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Abstract. In the yeast Saccharomyces cerevisiae an 
amphiphilic cAMP-binding protein has been found re- 
cently to be anchored to plasma membranes by virtue 
of a glycolipid structure (Miiller and Bandlow, 1991a, 
1992). The cAMP-binding parameters of this protein 
are affected by the lipolytic removal of the glycosyl- 
phosphatidylinositol (GPI) membrane anchor by exog- 
enous (G)PI-specific phospholipases C or D (PLC or 
PLD) (Miiller and Bandlow, 1993) suggesting a 
regulatory role of glycolipidic membrane anchorage. 
Here we report that transfer of yeast cells from lactate 
to glucose medium results in the conversion of the 
amphiphilic form of the cAMP receptor protein into a 
hydrophilic version accompanied by the rapid loss of 
fatty acids from the GPI anchor of the [14C]palmitic 
acid-labeled protein. Analysis of the cleavage site 
identifies [~4C]inositol phosphate as the major product 
after treatment of the soluble, [t4C]inositol-labeled 
protein with nitrous acid which destroys the glucos- 

amine constituent of the anchor. Together with the ob- 
served cross-reactivity of the hydrophilic fragment 
with antibodies directed against the cross-reacting de- 
terminant of soluble trypanosomal variable surface 
glycoproteins (i.e., myo-inositol-l,2-cyclic phosphate) 
this demonstrates that, in membrane release, the initial 
cleavage event is catalyzed by an intrinsic GPI-PLC 
activated upon transfer of cells to glucose medium. 
Release from the plasma membrane in soluble form 
requires, in addition, the presence of high salt or 
or-methyl mannopyranoside, or the removal of the car- 
bohydrate moieties, because otherwise the protein re- 
mains associated with the membrane presumably at 
least in part via its N-glycosidic carbohydrate side 
chains. The data point to the possibility that cleavage 
of the anchor could play a role in the transfer of the 
signal for the nutritional situation to the interior of the 
cell. 

V 
ARIOUS proteins have been found to be anchored to 
the outer face of the plasma membrane by virtue of a 
glycolipid (GPI) 1 structure. The anchor, typically 

containing phosphatidylinositol and a characteristic core 
glycan consisting of non-acetylated glucosamine and man- 
nose, is linked via a phosphate ester bridge and ethanolamine 
to the COOH terminus of the respective polypeptides. Dur- 
ing the biogenesis of this type of cell surface proteins, the 
preformed anchor is transferred as a whole to the protein 
thereby replacing a short COOH-terminal transmembrane 
domain (Caras, 1991; Kodukula et al., 1992; for review see 
Doering et al., 1990). This type of anchor is conserved in 
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1. Abbreviations used in this paper: CRD, cross-reacting determinant; GPI, 
glycosyl-phosphatidylinositol; GPI-PLC(D), glycosyl-phosphatidylinosi- 
tol-specific phospholipase C(D) from Trypanosoma brucei (rabbit serum); 
c~-MMP, ~-methyl mannopyranoside; VSG, variable surface glycoprotein 
from Trypanosoma brucei. 

evolution from yeast to man. In yeast, several proteins have 
been characterized which behave as integral plasma mem- 
brane proteins, but can be released from their resident mem- 
brane by exogenous (G)PI-specific phospholipases. They can 
be metabolically labeled with certain lipid constituents and 
carbohydrates and have been identified as glycosyl-phospha- 
tidylinositol-anchored (Conzelmann et al., 1988, 1990; Vai 
et al., 1990; Miiller and Bandlow, 1991a,b). In one case the 
anchor of a yeast protein has been analyzed in some detail 
and shown to be structurally and immunologically closely 
related or even identical to typical GPI anchors from pro- 
tozoa and higher eucaryotes (Miiller et al., 1992). 

The group of GPI-anchored proteins is functionally ex- 
tremely heterogenous. The most extensively studied exam- 
ple is the variable surface glycoprotein from the parasitic 
protozoon, Trypanosoma brucei (BtUow and Overath, 1986; 
Zamze et al., 1988; Mayor et al., 1990). In vertebrates the 
group of GPI-anchored proteins comprises several surface 
receptors, cell adhesion and extracellular matrix molecules, 
the prion protein, and a number of hydrolytically active ecto- 
enzymes. Some of these proteins exist in soluble extracellu- 
lar and in plasma membrane-associated forms. The two ver- 
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sions may be related by alternative splicing or may even be 
encoded by separate, although very similar genes, and may 
be expressed or processed differently in different cell types 
(for review see Low, 1989). In most cases the enzymic activi- 
ties of the alternative forms of the proteins are very similar, 
and no specific difference has been found to correlate with 
the presence or absence of the GPI anchor. These observa- 
tions suggest that it is not a general requirement for a change 
of the properties of the protein that dictates the necessity of 
anchorage by GPI. Why some of these proteins use GPI 
structures for membrane anchorage in one type of cells but 
not in another, i.e., the question for the physiological signif- 
icance of GPI membrane anchorage, is a pendent problem. 
The observation that in some cell lines surface expression of 
subsets of GPI-anchored proteins can be modulated dramati- 
cally by starvation for serum factors or by treatment with in- 
sulin, whereupon some of them are released from the plasma 
membrane in soluble form (Romero et al., 1988; Chart et al., 
1988; Lisanti et al., 1989) together with the evolutionary 
conservation of the glycosyl-phosphatidylinositol anchor 
implies an important role for this structure. 

To study glycolipidic membrane anchorage and to assign 
it a physiological role, the detection of GPI anchors in yeast 
as a microorganism amenable to genetic manipulation may 
be helpful. In this organism three glycoproteins of 125 kD 
(Conzelmann et al., 1988), 115 kD (Vaiet al., 1990), and 
54 kD (Miiller and Bandlow, 1991a; Miller et al., 1992), 
respectively, have been shown to be bound to the outer face 
of the plasma membrane by virtue of glycolipidic membrane 
anchors. No specific biological function could so far be at- 
tributed to any of these proteins. The latter has been charac- 
terized by its property to bind cAMP specifically and with 
high affinity (Miiller and Bandiow, 1991a). Interestingly, the 
cleavage of the GPI anchor of this protein results in a change 
of ligand binding kinetics and affinity as well as in the altera- 
tion of the amino acid residues amenable to photoaffinity 
labeling (Mtiller and Bandlow, 1993). Therefore, we asked 
whether the GPI anchor of this protein is cleaved in vivo un- 
der certain conditions so that anchor cleavage may have a 
functional meaning. 
In this paper, wc report that the cAMP receptor protein is 

lipolytically released from the plasma membrane of oxida- 
tively growing cells upon addition of glucose to the medium. 
We show that the primary cleavage is cffected by a PLC activ- 
ity and that thereby the originally amphiphilic protein is 
turned hydrophilic, but remains peripherally associated with 
the plasma membrane from its periplasmic side. We discuss 
that lipolytic cleavage could play a role in the generation or 
transfer of the signal for nutritional upshift across the plasma 
membrane of yeast cells. 

Materials and Methods 

Materials 
L-[U-14C]myo-inositol-l-phosphate (50 mCi/mmol), L-3-[U-14C]phospha - 
tidylinositol (220 mCi/mmol), myo-[2-3I-I]inositol (15 Ci/mmol), goat 
anti-rabbit IgG coupled to horseradish peroxidase (affinity-purified), and 
scintillation cocktail ACS II were bought from Amersham-Buchler, Braun- 
schweig; 8-N3-[32P]cAMP (20 Ci/mmol) was from ICN, Radioisotope 
Division, Eschwege; myo-[14C(U)]inositol (200-250 mCi/mmol), [2-14C]- 
ethan-l-ol-2-amine hydrochloride (54 mCi/mmol), and EN3HANCE TM 

(liquid and spray) were purchased from New England Nuclear, Dreieich; 

N~-(2-amino-ethyl)-cAMP-Sepharose, phenyl Sepharose, Ficoll, and con- 
canavalin A Sepharose were obtained from Pharmacia, Freiburg; PI-PLC 
(Bacillus cereus), N-glycanase was from Boehringer, Mannheim; TX-114 
was bought from Fluka, Neu-UIm; polyclonal anti-CRD anti-bodies raised 
against purified soluble variant surface glycoprotein (sVSG) from MIT at 
1.2 in New Zealand White rabbits were gifts from P. Overath, Tfibingen; 
crude glycosyl-phosphatidylinositol-specific phospholipase (GPI-PLD) 
from heparinized rabbit serum was donated by W. Outensohn, Miinchen; 
silica gel Si-60 plates were from Merck, Darmstadt; c~-methyl manno- 
pyranoside (a-MMP) was provided by Sigma, Deisenhofen; mixed-ester 
cellulosic filters MiUex HV (0.45 #m) were purchased from Milllpore, 
Eschborn; and all other reagents were obtained as described (Miiller and 
Bandlow, 1991a,b). 

Yeast Strain and Culture 
Strain ABYS1 defective in proteases A and B and carboxypeptidases Y and 
S (Achstetter et al., 1984) was grown overnight in semisynthetic lactate 
medium at 30°C to log phase and harvestexl at a titer of l0 T cells/ml. 
Spheroplasts were prepared by digestion with Zymolase 20,000 (Miiller and 
Bandlow, 1989). 

Metabolic Labeling 
Ceils were harvested, converted to spheroplasts (Miiller and Bandlow, 
1989), and suspended in twice the volume of synthetic lactate medium lack- 
ing yeast extract. 10-ml portions of spberoplasts (corresponding to an A6o0 
of 5-7) were incubated in the presence of either 0.5 mCi [14C]palmitic 
acid, 0.1 mCi myo-[14C]inositol, or 1 mCi [14C]ethanolamine for 1 h at 
30°C. For double-labeling, 0.3 mCi myo-[3I-I]inositol was added in addi- 
tion. The labeling was terminated by a 1,000-fold excess of the respective 
unlabeled compound (chase). Finally, the spheroplasts were spun through 
a 5-rnl cushion of 0.8 M sucrose, 1.5% Ficoll, 25 mM Tris/HCl (pH 7.4), 
1 mM EDTA (1,000 g, 5 rain), suspended in semisynthetic medium contain- 
ing yeast extract, and either 2 % lactate but no glucose or various concentra- 
tions of glucose at a titer of 5 x 107 cells/ml and incubated at 30°C for the 
times indicated in the figure legends. 

PhotoaJ~nity Labeling. Photo affinity labeling of spheroplasts was car- 
tied out as described previously (Miiller and Bandlow, 1991a) with the fol- 
lowing modifications: 1.5-mi portions of spheroplasts (7.5 × 107 cells) 
were incubated with 10 #Ci of 8-N3-[32P]cAMP in the wells ofa microtiter 
plate (24 wells) at4°C for 5 rain, and then irradiated at 312 nm with a UV 
hand lamp for 2 rain at a distance of 2 cm. After addition of 100 ~m cAMP, 
spheroplasts were centrifuged through a sucrose/Ficoll cushion and sus- 
pended as described for the metabolic labeling. 

Preparation of Plasma Membranes. Preparation of plasma membranes 
was carried out as described previously but omitting the sucrose density 
gradient ccntrifugation (Milller and Bandlow, 1991a). Briefly, the sphero- 
plasts were homogenized in the presence of protease inhibitors. The cell ly- 
sate was centrifuged (1,000 g, 3 rain) and the supernatant was subjected to 
density gradient centrifugation on 28% Percoll, 0.25 M sucrose, 5 mM 
MgCI2, 1 mM DTT, 25 mM Tris/HCl (pH 7.4) (0.5 ml per 106 
spheroplasts). The plasma membrane band (0.5 nil) was diluted with 4 vol 
of 0.25 M sucrose, 25 mM Tris/HC1, 1 mM EDTA, 1 mM DTT (STE- 
buffer), and supplemented with Con A Sepharose beads (50 #g per 0.5 ml). 
After incubation (5 rain, 4°C), the beads were collected by centrifugation 
(10,000 g, 2 rain) and suspended in 1.5 ml STE-buifer supplemented with 
0.5 M rnannose, I00 mM KCI. After incubation (5 rain, 4°C) and centrifu- 
gation of the beads (10000 g, 2 min), the released plasma membrane vesi- 
cles were collected by centrifugation (100,000 g, 15 rain), washed once, and 
suspended in STE-buffer containing 200 #M PMSF at 2 mg protein/ml. 

TX-114 Partitioning 
Plasma membrane proteins were separated into amphiphilic and hydrophilic 
ones by partitioning between a detergent (TX-ll4)-enriched and depleted 
(aqueous) phase according to Bordier (1981) with the following modifica- 
tions: 25 ~1 of plasma membranes (50 #g of protein in STE-buffer) were 
solubilized by incubation (30 rain, 4°C) in 1 ml ice cold TX-114 (2%) in 
25 mM Tris/HCl (pH 7.4), 144 mM NaCI. The mixture was layered onto 
a cushion of 0.4 ml of 0.25 M sucrose, 25 mM Tris/HCl (pH 7.4) on ice. 
Phase separation was induced by warming up to 37°C and centrifugation 
(microfuge, 2 rain). The detergent-enricbed phase was reextracted two 
times. Aqueous phases were pooled. 
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Retention on Phenyl Sepharose 
The amphiphilic nature of the cAMP-binding protein was studied by binding 
to phenyl Sepharose beads. 100/zl of solubilized plasma membranes (0.5 % 
octyl glucoside; 150,000 g, 15 min) were supplemented with 900 #1 of PBS 
and 75 t~l phenyl Sepharose beads, and further processed as described previ- 
ously (Miiller and Bandlow, 1991a). 

Release of the cAMP-binding Protein from 
Spheroplasts 
1 ml of spheroplasts (5 × 107 cells) were layered onto a l-ml cushion of 
0.8 M sucrose, 1.5% Ficoll, 20 mM Hepes/KOH (pH 7.2), 1 mM EDTA, 
200 #M PMSF (2.5 ml Eppendorf cup). After centrifugation (1,000 g, 
2 min, swing out rotor), the layer on top of the sucrose cushion (soluble 
fraction) was carefully removed and proteins precipitated with 5 % TCA (30 
rain on ice; 10,000 g, 5 min; three acetone washes). 

Affinity Purification 
The cAMP-binding protein was purified either from total solubilized plasma 
membranes or from the detergent-enriched and hydrophilic phases after 
TX-114 partitioning by binding to N~-(2-aminoethyl)-cAMP Sepharose as 
described (Miiller and Bandlow, 1991a) but using a batch procedure: 
100-500 #g of solubilized plasma membrane proteins in up to 500/~1 were 
incubated with 1 ml of cAMP-Sepharose beads. The beads were washed five 
times with 1.5 ml washing buffer, finally extracted with 0.5 ml of the same 
buffer containing 10 mM cAMP for 5 min at 4°C and centrifuged (10,000 
g, 2 min). The soluble cAMP-binding protein was precipitated with an equal 
volume of 8% PEG 4000 in 10 mM MOPS/KOH (pH 7.2), 1 mM EDTA 
(30 rain, 4°C; 10,000 g, 5 min; two washes with 0.8% PEG 4000). For 
SDS-PAGE, the pellet was directly solubilized in sample buffer (5 min, 
95"C). 

Thin Layer Chromatography 
Neutralized samples were concentrated by lyophilization, suspended in 50 
/~1 tetrahydrofurane and 5-10 t~l applied to a silica gel Si 60 TLC plate 
which was developed twice in pyridine/ethyl acetate/acetic acid/H20 
(5:5:1: 3.5, by vol). Radioactive spots were visualized by fluorography using 
ENHANCE TM spray. 

Miscellaneous Procedures 
Published procedures were used for Western blotting with rabbit anti-CRD 
antibodies (1:1,000 dilution) using 100 #g mouse-anti-(rabbit IgG) serum 
coupled to horseradish peroxidase in 25 ml of 20 mM Tris/HC1 (pH 7.4), 
150 mM NaCI, 5 % fat-free milk powder for 1 h at 22"C (Miiller and Band- 
low, 1991b) followed by a chemiluminescent detection method; N-glycanase 
treatment of spheroplasts (5 × 107 cells in 0.5 ml) with 5 U N-glycanase 
under native conditions (Mitller et al., 1992) followed by centrifugation of 
the spheroplasts through a 0.5-ml cushion of sucrose/Ficoll (see above); 
acid hydrolysis of dried samples with 4 M HCI at I10°C for 6 h, followed 
by neutralization, lyophilization, suspension in 50 t~l of tetrahydrofurane, 
centrifugation (10,000 g, 2 min), and analysis of 5 #1 portions by TLC; ni- 
trous acid deamination of the detergent-solubilized (0.5 % octyl glucoside) 
or soluble cAMP-binding protein (after TX-I14 partitioning) (M/Jller and 
Bandlow, 1991a) followed by passing of the deaminated samples through a 
Millex HV (0.45 #M) for removal of the protein moiety of the cAMP- 
binding protein; SDS-PAGE (5% [wt/vol] stacking gel and 14% [vol/wt] 
running gel in the presence of urea) (Mtiller and Zimmermann, 1987), 
fluorography using ENHANCErM; densitometry with an LKB densitome- 
ter; liquid scintillation counting using scintillation cocktail ASC II; protein 
determination using the amidoblack staining method (Popov et ai., 1975); 
and digestion with GPI-PLD (rabbit serum) and PI-PLC (Bacillus cereus) 
(Miiller et al., 1992). 

Results 

Glucose Effects Amphiphilic to Hydrophilic 
Conversion of the cAMP-binding Protein 
Previously, a GPI-anchored glycoprotein of 54 kD molecular 
mass from yeast plasma membranes, genetically unrelated to 

the well known cytoplasmic R subunit of protein kinase A, 
has been shown to be amenable to photoaftinity labeling 
by 8-N3-cAMP (Miiller and Bandlow, 1991a, 1993). Since 
cAMP plays an important role in the regulation of carbohy- 
drate metabolism in both lower and higher eucaryotes, we 
examined if the cAMP-binding protein is involved in nutri- 
tional signaling. We tested if a change of the nutritional situa- 
tion of yeast cells results in the cleavage of a GPI anchor in 
a similar fashion as the deprivation of vertebrate cells of se- 
rum factors (Lisanti et al., 1989). We found that, indeed, a 
change of media from non-fermentable carbon sources to 
glucose causes a rapid partial conversion of the photoaffinity- 
labeled amphiphilic cAMP-binding protein into its hydro- 
philic form (Fig. 1). The opposite shift of media or a change 
from nitrogen-rich to poor media or vice versa has no effect 
(not shown). Three essential points can be derived from the 
figure (Fig. 1, a and b): (1) A small but significant portion 
of the GPI-anchored amphiphilic cAMP-binding protein is 
continuously converted into a hydrophilic form and can be 
recovered from the aqueous phase after TX-114 partitioning, 
irrespective of the carbon source used for growing the cells 
(lanes I, 4, 8, and 12 in Fig. 1 a). (2) A transfer of the cells 
from lactate to glucose greatly enhances the velocity and ex- 
tent of the conversion and of the appearance of the protein 

Figure 1. Generation of a hydrophilic version of the cAMP-binding 
protein. Spheroplasts from lactate-grown yeast cells were pho- 
toafiinity-labeled with 8-N3-[32p]cAMP under conditions saturat- 
ing for the label and subsequently transferred to either 2.5 % lactate 
(Lac, lanes 4-7), 2% glucose (Glc, lanes 8-11), or 2% galactose 
(Gal, lanes 12-15) media and incubated for the periods indicated. 
Then, plasma membranes were prepared from equal numbers of 
spheroplasts (2 nag of protein). As control (PL), plasma membranes 
were isolated from spheroplasts incubated in lactate medium (lane 
1 ), detergent-solubilized and digested with GPI-PLD from rabbit 
serum (lane 2) or PI-PLC (Bacillus cereus) (lane 3). All samples 
were subjected to TX-114 partitioning. Equivalent volumes of the 
aqueous (a) and detergent phases (b) were analyzed by SDS-PAGE 
and fluorography. 
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in the aqueous phase (lanes 8-11), whereas the effect of 
galactose is intermediate (lanes 12-15). (3) The molecular 
mass of the protein is not noticeably altered, making proteo- 
lytic removal of large parts from the protein's COOH termi- 
nus a less likely mechanism underlying this amphitropic 
change. Rather, the hydrophilic version exerts identical elec- 
trophoretic mobility and partitioning behavior as the protein 
liberated by either bacterial PI-PLC or GPI-PLD from se- 
rum (lanes 2 and 3 in Fig. 1, a and b). As a control and for 
reasons of quantitation, the TX-114 detergent phase is also 
shown (Fig. I b). These data suggest that glucose accelerates 
the amphiphilic/hydrophilic interconversion of the GPI- 
anchored protein. 

If conversion of the membrane-anchored form of the 
cAMP-binding protein to a soluble version relies on a glu- 
cose-inducible hydrolytic enzyme, we suspected that it is ac- 
tivated proportionally to the extrinsic glucose concentration 
over a certain range. To examine this possibility, we trans- 
ferred spheroplasts from lactate-grown cells to media con- 
taining increasing concentrations of glucose and measured 
the partitioning of the photoaffinity-labeled cAMP receptor 
protein between TX-114 and an aqueous phase. It can be seen 
that the glucose effect, indeed, is concentration-dependent 
(Fig. 2). A plateau value is reached at •5 % glucose. Again, 
galactose is much less efficient, whereas other sugars like 
mannose up to 5 %, are ineffective (not shown). 

The Hydrophilic Form of  the Protein Remains 
Attached to the Membrane 

The GPI-anchored cAMP-binding protein has been shown to 
reside at the outer face of yeast plasma membranes (Mfiller 
and Bandlow, 1991a). In intact ceils, amphiphilic to hydro- 
philic conversion by hydrolytic removal of the GPI mem- 

Figure 2. Conversion efficiency depends on the glucose concentra- 
tion. Spheroplasts from lactate-grown cells were photoaffinity- 
labeled with 8-N3-132p]cAMP and incubated with the glucose 
concentrations indicated. After 15 re.in, plasma membranes were 
prepared and subjected to TX-114 partitioning. Aqueous phases 
were analyzed by SDS-PAGE and fluorography. 

brane anchor would release the protein to the periplasmic 
space. Therefore, we assayed if the protein is freely diffusi- 
ble when liberated from plasma membrane vesicles (absence 
of detergents, in contrast to Figs. 1 and 2). For this purpose 
lactate-grown ceils were protoplasted, photoaffinity-labeled 
with N3-cAMP, and subsequently incubated in either lactate 
(Lac, control) or glucose (Glc)-containing medium as 
detailed in the legend to Fig. 3. Membrane release was then 
assayed by determining the soluble cAMP receptor in the su- 
pernatant fraction after centrifugation of isolated plasma 
membranes through a cushion of sucrose. Fig. 3 a shows that 
the amount of photoaffinity-labeled protein released and the 
kinetics of its liberation upon transfer to glucose (lanes 
13-16) are not dramatically enhanced over the controls (e.g., 
lanes 1-4). When, however, after incubation in glucose, the 
spheroplasts were supplied with NaC1 (at concentrations 
high enough to perturb polar interactions) or o~-MMP (as a 
competitor of interactions involving carbohydrate), and then 
centrifuged, a significantly enhanced release of the protein 
from the membrane in hydrophilic form was observed (com- 
pare Fig. 3 a, lanes 5-8 and 9-12 with both, lanes 13-16and 
1-4). This indicated that, in the presence of physiological 
salt concentrations, the major portion of the cAMP-binding 
protein remained associated with the membrane despite 
cleavage of the anchor and despite the hydrophilic nature of 
the anchor-free protein. It can be released by either high salt 
or o~-MMP. The suspicion that this peripheral membrane at- 
tachment involves the carbohydrate moieties of this glyco- 
protein is underlined by the fact that, after their removal by 
N-glycanase (yielding a core protein of 44 kD molecular 
mass), glucose-induced liberation from the membrane is 
significantly more pronounced (Fig. 3 b, compare lanes 6-9 
with lanes 10-13 and lanes 22-25). Inclusion of NaC1 in the 
wash buffer supports membrane release severalfold with the 
holoprotein (Fig. 3 a), but has only a small, however 
significant, additional effect on the membrane release of the 
core protein (Fig. 3 b, compare lanes 6-9 with lanes 2-5). 
This may reflect the possibility that, in addition to the 
N-glycosidic side chains, other bipolar interactions, possibly 
comprising the anchor core structure, are involved. Mock in- 
cubation for up to 4 h without N-glycanase fails to solubilize 
the protein to a significant extent (Fig. 3 b, lanes 14-21 ) indi- 
cating that denaturation or degradation of a presumptive 
receptor protein is not responsible for the release during the 
treatment with the N-glycanase (compare lanes 22-25 with 
lanes 14-17 in Fig. 3 b). Fig. 4 compiles the quantitative 
evaluations of these results. It demonstrates that, without 
further treatment, the percentages of membrane-associated 
(filled columns) as well as of the soluble (open columns) 
cAMP-binding protein are about comparable after incubat- 
ing spheroplasts in either lactate or glucose (columns I and 
2 in Fig. 4, a and b). When spheroplasts were incubated only 
in lactate medium (Fig. 4 b), the ratio of membrane as- 
sociated over soluble cAMP-binding protein is not signifi- 
cantly affected by the presence of NaC1 (columns 3 and 4) 
or u-MMP (columns 5 and 6), or by treatment with N-gly- 
canase (columns 7 and 8). Most of the photoaffinity-labeled 
material behaves as an amphiphilic protein in both TX-114 
partitioning (columns 9 and 10) and phenyl Sepharose chro- 
matography (columns 11 and 12). Only incubation with ex- 
ogenous PI-PLC renders a significant portion of the material 
soluble and hydrophilic in spheroplasts kept in lactate (not 
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Figure 3. Release of the cAMP-binding protein from plasma mem- 
branes by glucose. (a) Spheroplasts from lactate-grown cells were 
photoaffinity-labeled with 8-N3-[32P]cAMP and incubated in the 
presence of 5 % glucose (Glc, lanes 5-16) or lactate (Lac, lanes 
1-4). After the periods indicated, spheroplasts were collected, sus- 
pended in semisynthetic glucose or lactate medium, respectively, 
without additions (lanes 13-16) or with 0.5 M NaCI (lanes 5-8), 
or 10 mM ct-MMP (lanes 9-12) or both (lanes 1-4), and spun 
through a cushion of 0.8 M sucrose and 1.5% Ficoll. The medium 
on top of the cushion was withdrawn, proteins were precipitated 
with 'IU.A (5%), and analyzed by SDS-PAGE and fluorography. (b) 
Photoatfinity-labeled spheroplasts were incubated in the presence 
of 5% glucose (Glc, lanes 2-9, 14-17, and 22-25) or lactate (Lac, 
lanes 10-13, 18-21 ), collected, and incubated for 4 h with N-gly- 
canase under native conditions (lanes 2-13). Controls were in- 
cubated without N-glycanase for 4 h (lanes 14-21 ) or 5 min (lanes 
22-25). One set of samples was subsequently supplemented with 
0.5 M NaC1 (lanes 2-5), and omitted in the other (lanes 6--25). The 
spheroplasts of each sample were centrifuged as above. Soluble 
proteins from the top layer were analyzed by SDS-PAGE and 
fluorography. On the left margin, photoatiinity-labeled and com- 
pletely deglycosylated plasma membrane cAMP-binding protein 
(44 kDa) was run in parallel as a control (ma, lane 1). 

shown). By contrast to the situation with lactate, in those 
spheroplasts shifted to glucose medium NaC1, ot-MMP and 
treatment with N-glycanase support membrane release of a 
hydrophilic form of the protein significantly (Fig. 4 a, 
columns 3-8).  These results suggest that in vivo transfer of 
the cells to glucose induces the cleavage of the anchor but 
leaves the protein moiety attached to the outer face of the 
plasma membrane presumably via carbohydrate interactions 
involving, at least in part, the N-glycosidic side chains. In- 
terestingly, tx,-MMP is much more efficient in supporting 
glucose-induced membrane release as compared to man- 

nose: 0.5 M of the sugar are less efficient in this respect 
(m30%) than 10 mM of the mannoside. Addition of Con A 
Sepharose beads, as used for the preparation of plasma mem- 
brane vesicles, further reduces liberation of the protein (to 
3-5% of what can be released with ot-MMP, data not 
shown). The molecular basis of this behavior remains un- 
known, but these observations explain why the hydrophilic 
version of the cAMP receptor is almost quantitatively recov- 
ered with the plasma membrane fraction during adsorption 
to Con A Sepharose and elution with 0.5 M mannose (see 
Materials and Methods). 
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Figure 4. Et~ciencies of membrane release 
and amphiphilic/hydrophilic conversion of the 
cAMP-binding protein. Photoaflinity-labeled 
spheroplasts from lactate-grown cells were in- 
cubated for 15 min in the presence of 2% glu- 
cose (a) or 2.5 % lactate (b), and crude plasma 
membranes were prepared. Six aliquots were 
centrifuged (150,000 g, 60 rain) in the absence 
(columns 1 and 2) or presence of 500 mM 
NaC1 (columns 3 and 4) or 10 mM ¢x-MMP 
(colunms 5 and 6), or after digestion with 
N-glycanase (Gly, columns 7and 8). The other 
four aliquots were subjected to TX-114 parti- 
tioning (columns 9 and 10) or adsorbed to 
phenyl Sepharose (columns 11 and 12). The 
membrane-associated, amphiphilic (filled col- 
umns) and soluble hydrophilic cAMP-binding 
protein (hatched columns) is given as percent- 
age of the total photoaflinity-labeled cAMP- 
binding protein before the incubation (,~5,500- 
6,000 dpm in each case). 

Anchor Cleavage Is Effected by a Phospholipase C 

The results described above point to the involvement of a 
glucose-inducible enzyme in anchor cleavage. To test this 
idea and to localize the cleavage site within the anchor, we 
metabolically labeled the protein with radiolabeled constitu- 
ents of the GPI anchor: palmitic acid, myo-inositol, and 
ethanolamine. Subsequently, spheroplasts were exposed to 
glucose in the presence of excess unlabeled constituent, and 
the portions of the protein, recovered from both the detergent 
and the aqueous phase after TX-114 partitioning of total 
plasma membrane proteins, purified by cAMP affinity chro- 
matography. Both fractions were assayed for retention or re- 
lease of label by SDS-PAGE and fluorography. 

To detect not only the palmitic acid-labeled complete an- 
chor, but also the hydrophilic, protein-containing cleavage 
product from which the metabolic label should have been re- 
moved, this experiment (Fig. 5 a) was divided into two parts. 
One aliquot was used for autoradiographic detection of the 
metabolically labeled, anchor-containing protein (left side 
of Fig. 5 a). From this figure it can be seen that, after incuba- 
tion in either glucose or lactate, palmitic acid exclusively 

labels the amphiphilic form isolated from plasma mem- 
branes after solubilization by detergent (lanes 13-20). The 
label is lost from the hydrophilic version of the protein iso- 
lated from the aqueous phase after TX-114 partitioning of 
plasma membranes (lanes 25-32) (or from the supernatant 
fraction after plasma membrane centrifugation in the pres- 
ence of ot-MMP, not shown), again widely independent of 
the conditions of incubation of the spheroplasts, lactate 
(lanes 25-28), or glucose (lanes 29-32). 

To monitor also the unlabeled, soluble cAMP-binding pro- 
tein and to test whether the hydrophilic conversion involves 
a lipolytic cleavage event, the second aliquot was reacted 
with an anti-trypanosomal VSG anti-cross-reacting deter- 
minant (CRD) antibody in a Western blot (right side of Fig. 
5 a). The cross-reactivity of this polyclonal antiserum with 
soluble VSGs from different trypanosome variants (Zamze 
et al., 1988) as well as with the cAMP-binding protein from 
yeast (Miiller et al., 1992) depends on the fact that the anti- 
bodies recognize distinct epitopes in the glycan portion of 
the GPIs from the respective proteins which are generated 
by the cleavage with (G)PI-PLC. Fig. 5 a shows that only in 
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Figure 5. (a) Loss of palmitic acid from the metabolically labeled cAMP-binding protein during incubation with glucose. Spheroplasts 
from lactate-grown cells were metabolically labeled with [~4C]palmitic acid and subsequently incubated in lactate (lanes 1-4) or 5 % glu- 
cose medium (lanes 5-12) supplemented with an excess unlabeled palmitic acid for the periods indicated. One half of the plasma membranes 
prepared was directly used for affinity purification of the cAMP-binding protein (total). The other half was first separated into amphiphilic 
and bydrophilic proteins by TX-114 partitioning, and the cAMP-binding protein was affinity-purified from the detergent and aqueous phases, 
respectively. Half of the glucose-treated samples was analyzed by Western blotting, immunodecoration with anti-CRD antiserum and chemi- 
luminescent detection (lanes 9-12, 21-24, and 33-36). The other half was analyzed directly for the retention of [~4C]palmitic acid by 
SDS-PAGE and autoradiography (lanes 1-8, 13-20, and 25-32). The molecular mass indicated on the right margin is derived from pho- 
toaflinity-labeled cAMP-binding protein run in parallel. (b) Retention of myo-inositol and ethanolamine in the hydrophilic version of the 
metabolically labeled cAMP-binding protein. Spheroplasts from lactate-grown cells were metabolically labeled with [~4C]myo-inositol 
(lanes 1-8) or [~4C]ethanolamine (lanes 9-16), and subsequently incubated under chase conditions in the presence of lactate (Lac, lanes 
1-4, 9-12) or 5 % glucose (Glc, lanes 5-8, 13-16) for 10 min. One half of the plasma membranes received 0.5 M NaC1 and was centrifuged 
(150,000 g, 60 min) (lanes 1, 2, 5, 6, 9, 10, 13, and 14). The other half was subjected to TX-114 partitioning (lanes 3, 4, 7, 8, 11, 12, 
15, and 16). The cAMP-binding protein was afffinity-purified from the membrane (m) and soluble fractions (s) as well as from the detergent 
(d) and aqueous (a) phases, and analyzed by SDS-PAGE and fluorography. The molecular mass (54 kD) indicated on the right margin 
is derived from photoaffinity-labeled cAMP-binding protein run in parallel. 

the soluble version of the cAMP-binding protein, recovered 
either from the aqueous phase after TX-114 partitioning 
(lanes 33-36)  or from the supernatant fraction after cen- 
trifugation of the plasma membranes in the presence of 
tx-MMP (not shown), immunoreactivity with anti-CRD anti- 
bodies can be demonstrated. This cross-reactivity has been 
shown to depend on the presence of myo-inositol-l,2-cyclic 
phosphate ester as the major epitope generated by (G)PI- 
PLC cleavage (Zamze et al., 1988). Immunodetection of the 
soluble version of the cAMP-binding protein is, thus, in ac- 
cordance with the cleavage of the GPI by an intrinsic PLC 
activity. Consistently, the major epitope is lost upon mild 
acid hydrolysis which destroys the 1,2-cyclic phosphate ester 
(not shown here, but see, e.g., Zamze et al., 1988; Mfiller 
et al., 1992). Conversely, the amphiphilic material does not 
cross-react (lanes 21-24) because, without cleavage by PLC, 

the major epitope is lacking. In addition, this result demon- 
strates that the antiserum does not recognize any epitopes 
residing in the protein moiety. As a control for quantitative 
recovery of the palmitic acid label and of the cross-reacting 
material, respectively, from TX-114 partitioning, the same 
amount of total plasma membranes was analyzed directly 
without partitioning (lanes 1-12). The sum of ~4C-labeled or 
anti-CRD-cross-reactive hydrophilic and amphiphilic cAMP- 
binding protein correlates nicely with the total amount used 
for each time point and growth condition (compare "total" 
with "hydrophiliC plus '~amphiphiliC in Fig. 5 a). In immu- 
noprecipitation of the metabolically labeled material neither 
the soluble nor the amphiphilic material displayed higher 
than background radioactivity after labeling with [~4C]pal- 
mitate (not shown). 

By contrast to the above results demonstrating the loss of 
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the [14C]palmitic acid label after the transfer of cells to glu- 
cose medium, myo-['4C]inositol (Fig. 5 b, upper panel) and 
[~4C]ethanolamine (Fig. 5 b, lower panel) are both retained 
simultaneously in the hydrophilic (lanes 8 and 16) and in the 
amphiphilic version (lanes 7 and 15) as well as in the soluble 
form of the cAMP-binding protein isolated from the superna- 
tant after centrifugation of plasma membranes in the pres- 
ence of high salt (lanes 6 and 14), and in the membrane- 
attached form in the pellet fraction (lanes 5 and 13). This 
indicates that glucose induces a phospholipase which cleaves 
the anchor within the phosphatidylinositol moiety. The 
cross-reactivity with an anti-trypanosomal anti-CRD anti- 
body (see above) suggests phospholipase C specificity of the 
cleaving enzyme. 

To demonstrate the time course of the cleavage and to 
quantitate the loss of the amphiphilic character of the protein 
and the simultaneous emergence of the CRD in the hydro- 
philic version, we double-labeled the protein in vivo with 
[~4C]palmitic acid and pH]myo-inositol. After transfer of 
spheroplasts to glucose medium, the disappearance of both 
labels from the TX-I14 phase in partitioning (Fig. 6 a) and 
the simultaneous appearance of the inositol label and the 
CRD, but not of the palrnitic acid label (not shown), in the 
aqueous phase (Fig. 6 b) were monitored. Anti-CRD cross- 
reactivity was at the limit of detection and about constant 
with time in the amphiphilic phase (not shown). The results 
corroborate that the cleavage is effected by a phospholipase 
presumably of type C. It can be seen that glucose stimulates 
the lipolytic cleavage about threefold and that within 30 min 
a total of '~30% of the double-labeled material is converted 
from the amphiphilic to a hydrophilic version. 

Next, we confirmed the lipolytic nature of the anchor 
degradation and identified the cleavage site in order to deter- 
mine directly the specificity of the phospholipase involved. 
For this purpose we undertook a kinetic study of the cleavage 
and, in parallel, monitored the dependence of the hydro- 
philic conversion on the glucose concentration. After induc- 
tion of the cleavage by glucose, the hydrophilic version of the 
cAMP-binding protein, metabolically labeled with myo- 
[t4C]inositol and afffinity-purified on cAMP-Sepharose as 
above, was chemically cleaved with nitrous acid at the 
glucosamine and, after removal of the protein by ultrafiltra- 
tion, the filtrate analyzed for the labeled polar end group by 
TLC. The respective standards were treated with nitrous 
acid in the same manner to exclude differences in migration 
behavior that might have been caused by the way of sample 
preparation. Fig. 7, a and b reveal that the ~4C-label is as- 
sociated with a component comigrating with myo-inositol 
1-monophosphate when isolated and analyzed directly from 
the filtrate. The concentration of inositol monophosphate in- 
creases in a time- and glucose-dependent fashion as expected 
for a glucose-induced enzymatic process (Fig. 7, a and b, 
lanes 1-7). In addition, some non derivatized myo-inositol 
emerges, which may have formed by degradation of the prod- 
uct by a phosphatase or from unspecific hydrolysis of the 
lipolytically cleaved anchor during the isolation of the hy- 
drophilic protein by affinity-chromatography and subsequent 
preparation of the anchor fragment. As a control, the sub- 
stance comigrating with myo-inositol phosphate can be con- 
verted to inositol by complete hydrolysis (lanes 8 in Fig. 7, 
a and b) proving the identity of the original material with ino- 
sitol monophosphate. Since myo-inositol monophosphate is 
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Figure 6. Time course of the glucose-induced loss of palmitic acid 
and appearance of anti-CRD cross-reactivity in the released cAMP- 
binding protein. Spheroplasts from lactate-grown ceils were meta- 
bolically labeled simultaneously with [14C]palmitic acid (+, -) 
and [3H]myo-inositol (*, ra), and subsequently incubated in lactate 
or 5 % glucose medium under chase conditions. At the periods of 
time indicated, plasma membranes were prepared and subjected to 
TX-114 partitioning. The cAMP-binding protein was affinity- 
purified from the TX-114 phase (a) and from the aqueous phase (b). 
a shows the analysis of the TX-114 phase: the affinity-purified 
cAMP-binding protein from spheroplasts incubated in lactate ([], 
i )  or glucose (+, *) was analyzed for the retention of 
[14C]palmitic acid (+, m and [3H]myo-inositol ([], *). b shows the 
analysis of the aqueous phase: half of the afffinity-purified cAMP- 
binding protein from spheroplasts incubated in lactate (o, I) or 
glucose (*, *) was analyzed for retention of [3H]myo-inositol (t~, 
*). The other half was analyzed by Western blotting, immunodeco- 
ration with anti-CRD antiserum, chemiluminescent detection and 
densitometry of the exposed film (LKB densitometer) for the ap- 
pearance of anti-CRD immunoreactivity (~, I). The amount of 
~4C- and ~H-radioactivity in the arnphiphilic phase (a) at time 
point 0 was set at 100%. The amount of 3H-radioactivity in the 
hydrophilic phase (b) at time point 0 was set at 0% (*, ~) and anti- 
CRD immunoreactivity was set at 0 arbitrary units (~, I). The 
~4C-radioactivity is shown for the arnphiphilic phase, and the anti- 
CRD immunoreactivity for the hydrophilic phase, only (the respec- 
tive other phases contained t4C-radioactivity and anti-CRD im- 
munoreactivity at the limit of detection which did not change 
significantly over the entire period of time). The curves represent 
the results of three averaged independent experiments (-l- SEM, 
only the + or - bar is shown for each point). 
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Figure 7. Identification of the cleavage site. Spheroplasts from 
lactate-grown cells were metabolically labeled with [~*C]myo- 
inositol and incubated under chase conditions for various periods 
of time in 5 % glucose medium (a) or for a constant period of 30 
min in media containing increasing concentrations of glucose (b) 
as indicated. Plasma membranes were then prepared and subjected 
to TX-114 partitioning. The cAMP-binding protein was affinity- 
purified from the aqueous phase and cleaved with nitrous acid at 
the glucosamine moiety. The neutralized, filtered, and lyophilized 
mixture was analyzed by TLC as detailed in Material and Methods. 
As a control, two samples (a, lane 8, 30-min incubation time; b, 
lane 8, 5% glucose) were subjected to acid hydrolysis (a.h.) after 
lyophilization before TLC analysis. ~4C-labeled myo-inositol-1- 
phosphate (IP, lanes 9) and myo-inositol (I, lanes 10) were run in 
parallel as markers, c shows an experiment carried out as described 
for a, except that affinity purification of the cAMP-binding protein 
was carried out with solubilized total plasma membranes omitting 
TX-114 partitioning, t4C-labeled phosphatidylinositol (PI, lane 7), 
myo-inositol-l-phosphate (IP, lane 5), and myo-inositol (L lane 6) 
were run as markers. As a control, the affinity-purified cAMP- 
binding protein from spheroplasts incubated in the absence (lane 
8) or presence of glucose (lane 9) was acid hydrolyzed (a. h.), and 
analyzed by TLC. Origin (o) and front Or) are indicated. Lanes 8 
and 9 of c were counted for radioactivity (Berthold linear scanner; 
2,624 and 3,271 dpm in the total lanes, 245 and 291 dpm at the ori- 
gins, 2,023 and 2,481 dpm at the myo-inositol position). 

clearly present in all samples as soon as the spheroplasts 
have been exposed to glucose, these findings confirm the 
results from the immunodecoration and argue that glucose 
leads to the activation of  an intrinsic phospholipase C. 

Two additional controls were performed. First, lanes 1-4 
of Fig. 7 c show that most of  the label (>90%) is incorpo- 

rated into phosphatidylinositol, when total afffinity-purified 
cAMP-binding protein is directly treated with nitrous acid 
and the ultrafiltrate analyzed by TLC as above. PI may, in 
part, be derived from cAMP receptor molecules not lipolyti- 
cally degraded upon transfer of  spheroplasts to glucose. 
More likely, most of  it may stem from free PI. Since in this 
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experiment TX-114 partitioning has been omitted so that 
lipid-lipid interactions have not been perturbed, it appears 
feasible that also some membrane-derived PI copurifies with 
the protein. After treatment with nitrous acid, again a small, 
presumably GPI-derived portion is converted to inositol 
monophosphate (and inositol) in a time-dependent fashion. 
Only insignificant amounts of radiolabel are found associ- 
ated with other components. Secondly, lanes 8 and 9 of Fig. 
7 c reveal that, if total inositol-labeled cAMP-binding pro- 
tein is hydrolyzed to completion by acid and analyzed by 
TLC without previous deproteination, the label is recovered 
almost exclusively with inositol, independent of the presence 
or absence of glucose. Since in this experiment most, if not 
all compounds amenable to inositol labeling have been ana- 
lyzed, this result reflects the metabolic stability of the ap- 
plied inositol label and proves that it is not metabolically 
converted to other compounds to a significant extent such as, 
e,g., amino acids. 

Transient Activation of the Phospholipase by Glucose 
The above data point to the possibility that glucose induces 
the activation of a phospholipase C which then cleaves the 
GPI anchor of at least one plasma membrane protein in 
yeast, a cAMP-binding ecto-protein. To study, whether the 
transfer to glucose results in the permanent activation of the 
lipase or rather in a transient increase in the rate of anchor 
cleavage which could generate a signal linked to nutritional 
upshift, we monitored the rate of the amphiphilic to hydro- 
philic conversion after exposure of cells to glucose medium. 
For this kinetic study, 8-N3-[32p]cAMP-labeled spheroplasts 
from lactate-grown cells were transferred to glucose for vari- 
ous periods of time as indicated in Fig. 8. Then they were 
washed in the presence of NaCI at a concentration high 

enough to free them of any adherent cAMP-binding protein 
which might have been cleaved off during this incubation. 
Two equal aliquots of these glucose-preincubated and 
washed spheroplasts from each time point were resuspended 
in either glucose or lactate medium for a constant period of 
2 min and liberation rates measured by following the release 
of the labeled protein during this interval. Fig. 8 shows that 
the transfer of these spheroplasts to glucose (upper curve) 
results in a rapid increase in the rate of anchor cleavage rela- 
tive to the rate observed with the other aliquot of sphero- 
plasts transferred to lactate medium (lower curve). The rate 
of anchor cleavage reaches its maximum 5 min after the 
transfer to glucose and declines to the initial rate after 30 
min. These data, together with the rapid decrease of the 
cleavage rate observed after quenching the spheroplasts by 
an immediate shift from glucose to lactate for the 2 min as- 
say period, indicates a sharp increase in lipolytic activity 
tightly coupled to the nutritional upshift, but also a slow de- 
cline to the original activity upon adaptation to glucose. 

Discussion 

The functional relevance of GPI membrane anchorage is not 
known. Evolutionary conservation of this particular mode of 
anchoring implies that it confers specific, physiologically 
useful properties on the respective protein which are not 
achieved by other anchoring mechanisms. However, despite 
this expectation, apart from a few examples (Braun-Breton 
et al., 1988; Espinoza et al., 1988) which rather appear to 
be exceptions to the rule, no difference in activity or function 
of the respective protein appears to be attributable to the 
lipolytic degradation of GPI anchors. For example, mem- 
brane-embedded and soluble versions of mammalian eryth- 
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Figure 8. Transient activation of 
the releasing enzyme. Sphero- 
plasts from lactate-grown ceils 
were photoaflinity-labeled and 
incubated in glucose medium 
(2%) under chase conditions. 
After various periods of time, 
NaC1 (0.5 M final conc.) was 
added, and the spheroplasts 
were spun through a cushion 
of sucrose/Ficoll, resuspended 
in medium containing 2% 
glucose (t) or lactate (+), 
and incubated for a constant 
period of 2 min. After sup- 
plementation with 0.5 M 
NaC1, the spheroplasts were 
spun again through a cushion 
of sucrose/Ficoll. The medium 
above the cushion was con- 
centrated by TCA precipita- 
tion and analyzed by SDS- 
PAGE and fluorography. A 
densitometric quantitation of 
the released cAMP-binding 
protein (54-kD protein band) 
is shown. The values repre- 
sent means of four different 
experiments (+ SEM). 
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rocyte acetylcholine esterase and bovine cerebral cortex 
5'-nucleotidase have identical activities (Barton et al., 1985; 
Vogel et al., 1992), and transmembrane and GPI-anchored 
forms of N-CAM mediate cell adhesion of transfected mouse 
fibroblasts in a similar fashion (Pizzey et al., 1989). It ap- 
pears that GPI anchorage does, in most cases, not signifi- 
cantly modulate the properties of the anchored protein. In 
support of such an interpretation, it has been shown that in 
mice the physiological function of neutrophils and NK cells 
is not impaired although both cell types, in contrast to the 
respective human cells, express only the transmembraneous 
form of FcTRIII (Perussia et al., 1989). On the other hand, 
treatment ofchicken myoblasts with PLC impairs cell adhe- 
sion and myotube formation (Knudson et al., 1989), and 
crosslinking of Thy-1, Qa-2, or Ly-6 with an antibody acti- 
vates T-cells only from transgenic mice expressing the GPI- 
anchored forms of these T-lymphocyte-specific receptors 
(Robinson et al., 1989; Suet al., 1991; Zhang et al., 1991). 
These observations demonstrate the indispensability of the 
anchor structure for the specific function of these proteins 
in differentiation and transmembrane signaling in the respec- 
tive cell types. However, the direct function in signal trans- 
duction of GPI-anchored proteins could in no case be 
demonstrated. The interpretation of these seemingly con- 
troversial observations could be that for certain transmem- 
brane signaling events, presumably those yielding a mitotic 
vs. differentiation signal, GPI-anchorage is indispensable, 
whereas it is not essential, where primarily the receptor 
function of the respective protein is required. This would ad- 
ditionally imply that the release of certain proteins from the 
plasma membrane leads to the generation of a signal which 
subsequently is transmitted to the interior of the cell and in- 
duces the responses observed. 

The present study was undertaken in order to develop a 
model system for the analysis of the significance of mem- 
brane anchorage by a glycolipid. Because no other common 
property of GPI-anchored proteins is apparent apart from the 
lipolytic cleavability of the anchor structure, we suspected 
that it could be just the cleavage event which leads to the 
generation of the signal. Such a model would pass on the role 
of the key player in signaling through the involvement of GPI 
anchorage to GPI-specific phospholipases the activity of 
which might be modulated in response to environmental sig- 
nals. We have chosen baker's yeast as a system to analyze this 
problem because it has been shown by several groups (Con- 
zelmann et al., 1988; Vai et al., 1990; Miiller and Bandlow, 
1991a) to contain GPI-anchored plasma membrane surface 
proteins. In addition, this organism provides two decisive ad- 
vantages over other systems in order to study the physiologi- 
cal significance of anchor cleavage: (1) it is simple to grow 
at a large scale and to analyze the cleavage event(s) within 
the anchor structure and (2) it is easily amenable to manipu- 
lation by genetic and recombinant DNA technologies. 

In this paper, we have been able to provide evidence that, 
in this organism, membrane anchorage is modulated in re- 
sponse to an extracellular signal generated upon glucose up- 
shift. A portion of at least one GPI-anchored protein, the 
ecto-receptor protein for cAMP, is released from the mem- 
brane through the activation of an endogenous PLC. This an- 
chor cleavage following a nutritional upshift qualitatively 
resembles the lipolytic membrane release of some GPI- 
anchored proteins (e.g., 5'-nucleotidase, alkaline phospha- 

tase, lipoprotein lipase, and heparan sulfate proteoglycan) 
observed with cultured cells and tissues from vertebrates in 
response to glucose and insulin (Ishihara et al., 1987; Ro- 
mero et al., 1988; Chan et al., 1988; Klip et al., 1988; Li- 
santi et al., 1989). In both cases, yeast as shown here and -  
as far as is known-vertebrate cells, a phospholipase is acti- 
vated in response to extrinsic signals. 

The observations made in the present study imply that GPI 
cleavage is involved in glucose-mediated signaling in yeast. 
Experiments are underway to elucidate whether glucose- 
induced cleavage of GPI membrane anchors occurs in higher 
eucaryotic cells as well and applies to other GPI-anchored 
proteins and whether and how it could be related to the 
generation of a transducible signal. Although some evidence 
has been found in favor of the idea, originally put forward 
by Lamer and coworkers (Lamer, 1988; Romero et al., 
1988), that nutritional and other transmembrane signaling 
events could involve a second messenger(s) derived from the 
polar head group of the cleaved anchor, a direct proof of this 
attractive hypothesis is still lacking. 

Soluble VSG from Trypanosoma brucei and anti-VSG-CRD antibodies from 
rabbit were graciously donated to us by P. Overath, Max-Planck-lnstitut fiir 
Biologic, Tiibingen; GPI-PLD from rabbit was the gift of W. Gutensohn, 
Institut fiir Anthropologie und Humangenetik, Universitit Miinchen. 
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