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Abstract

When using cell lines to study cancer, phenotypic similarity to the original tumor is paramount. 

Yet, little has been done to characterize how closely Merkel cell carcinoma (MCC) cell lines 

model native tumors. To determine their similarity to MCC tumor samples, we characterized MCC 

cell lines via gene expression microarrays. Using whole transcriptome gene expression signatures 

and a computational bioinformatic approach, we identified significant differences between variant 

cell lines (UISO, MCC13, and MCC26) and fresh frozen MCC tumors. Conversely, the classic 

WaGa and Mkl-1 cell lines more closely represented the global transcriptome of MCC tumors. 

When compared to publicly available cancer lines, WaGa and Mkl-1 cells were similar to other 

neuroendocrine tumors, but the variant cell lines were not. WaGa and Mkl-1 cells grown as 

xenografts in mice had histological and immunophenotypical features consistent with MCC, while 

UISO xenograft tumors were atypical for MCC. Spectral karyotyping and short tandem repeat 

analysis of the UISO cells matched the original cell line’s description, ruling out contamination. 

Our results validate the use of transcriptome analysis to assess the cancer cell line 

representativeness and indicate that UISO, MCC13, and MCC26 cell lines are not representative 

of MCC tumors, whereas WaGa and Mkl-1 more closely model MCC.
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Introduction

Cancer cell lines are essential tools for modeling human malignancy. However, many 

factors can alter the representativeness of a cultured cell line. Some differences to the native 

tumor are expected with cells grown in culture due to the absence of vascular stroma and 

tumor architecture. Additional discrepancies can arise due to the evolution of atypical 

subclones that possess in vitro growth advantages, genomic instability associated with 

repeated passaging, alterations secondary to microbial infections in culture, and 

contamination from other cell lines (Barallon et al., 2010; Capes-Davis et al., 2010). 

Phenotypic dissimilarity to the original tumor impacts the relevance of a cell line as an 

experimental model. Thus, systematic comparison of cell lines to the cancers they are 

modeling is critical.

Microarray expression profiles have been used to compare cancer cell lines to native tumors 

for a number of cancer types (Barretina et al., 2012; Carlson et al., 2007; Wang et al., 2006; 

Gillet et al., 2011; Khan et al., 2001; Li et al., 2008). In some cases, extensive 

transcriptomic differences were found between cell lines and primary tumors (Li et al., 

2008; Wang et al., 2006). These studies illustrate the utility of microarray expression 

profiling in characterizing cancer cell lines, however the implications of expression profile 

differences on the biological representativeness of cells lines were not assessed.

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer (Toker, 1972; 

Maricich et al., 2009, 2012). The risk of developing MCC is associated with ultraviolet light 

exposure, advanced age, and immunosuppression (Hodgson, 2005; Becker, 2010). 

Approximately 80% of MCC tumors have DNA of the Merkel cell polyomavirus (MCV) 

clonally integrated into their genome (Feng et al., 2008). The MCV T antigen is thought to 

be important in MCC carcinogenesis (Houben et al., 2010), however, it is unclear if the 

presence or absence of integrated MCV alters the outcome or course of MCC.

Like most solid malignancies, diagnosis of MCC relies on histopathological examination of 

tumor tissue. MCC shares a number of histopathological characteristics with other tumors of 

neuroendocrine origin. For example, both MCC and small cell lung cancer (SCLC) are 

frequently composed of morphologically similar, small, round cells that frequently express 

chromogranin (CHGA), synaptophysin (SYP), and neuron-specific enolase (ENO2). In 

contrast, immunostaining for cytokeratin 20 (KRT20) is more specific for MCC, whereas 

thyroid transcription factor 1 (TTF1) is a marker of SCLC (Leech et al., 2001; Pulitzer et al., 

2009).

A growing number of MCC tumor cell lines are available (Krasagakis et al., 2001; Leonard 

et al., 1993; Rosen et al., 1987; Leonard et al., 1995; Moll et al., 1994; Ronan et al., 1993). 

Most MCC cell lines grow in suspension, express MCC immunomarkers, and demonstrate 

dense core granules on ultrastructural analysis. MCC cell lines with these typical features, 

such as WaGa and Mkl-1, are termed “classic” (Ronan et al., 1993; Leonard et al., 1993; 

Van Gele et al., 2004). In contrast, “variant” MCC cell lines like UISO-MCC-1 (henceforth 

referred to as UISO) (Ronan et al., 1993), MCC13, and MCC26 (Leonard et al., 1995) grow 

adherently in culture, lack typical markers on immunostaining, and have reduced numbers of 
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neurosecretory granules. The majority of classic MCC cell lines test positive for MCV, 

whereas most variant cell lines are MCV negative. Little has been done to assess the 

representativness of either classic or variant MCC cell lines.

Here we apply computational and experimental methods to compare MCC cell line 

transcriptomes to each other, to fresh tumor tissue, and to other cancer cells in order to 

examine their representativeness. Using these approaches, we find that three variant cell 

lines are not characteristic of MCC whereas three classic MCC cell lines more closely 

represent native MCC tumors. We validate the non-representative biology of UISO cells by 

demonstrating atypical in vivo growth in a xenograft tumor model.

Results

Variant cell lines clusters distinctly from MCC tumors and classic MCC cell lines

In order to test how well they modeled MCC, we analyzed global RNA expression in six 

MCC lines: the variant lines UISO, MCC13, and MCC26, and the classic lines WaGa 

(Houben et al., 2010), Mkl-1 (Rosen et al., 1987), and a newly established MCC cell line 

SK-MC01 (hereafter MC01). We also analyzed global RNA expression from 23 MCC and 9 

SCLC fresh frozen tumor samples.

We performed hierarchical clustering to identify groups of samples with similar global gene 

expression profiles (Figure 1A). The variant cell line samples formed a group divergent 

from the MCC tumors, SCLC tumors, and the classic WaGa, Mkl-1, and MC01 samples, 

indicating that these cell lines are distinct from both native tumors and the more typical 

MCC cells. Furthermore, the UISO samples clustered separately from the other variant cell 

lines, MCC13 and MCC26. In contrast to the variant lines, WaGa, Mkl-1, and MC01 cells 

clustered with the MCC tumor samples. These differences in gene expression can also be 

visualized in a principal components analysis (PCA) projection (Figure 1B, Figure S1). In 

the PCA, expected differences due to in vitro growth appear to contribute to the separation 

between cultured cells and fresh frozen tumor samples along the second principal 

component.

Global gene expression differences between the MCC cell lines and tumor samples

To identify RNA expression differences, we performed differential expression analysis 

between the MCC tumor samples and each group of cell lines: classic (WaGa, Mkl-1, and 

MC01), variant (MCC13 and MCC16), and UISO. Figure 2 depicts a Venn diagram of the 

differentially expressed probe sets in the comparison of each group to the tumor samples. In 

total, 1023 probe sets showed common differential expression between the tumor samples 

and all three groups. In line with our prior results, many more probe sets were uniquely 

differentially expressed between the MCC tumor samples and UISO cells (4223) or the other 

variant lines (4103) than between the MCC tumors and the classic cell lines (938). To 

quantify the overall similarity of cell line expression profiles to MCC tumor samples, 

Spearman’s rank correlation coefficients between individual expression profiles of MCC 

cell lines and tumor samples were computed (Figure S2). The classic samples were similar 
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to tumor samples (median correlation = 0.83). UISO cells were less similar (median 

correlation = 0.66), as were the other variant lines (median correlation = 0.68).

Virus status of MCC tumors does not influence gene expression comparisons

Despite having varied clinical features, the MCC tumor samples analyzed in this study were 

remarkably homogeneous at the RNA expression level. We observed no significantly 

differentially expressed probe sets when comparing samples based on clinically relevant 

phenotypes such as tumor site (primary skin vs. metastasis), if the patient ultimately had a 

recurrence, or tumor stage (stage 1–2 vs. Stage 3, coded as early vs. late; Table S1). We 

found relatively few (214) significantly differentially expressed probe sets between MCV 

positive and negative tumors (Table S2), including previously described differences in TP53 

and RB1 expression (Harms et al., 2013; Sihto et al., 2011; Bhatia et al., 2010; Waltari et 

al., 2011). Consistent with this high degree of similarity, there was little difference in the 

correlation values for each cell line when compared independently to MCV positive or MCV 

negative tumors (Table S3). These observations suggest that clinical differences and MCV 

status are not driving the divergent expression profile observed in the MCV-negative 

(Guastafierro et al., 2013) variant cell lines.

Predicted functional differences between MCC cell lines and tumor samples

Having identified significant differences between the variant MCC cell lines and the tumor 

samples at the single gene level, we sought to identify functional differences at the pathway 

level. To identify pathways that are significantly differentially expressed between MCC cell 

lines and tumor samples, we applied Gene Set Enrichment Analysis (GSEA) (Subramanian 

et al., 2005) using the differential expression data and pathway gene sets taken from the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa and Goto, 2000). 

We assessed pathway enrichment in the differentially expressed genes comparing MCC 

tumors to UISO cells, variant cell lines, and classic cell lines (Table S4).

Although enrichment of any given pathway requires experimental validation, GSEA analysis 

often accurately reveals biological schemes. It is therefore noteworthy that the gene 

expression differences between UISO cells and MCC tumors show concordant changes in 

processes central to oncogenesis such as DNA replication and RNA processing 

(spliceosome). Despite having a similarly large number of differentially expressed probe 

sets as UISO, the other variant cell lines had very few differentially expressed pathways, 

with only the proteasome pathway showing high enrichment. On the other hand, highly 

differentially expressed pathways between MCC tumors and the classic cell lines could be 

attributed to cultured cells lacking both stromal interactions (focal adhesion and ECM 

interactions) and an immune infiltrate (multiple autoimmune, inflammatory, and infectious 

pathways). Taken together, the GSEA results further suggest that UISO cells are less 

appropriate to use as a model for MCC, but give little insight into the large differences 

between MCC tumors and the other variant cell lines.

Classification of MCC cell lines using tumor samples

Since our analyses suggested that variant cell lines were similarly distinct from both skin 

and lung neuroendocrine tumors, we sought to test if the variant lines would be classified as 
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MCC or SCLC using a random forest machine learning classifier trained on expression 

signatures of the fresh frozen tumor samples (see Supplementary Methods). This classifier 

was applied to the expression signatures of the MCC cell lines. The trained model strongly 

classified all classic cell lines as MCC (over 80% probability, Table 1). None of the variant 

cell lines were strongly classified as MCC or SCLC, indicating they resemble SCLC as 

much as they resemble MCC.

Classification of MCC cell lines using the Cancer Cell Line Encyclopedia

Since the gene expression of variant cell lines did not resemble MCC tumors or more typical 

classic MCC cell lines, we assessed their distinctness using data from the Cancer Cell Line 

Encyclopedia (CCLE) (Barretina et al., 2012) to compare MCC cell line expression data to a 

broad set of cancer cell lines. We selected a set of eight cancer types from the CCLE that 

were common malignancies or shared some feature with MCC (from the skin, 

neuroendocrine, or neuroectodermal) to analyze with the MCC cell lines.

A random forest classifier was constructed using the selected CCLE lines and the Mkl-1 and 

WaGa cell lines (grouped as an MCC class) to classify the variant cell lines (see 

Supplementary Methods). The resulting random forest did not classify the UISO samples as 

MCC (1% probability). They were classified with nearly equal probability for a number of 

tumor types, including melanoma, hepatocellular, breast, and lung carcinomas (Table S5). 

The variant samples MCC13 and MCC26 were classified more strongly as MCC (up to 18% 

probability), but were similarly classified to other cancer types as UISO. Held out WaGa or 

Mkl-1 samples were strongly classified as MCC (70% probability, Table S6). Using PCA 

visualization, we observed that WaGa and Mkl-1 samples clustered near neuroendocrine 

(SCLC) and neuroectodermal (Ewings sarcoma) samples. As expected, UISO samples 

clustered away from the neuroendocrine tumors, while the MCC13 and MCC26 samples 

cluster in between the UISO and classic samples (Figure 3). These findings reinforce that 

UISO, MCC13, and MCC26 do not resemble typical MCC cell lines.

Immunohistochemical analysis of MCC xenograft tumors

To confirm that the distinct expression profile observed in cultured UISO cells correlates 

with an atypical tumor phenotype in vivo, we grew xenograft tumors with UISO, WaGa, and 

Mkl-1 cells in immunocompromised mice. Histologically, WaGa tumors showed features 

consistent with MCC: sheets of tumor cells with scant cytoplasm, rounded nuclei, 

inconspicuous nucleoli, stippled chromatin patterning, and a brisk mitotic rate (Figure 4). 

WaGa xenograft tissue also resembled the immunophenotype of typical MCC tumors with 

positive immunostainng for the neuroendocrine markers chromogranin, NCAM1 (CD56), 

and ENO2. The MCC marker KRT20 and pan-cytokeratin (AE1/AE3) both stained with a 

characteristic paranuclear dot pattern in WaGa tumors, and the SCLC marker TTF1 was 

negative. As a MCV positive cell line (Houben et al., 2010), WaGa xenografts stained with 

CM2B4, an anti-MCV T antigen antibody. Mkl-1 tumors showed immunohistochemical 

features similar to WaGa tumors, consistent with typical MCC tumors (data not shown).

In contrast, UISO xenografts did not resemble typical MCC tumors. The UISO tumors had 

abundant fibrovascular stroma separating islands of tumor cells with large, irregular, 
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hyperchromatic nuclei, irregular dendritic processes, and perinuclear clearing. UISO tumors 

lacked staining for MCC markers such as chromogranin, KRT20, and pan-cytokeratin. 

However, there was focal staining for NCAM1 and ENO2. Staining for TTF1 and CM2B4 

were negative, as expected. Staining was also negative for S100, CD34, and KRT7 (data not 

shown). Overall, UISO xenograft tumors were not diagnostic for MCC and were most 

consistent with a poorly-differentiated neuroendocrine tumor possessing sarcomatoid 

features.

The UISO cell line is not contaminated

Cross contamination with another cancer cell line could explain why UISO cells are not 

representative of MCC. Fortunately, early cytogenetic characterizations of UISO cells and 

the availability of low-passage cells allowed us to confirm the provenance of the 

contemporary cell line. We performed spectral karyotyping (SKY) on UISO cells to 

compare with previously reported cytogenetic changes (Van Gele et al., 2002, 1998). On 

metaphase spreads, several recurrent chromosomal changes were identified consistent with 

prior studies, including a small insertion at 1p36.2, a cryptic insertion or duplication on 6q, a 

dicentric chromosome 8, and a small heterogeneous ring chromosome (Figure 5). A new 

t(10;19) translocation was also observed. Conservation of these features strongly supports 

the present day cell line being of the same origin as the UISO cells used in earlier 

publications.

To confirm this, we obtained archived early passage cells directly from the laboratory that 

established the UISO cell line (Ronan et al., 1993). Short tandem repeat (STR) profiling 

(Masters et al., 2001) was performed using 16 markers (see Supplementary Methods) on all 

of the MCC cell lines used here. The STR fingerprint of the UISO cell line was identical to 

the early passage UISO cells (Table S7). Moreover, none of the cell lines were similar to 

any cell line available in the major cell line databases (ATCC, DSMZ, JCRB), indicating no 

cross contamination with an STR characterized cell line occurred.

Discussion

Characterization of tumor cell lines is important in developing appropriate and 

representative in vitro models for the study of cancer. Here we found that three variant MCC 

cell lines were not representative of MCC tumors based on multiple comparative analyses of 

global gene expression and predicted gene set function. Furthermore, machine learning 

approaches failed to classify UISO cells as MCC, whereas other variant cell lines were more 

similar to classic lines, but were not strongly classified as MCC. UISO also had an atypical 

histopathologic phenotype when grown as xenograft tumors in mice. At the same time, we 

found that the WaGa and Mkl-1 cell lines more closely resembled MCC tumors in gene 

expression and in vivo growth.

In light of these findings, we speculate that an atypical MCC tumor gave rise to the UISO 

cell line. UISO cells were derived from a tumor arising on the thigh of a patient much 

younger than the mean age for MCC presentation (46 versus 72 years) (Ronan et al., 1993). 

The primary tumor uncharacteristically failed to show chromogranin and MAK-6 pan-

cytokeratin staining, but did have ENO2 and focal CAM5.2 staining. KRT20 staining was 
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not assessed, as the antibody was not in widespread use at the time. This immunophenotype 

in a skin tumor is consistent with MCC, but would not be considered diagnostic by today’s 

standards. We found UISO xenografts to be chromogranin negative, cytokeratin negative by 

AE1/AE3 staining, negative for KRT20 staining, and possessing sarcomatoid histologic 

features. The focal NCAM1 and ENO2 staining in UISO xenografts were consistent with a 

neuroendocrine tumor, possibly a poorly differentiated MCC. UISO xenograft tumors did 

express CD99 (data not shown), which is seen in peripheral primitive neuroectodermal 

tumors. However, UISO cells did not have the canonical t(11;22)(q24;q12) translocation 

associated with primitive neuroectodermal tumors (Figure 5 and data not shown)(Turc-Carel 

et al., 1988). Given the atypical nature of UISOs tumor of origin, it is not surprising that the 

cell line is atypical and possesses a transcriptome and in vivo biology that is non-

representative of MCC tumors in general.

An atypical tumor of origin may not account for all the uncharacteristic features of UISO or 

other variant MCC cell lines. Even in typical MCC tumors, a minority sub-population of 

aberrant cells could exhibit a selective growth advantage in culture. A cell line derived from 

such cells would not reflect the average gene expression or biology of MCC tumors. In such 

a scenario, the sub-population cells could still be biologically important to tumor behavior, 

and having a cell culture model of the atypical cells could potentially be instructive. 

Therefore, the UISO cell line and other non-representative cell lines may still prove useful in 

the study of cancer biology.

In contrast to the variant lines, WaGa and Mkl-1 cells were more representative of MCC 

tumors. Expression differences relative to tumor tissue did exist with WaGa and Mkl-1 cells, 

which are expected due to the lack of stroma, vasculature, and hematopoietic cells in 

cultured cancer cells. As a model system to study the biology of MCC and predict the 

behavior of native tumors, it appears that WaGa and Mkl-1 are preferable to UISO or other 

variant lines.

A previous study comparing MCC cell lines using expression microarrays with only 1083 

genes found that UISO cells clustered with classic MCC lines, such as Mkl-1 (Van Gele et 

al., 2004). The limited scope of the genes analyzed and the lack of MCC tumor samples 

likely contributed to this finding that conflicts with our results. In contrast, using a 

comprehensive set of more than 40,000 human transcripts, we have demonstrated through 

multiple analyses that UISO samples cluster separately from both classic cell lines as well as 

MCC tumor samples.

It is interesting to note that on a transcriptome level, the set of MCC tumor samples analyzed 

in this study are quite homogeneous. Clustering of the expression data failed to identify 

subclasses of MCC with strongly distinct gene expression signatures. We identified few 

differences in gene expression between MCV positive and negative tumor samples. This 

contrasts with a recent publication comparing virus-positive and virus-negative MCC tumors 

in which many more significant differences were found (Harms et al., 2013). The reason for 

these differing results is unknown. However, in their study, only 46% of the tumors 

analyzed were found to be virus positive, whereas most reports indicate 70–80% of MCC 

tumors are virus positive (Pulitzer et al., 2009; Feng et al., 2008). This is more consistent 
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with the 87% virus positive tumors we observed here. It is not clear if this reflects a 

difference in virus detection methods, or a true difference in the patient populations. 

Consistent with most prior studies, our cohort had only a small number of virus negative 

tumors. Although we employed a robust technique for differential gene expression detection 

that works well with small sample sizes (Smyth, 2004, 2005), we cannot entirely rule out 

effects due to sample size and class imbalance in our analysis. Regardless, there was no 

concordance between the virus status of the tumors and their dissimilarity to the variant cell 

lines or their similarity to WaGa and Mkl-1, indicating that the differences observed in the 

variant cell lines are not driven by viral status.

The independence of tumor viral status on cell line similarity is an important observation, as 

variant MCC cell lines are predominantly MCV-negative, and classic lines tend to be MCV-

positive. All three variant cell lines used in this study are MCV-negative, whereas the classic 

lines are MCV-positive. By definition, variant lines lack expression of certain differentiation 

markers, and our data suggest that variant cell lines may be divergent from MCC tumors on 

a more general level. However, the fact that MCV-negative native tumors are not similarly 

distinct from MCV-positive tumors and classic MCC cell lines suggests that MCV status 

alone is not the driver of atypical gene expression in the variant cell lines. We have 

demonstrated that the question of cell line representativeness can be answered (in part) by 

the use of gene expression microarray data. Straightforward computational methods and 

publicly available data can be applied to compare cell lines with native tumor tissue and 

other cell lines to assess cancer type concordance. These types of techniques can, and 

should, be applied when using existing lines or developing a new one. With respect to MCC, 

our analysis suggests that representative cell lines such as WaGa or Mkl-1 should be favored 

over UISO, MCC13, or MCC16 as an in vitro experimental model.

Materials and Methods

Ethics statement

All human research was conducted in accordance with approved IRB protocols. Patient 

specimens were collected at MSKCC under IRB protocol #00-144 A. All patients provided 

written informed consent for use of their sample for general research purposes, and did not 

specify limitations that restricted use of their samples for this study. Analysis of samples 

was conducted under NCI Protocol #13CN024 without obtaining further consent, as patients 

had provided prior consent and the samples were analyzed anonymously. This study was 

performed in strict accordance with the recommendations in the Guide for the Care and Use 

of Laboratory Animals of the National Institutes of Health. The protocol was approved by 

the National Cancer Institute’s Animal Care and Use Committee (Protocol DB-091).

MCV detection by real time quantitative PCR

Primers were designed to amplify a region of the MCV T antigen (coordinates 444–579 in 

the “MCV350” sequence GenBank Accession EU375803) to detect MCV DNA in MCC 

tumor samples by qPCR. Primers for β-actin (ACTB), a gene on chromosome 7, were used 

as a reference on all MCC tumor samples.
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Cell lines

The MCC cell lines Mkl-1 (Rosen et al., 1987), WaGa (Houben et al., 2010), and UISO 

(Ronan et al., 1993), and MCC13 and MCC26 (Leonard et al., 1995) have been described 

previously. SK-MC01 cells were generated at the Memorial Sloan Kettering Cancer Center 

(MSKCC).

cDNA array hybridization of tumor samples and cell lines

Fresh frozen tumor specimens were supplied by the MSKCC tumor bank. Total RNA was 

extracted from tumor specimens and hybridized to Human Genome U133A 2.0 Array 

(Affymetrix) GeneChips.

Total RNA was extracted from three to six replicates of each cell line (single replicate of 

MC01) and hybridized to the Human Genome U133A 2.0 Array (Affymetrix). Three 

replicates of all cell lines (excluding MC01) were also hybridized to the GeneChip Human 

Genome U133 Plus 2.0 Array (Affymetrix).

Microarray analysis

For MCC tumors, SCLC tumors, and MCC cell lines on the Affymetrix U133A 2.0 

platform, normalization, filtering, and analysis of microarray expression data were 

performed using R (details in Supplemental Methods). Raw CEL files for CCLE data were 

downloaded directly from GEO (accession GSE36133) and were normalized as above with 

MCC cell line Affymetrix U133 Plus 2.0 array data. We call probe sets to be differentially 

expressed at a fold change >= 2 and q <= 0.05.

Classification of MCC cell lines with MCC and SCLC tumors

A random forest classifier was trained using the microarray expression data for the 23 MCC 

and 9 SCLC tumor samples. The classifier was then applied to the MCC cell lines, and the 

average class prediction was determined for each of the MCC cell lines across sample 

replicates.

Classification of MCC cell lines with CCLE cell lines

A random forest classifier was trained using the microarray expression data for MCC cell 

lines (except for UISO) along with samples from the CCLE dataset. The classifier was then 

applied to the variant (UISO, MCC13, and MCC26) samples.

STR Profiling

Genomic DNA was isolated from all cell lines and sent to the Johns Hopkins Fragment 

Analysis Facility for STR profiling on all cell lines except MCC13 and MCC26 using the 

AmpFt’STR Identifiler PCR Amplification Kit (Applied Biosystems), which profiles 16 

STR markers (Table S7). MCC13 and MCC26 were profiled using the Promega PowerPlex 

18D Kit, which profiles the same 16 markers plus two others.
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Mouse xenografts

Five to eight-week-old female NOD/scid mice were obtained from the NCI Animal 

Production Program and housed under specific pathogen-free conditions. Tumors were 

induced by subcutaneous injection of 107 WaGa cells, 2×107 Mkl-1 cells, or 106 UISO cells 

in 200μL sterile saline into the posterior lateral flank of the mice. Tumor tissue was 

collected and fixed in neutral buffered formalin after tumors were clinically detectable.

Immunohistochemistry of mouse xenograft tumors

Paraffin-embedded tissue sections (5μm) of fixed xenograft tumors on glass slides were 

stained on an automated immunostainer (Ventana Medical System), according to the 

manufacturer’s instructions. The primary antibodies and antigen retrieval methods used are 

indicated in Table S8.

Spectral karyotyping of the UISO cell line

UISO cells were harvested after Colcemid (Life Technologies) treatment (0.025μg/mL: 12 

hours) and processed by standard cytogenetic methods. Breakpoints on the SKY-painted 

chromosomes were determined by comparison with corresponding inverted DAPI banding. 

We report SKY results by using the International System for Human Cytogenetic 

Nomenclature (ISCN, 2013).

Data access

All tumor sample and cell line microarray data have been deposited in NCBI’s Gene 

Expression Omnibus (Edgar et al., 2002) and is accessible through GEO Series accession 

number GSE50451. All analysis code, including generation of all figures, tables, and 

supplementary tables and figures, are available in reference Daily and Brownell (2014) (DOI 

10.6084/m9.figshare.1030618). See the Supplementary Methods for details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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MCV Merkel cell polyomavirus

SCLC small cell lung cancer

CCLE Cancer Cell Line Encyclopedia
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Figure 1. Variant cell lines cluster separately from MCC tumors and classic MCC cell lines
A. Hierarchical clustering of microarray expression data from MCC cell lines and MCC and 

SCLC frozen tumor samples. Average linkage was applied for merging clusters to the 

variance-filtered probe set expression values. One minus the Spearman correlation was used 

as a dissimilarity metric. Legend: MCV positive, red; MCV negative, blue; not tested, black. 

B. Principal components analysis of microarray expression data from MCC cell lines and 

MCC and SCLC tumor samples was performed with variance-filtered probe set expression 

values for each sample. The variance in the expression data accounted for by the first three 

principal components are 26%, 22%, and 7%.
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Figure 2. Compared to MCC tumors, variant MCC cell lines have more differentially expressed 
genes than classic MCC cell lines
A Venn diagram showing the number of probe sets commonly differentially expressed when 

comparing the MCC tumor samples to UISO, other variant (MCC13 and MCC26), and 

classic (WaGa and Mkl-1) cell lines. Only probe sets with an absolute fold change greater 

than 2 and a q-value less than 0.05 are counted (total: 13,329 probe sets).
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Figure 3. Among multiple cancer cell lines, variant cell lines are distinct from classic MCC cell 
lines
as well as other neuroendocrine lines. Principal components analysis of microarray 

expression data from MCC cell lines and cell lines from the Cancer Cell Line Encyclopedia 

was computed from variance-filtered probe set expression values for each sample. The 

variance in the expression data accounted for by components one and two are 8% and 5%, 

respectively.
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Figure 4. UISO xenograft tumors are histologically atypical for MCC
Representative images of hematoxylin and eosin staining (H&E) and immunohistochemical 

staining of WaGa and UISO xenograft tumors in NOD/Scid mice. Scale bar = 100μm.
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Figure 5. Spectral karyotyping (SKY) of metaphase chromosomes confirms the identity of the 
UISO cell line
A. Chromosomes stained with DAPI and converted into G-banding-like appearance. B. 

Chromosomes in display colors. C. Chromosomes in classification colors. D. UISO spectral 

karyotype (with DAPI and classification images of each chromosome side by side). This cell 

has 46 chromosomes and contains previously described rearrangements, including an 

insertion at 1p36.2, a cryptic insertion or duplication on 6q, a dicentric chromosome 8, and a 

small heterogeneous ring chromosome.
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Table 1
Random forest classification of MCC cell lines

A random forest classifier was trained using the microarray probe set expression data for the 23 MCC and 9 

SCLC tumor samples. The classifier was then applied to the MCC cell lines, and the average class prediction 

was determined for each of the MCC cell lines (over sample replicates). The class assignment (MCC and 

SCLC) probability is given as the fraction of trees in the random forest voting for each class. The values 

shown are the average of six replicates for Mkl-1 WaGa, and UISO, 3 replicates for MCC13 and MCC16, and 

1 replicate of MC01.

MCC SCLC

WaGa 0.89 0.11

Mkl-1 0.85 0.15

MC01 0.83 0.17

MCC13 0.43 0.57

MCC26 0.40 0.60

UISO 0.43 0.57
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