than in normal epithelium (Meeker et al. 2002).
Telomere length was also reportedly shortened in ade-
nomas of the colon (O’Sullivan et al. 2006). Since the T-
allele has higher transcriptional activity, these previous
observations and our results suggest that the -1327 T
allele of hTERT reduces the risk of cancer through its
higher telomere-elongation capacity.
The association between the -1327C>T polymorphism

and cancer susceptibility has been controversial. Savage
et al. reported that -1327 T is associated with reduced
risk of breast cancer in individuals with a family history
of breast cancer (Savage et al. 2007), but this observation
was not confirmed by Varadi et al. (Varadi et al. 2009).
Furthermore, Choi et al. reported that the -1327 T-allele
is associated with an increased risk of lung cancer (Choi
et al. 2009), which is contrary to the findings of this
study. Although it is difficult to explain the discrepan-
cies, they might be partly due to differences in the age of
the subjects. In our analysis, the mean age of the sub-
jects was 80.3 years, whereas it was 61.3 years in the

Choi et al. study. Telomeres can have both suppressive
and facilitative effects on cancer development, depending
on the stage of carcinogenesis (Hackett and Greider
2002). Telomere shortening can increase genetic instabi-
lity and tumor formation in the early stage of carcino-
genesis. Conversely, in later stages, telomerase activation
and telomere function can also facilitate tumor progres-
sion by stabilizing the genomes of cancer cells and confer-
ring the capacity for immortal growth. Since telomeres
shorten with age, it seems reasonable that the predo-
minant effect of telomere attrition (cancer-facilitative or
suppressive) depends on the age of the subjects. Another
possible explanation is the difference in the genetic back-
ground. Multiple genetic loci contribute in concert to the
risk of cancer and the opposing effects (flip-flop pheno-
menon) of the -1327 T on cancer risk may be explained
by interactive effects or linkage disequilibrium (Lin et al.
2007).
Recently, there are several reports which show that poly-

morphisms in the hTERT gene and in TERT-CLPTM1L
locus are associated with the risks of various cancer types.
Interestingly, these polymorphisms are also associated
with telomere length (Nan et al. 2011; Melin et al. 2012;
Bojesen et al. 2013; Lan et al. 2013). These findings are
consistent with the hypothesis that hTERT polymorphisms
can affect cancer risk through the effect on telomere
length.
-1327 T was associated with significantly lower risk of

latent prostate cancer, and the risk of clinical prostate

Table 5 Association between the -1327C>T hTERT genotype and the risk of clinical prostate cancer

Genotype Genotype frequency distribution, n (%) Crude OR p-value OR adjusted for age p-value

Clinical prostate cancer patients Control (95% CI) (95% CI)

CC 186 (48.1) 137 (43.1) 1 (reference) 1 (reference)

CT 157 (40.6) 142 (44.6) 0.81 0.20 0.77 0.14

(0.59 - 1.12) (0.54 - 1.09)

TT 44 (11.4) 39 (12.3) 0.83 0.45 0.83 0.52

(0.51 - 1.35) (0.48 - 1.44)

Dominant model

CC 186 (48.1) 137 (43.1) 1 (reference) 1 (reference)

CT + TT 201 (51.9) 181 (56.9) 0.83 0.21 0.79 0.16

(0.61 - 1.13) (0.56 - 1.10)

Recessive model

CC + CT 343 (88.6) 279 (87.7) 1 (reference) 1 (reference)

TT 44 (11.4) 39 (12.3) 0.92 0.71 0.95 0.85

(0.58 - 1.46) (0.57 - 1.60)

Additive modela 0.88 0.25 0.86 0.25

(0.71 - 1.10) (0.68 - 1.11)

Clinical prostate cancer patients (n = 391) were compared with residence-matched male autopsy cases without malignancy (n = 323).
Genotype data were not available for 4 and 5 patients respectively.
OR odds ratio, CI confidence interval.
aApplied by including the number of T-alleles (0,1,2) as a continuous variable in the logistic regression model.
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cancer was also lower for -1327 T carriers, but it was
not significant. The prevalence rate of latent prostate
cancer is much higher than that of clinical prostate
cancer, especially in Asians (Ruijter et al. 1999). The vast
majority of latent prostate cancer does not progress to
clinical prostate cancer, and the risk factors for latent
and clinical cancer are thought to be different. Our
results suggest that the -1327 T>C polymorphism is
more important for carcinogenesis of latent prostate
cancer than that of clinical prostate cancer, and it is
consistent with the hypothesis that telomere attrition is
involved in the early stage of carcinogenesis.
There are a number of limitations to our study. One is

that data on telomere length are lacking. A report by
Martinez and Blasco suggested that hTERT is involved in
carcinogenesis through non-telomerase activity (Martinez
and Blasco 2011). To confirm that -1327C>T is affecting
cancer risk through its telomere-elongation capacity, telo-
mere length in the epithelial cells of various tissues should
be examined. The second limitation is the sample size of
the study. Overall epithelial malignancy was significantly
associated with -1327C>T, even after Bonferroni cor-
rection. However, the association between the genotype
and the risk for each type of malignancy was significant
only for latent prostate cancer, colorectal cancer and lung
cancer. Furthermore, the risks for such cancer types were
insignificant after Bonferroni correction. To confirm the
risk in each type of malignancy, further studies involving
larger numbers of each type of epithelial malignancy are
needed. The third limitation is about the character of the
study subjects. We cannot rule out the possibility of
selection bias, since the autopsy subjects are from single
geriatric hospital and the average age was very old
(80.3 years). However, the cause of death of our subjects
was similar to that of general Japanese population, and in
addition, the -1327C>T genotype frequencies were similar
to those reported in other Japanese population study,
which suggest that selection bias would be minor.
In spite of these limitations, our data provide valuable

information on the role of hTERT in carcinogenesis of
the elderly. Most previous studies on the association
between hTERT polymorphism and cancer risk have been
performed using relatively younger population. Since
telomere shortens with age, the effect of hTERT poly-
morphism on cancer risk may depend on age. Further
studies using diverse age group subjects are necessary.

Conclusion
This study presented evidence that the -1327C>T poly-
morphism in the hTERT promoter may be associated
with susceptibility for epithelial malignancies, especially
prostate cancer (latent), colorectal and lung cancer in
the elderly Japanese population. The results warrant

further investigation with a larger number of cases of
each type of malignancy, and with a wide variation in
ages.

Methods
Autopsy subjects
The group of autopsy subjects consisted of 1,551
consecutive cases (843 males and 708 females) from
Tokyo Metropolitan Geriatric Hospital, a community-
based geriatric hospital in Tokyo, that were registered in
the Internet-based Database of Japanese SNPs for Geriatric
Research (JG-SNP) (Sawabe et al. 2004). Autopsies were
performed between 1995 and 2004 on 40% of patients
who died at the hospital, regardless of the cause of death.
The major cause of death was malignant disease, coronary
heart disease and pneumonia in 33%, 20% and 13% of the
subjects, respectively. This proportion were similar to the
causes of death reported in a survey conducted by the
Ministry of Health, Labor and Welfare of Japan (Vital
statistics of Japan 2000), where the cause of death in about
30% of the population was malignant disease. These
results indicate that the selection bias would be minor for
the recruited subjects. The ages of the subjects ranged
from 46 to 104 years, with a mean age of 80.3 years. Sub-
jects were classified as smokers (including ex-smokers)
versus non-smokers, and alcohol drinkers versus non-
drinkers based on histories obtained from medical re-
cords. Information on tobacco-smoking and alcohol use
was unavailable for 160 and 118 subjects, respectively.
Smokers were defined as those who smoked one or more
cigarettes per day. Alcohol-drinkers were defined as those
who consumed 15 grams or more alcohol per day. The
percentage of smokers was 49%, while that of alcohol
drinkers was 25%. Written informed consent was obtained
from the family of each subject at the time of autopsy.
The study protocol for autopsy cases was approved by the
Ethical Committee of the Tokyo Metropolitan Geriatric
Hospital.

Subjects for the analysis of clinical prostate cancer
Study participants were Japanese patients with clinical
prostate cancer treated by the Department of Urology at
the University of Tokyo Hospital or at its affiliated
hospital located in the Kanto area of Japan. Characteris-
tics of the 391 patients have been reported elsewhere
(Liu et al. 2009). Adenocarcinoma of the prostate was
pathologically confirmed by prostate biopsy in all cases.
Patients with a family history of prostate cancer were
excluded from this study. The mean age ± SD of the
clinical cancer patients was 70.8 ± 8.0 years (range, 48 to
89 years). The clinical stages of the tumors were T1 or
T2 for 167 patients and T3 or T4 for 24 patients. The
Gleason scores of the tumors were ≥8 for 150 patients
and ≤ 7 for 241 patients. The study protocol was con-
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ducted with the approval of the Ethics Committee of the
University of Tokyo and the internal review board of
each of the affiliated hospitals. Written informed consent
was obtained from each patient prior to their enrollment
in the study. The controls consisted of 323 residence-
matched male autopsy cases at the Tokyo Metropolitan
Geriatric Hospital. Pathological examinations confirmed
that none of the control cases had suffered from malig-
nancies. The mean age ± SD of patients in the control
group was 79.2 ± 9.2 years (range, 49 to 100 years).
There was a significant difference in the ages of the 391
clinical subjects and the 323 controls; therefore, logistic
regression analysis was used to adjust for age.

Assessment of the number of primary malignancies
Each subject was evaluated for primary malignancies
using autopsy findings and medical records. Only histo-
logically diagnosed malignancies were counted. When
one subject had multiple malignant lesions, they were
considered to be of multiple or single origin depending
on pathological findings and clinical information.

Genotyping
Genomic DNA was extracted from the renal cortex (of
autopsy cases) or from the peripheral blood specimen
(of patients with clinical prostate cancer) by the phenol-
chloroform method. Genotyping of the -1327C>T
(rs2735940) SNP in the hTERT gene was conducted with
a TaqMan assay using an ABI PRISM 7000 Sequence
Detection System (Applied Biosystems, Foster City, CA,
USA) in accordance with the manufacturer’s instructions.
The sequences of the hTERT-specific primers were 5′-
ACAATTCACAAACACAGCCCTTTAAAA-3′ (forward)
and 5′-CCCTCCCTGGGCTGTCA-3′ (reverse). The se-
quence of the TaqMan reporter probe was 5′-CTTAGG
ATTAC[G/A]GGTCGCT-3′. The PCR reaction was per-
formed in a 20-μl volume using TaqMan Universal PCR
Master Mix, No AmpErase UNG (ABI). Each well con-
tained 10 ng of genomic DNA. The cycling protocol was
as follows: initial denaturation at 95°C for 10 min,
followed by 40 cycles of 92°C for 15 sec and 60°C for
1 min. Genotype could be determined in 99.3% of cases.

Statistical analysis
Statistical analysis was performed using JMP version 9.0.0
(SAS Institute Inc., Cary, NC, USA). Chi-square tests were
conducted to examine the Hardy-Weinberg equilibrium,
to compare sex ratios, smoking status (smoker or non-
smoker) and drinking status (drinker or non-drinker)
between the genotypes. The odds ratio (OR) and 95%
confidence interval (CI) adjusted for age, sex, smoking
status, and drinking status were calculated using an
unconditional logistic regression model when estimating
the risk of malignancy for each genotype. The risks of

overall malignancy and each primary malignancy were
evaluated. Co-dominant, dominant, recessive and additive
models were applied in the analysis. All tests were 2-tailed,
with statistical significance set at p < 0.05. Bonferroni
correction was performed by dividing the significance level
(0.05) by the number of cancer types tested. In the analysis
using clinical prostate cancer patients, the OR was adjusted
using only age as covariant, because histories on smoking
and alcohol drinking were not available for the patients.
However, confounding effects of smoking /drinking would
be minor because there is no evidence, to our knowledge,
which definitely shows that smoking /drinking is associated
with the risk of prostate cancer.
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