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Abstract

NMDA receptor NR2A/B subunits have PDZ-binding domains on their extreme C-termini that are known to interact with the
PSD-95 family and other PDZ proteins. We explore the interactions between PSD-95 family proteins and the NR2A/B
cytoplasmic tails, and the consequences of these interactions, from the endoplasmic reticulum (ER) through delivery to the
synapse in primary rat hippocampal and cortical cultured neurons. We find that the NR2A/B cytoplasmic tails cluster very
early in the secretory pathway and interact serially with SAP102 beginning at the intermediate compartment, and then PSD-
95. We further establish that colocalization of the distal C-terminus of NR2B and PSD-95 begins at the trans-Golgi Network
(TGN). Formation of NR2B/PSD-95/SAP102 complexes is dependent on the PDZ binding domain of NR2B subunits, but
association with SAP102 and PSD-95 plays no distinguishable role in cluster pre-formation or initial targeting to the vicinity
of the synapse. Instead the PDZ binding domain plays a role in restricting cell-surface clusters to postsynaptic targets.
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Introduction

N-methyl-D-aspartate (NMDA) receptor activation is necessary

for associative learning and memory and induces long-term

potentiation (LTP), a putative physiological substrate for memory

[1,2]. NMDA receptor activation has also been implicated in cell

death associated with acute neurological disorders such as

excitotoxicity and stroke-induced ischemia [3]. Changes in

NMDA receptor function have been associated with chronic

neurological and psychiatric disorders such as Huntington’s

disease and schizophrenia [4,5]. Thus, expression, trafficking,

targeting and turnover of NMDA receptors have grown to be

subjects of intense interest.

Functional NMDA receptors are heteromeric and typically

contain two types of subunits, NR1 and NR2. NR1 subunits have

eight separate splice variants, and most splice variants differ in the

cytoplasmic C-terminal amino acid sequence [6,7]. NR2 subunits

are made up of four proteins encoded by 4 separate genes called

NR2A-D [8]. NR2A and NR2B are highly expressed in the

mammalian forebrain. Several lines of evidence support a central

role for the C-termini of NR2 subunits in synaptic targeting of

native NR1-NR2 heteromeric complexes. Truncation of nearly

the entire C-terminus of NR2A in mice significantly diminishes

appropriate synaptic targeting of NR1/NR2ADC heteromers [9],

indicating that the associated NR1 subunits combined with NR2A

do not have sufficient sequence determinants for synaptic

targeting. In primary cerebellar cortical granule cells, transfection

of NR2B subunits lacking the distal C-terminal 7 amino acids

(which contain the PDZ-binding domain) also results in the

absence of incorporation of NMDA receptors into the synapse as

measured by miniature NMDA receptor-mediated EPSCs [10],

indicating that the NR1 subunits combined with truncated NR2B

subunits in cerebellar cortical granule cells do not have sufficient

sequence determinants for synaptic targeting. On the other hand,

transfection of organotypic hippocampal slice neurons with NR2A

or NR2B subunits lacking the last 6 amino acids significantly

reduces, but does not abolish, synaptic targeting of NR1/NR2AD6

or NR1/NR2BD6 [11], indicating the combined NR1 subunit is

incapable of rescuing the defect singularly.

NMDA receptor NR2 subunit cytoplasmic tails contain a PDZ-

binding domain at the extreme C-terminus that can associate with

all four members of the PSD-95 family of membrane-associated

guanylate kinases (MAGUKs; PSD-93, PSD-95, SAP97, and

SAP102), as well as with other MAGUKs and PDZ domain-

containing proteins such as MALS [12,13], S-SCAM [14], CIPP

[15]. Imaging of NR2B transport vesicles in dendrites have

revealed that NR2B-containing vesicles travel along microtubules

and this transport appears to be at least in part mediated by the
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interaction with a multi-molecular protein transport complex

comprised of the kinesin motor KIF-17, mLin-10, mLin-7, mLin-

2/CASK and SAP97 [13,16–18]. The PSD-95 family of proteins

is notable for association specifically with the pre- or postsynaptic

structures in neurons. Most evidence supports a role for the PSD-

95 protein family association in maintaining or imparting

localization of NR2 subunits to the synapse [for review, see

[19]]. Thus, this interaction may underlie the essential function of

the NR2 cytoplasmic tails in synaptic localization. However,

evidence with two splice variants of the NR1 NMDA receptor

subunit (NR1-3 and NR1-4; [20–22]), which contain a PDZ-

binding domain and bind all PSD-95 family members, has

suggested that associations between NR2 cytoplasmic tails and

PSD-95 family may begin early in the secretory pathway and serve

trafficking functions. SAP97 has also been shown to associate with

the AMPA receptor subunit GluR1 early in the secretory pathway

[23]. Notwithstanding these observations, there is still little known

about the specific roles in trafficking that each individual PSD-95

family member might play. In particular, it remains to be

determined which one(s) associate with which receptor subunits,

or subunit combinations endogenously, under what conditions

they associate, and where they associate with NMDA receptor

subunits along the secretory pathway, and where and when they

dissociate and under what conditions they dissociate. NR2A and

NR2B share the same C-terminal 6 amino acids containing the

PDZ-binding domain, but whether they associate with the same

PDZ proteins, and whether those proteins play a role in the

trafficking and targeting of NMDA receptors remains to be made

clear. It is clear, however, that the final C-terminal 15 amino acids

of both the NR2A or NR2B sequence can differentially influence

synaptic localization [24], suggesting that more than just the PDZ-

binding domain is at play in synaptic localization and protein-

protein associations, at least at the synapse.

Physiological and immunocytochemical studies have provided

the wealth of observations described above. However, standard

transfection and immunocytochemical characterizations often are

not able to examine dynamic aspects of cargo transport and

targeting with definite knowledge as to where the cargo is located in

or on the cell. For this reason, questions concerning the role of the

NR2-PDZ protein interactions in the dynamics of receptor

trafficking have been difficult to address. Therefore we created

chimeric proteins consisting of a GFP-tagged temperature-sensitive

Vesicular Stomatitis Viral Glycoprotein mutant, VSVGts045

[25,26] and the distal cytoplasmic C-termini of NR2A or NR2B

(Fig. 1). VSVGts045 is a transmembrane glycoprotein mutant that

remains misfolded and retained in the ER at 40uC, but can rapidly

fold and exit the ER upon shift to 32uC. Thus, by shifting

temperature we are able to synchronize cargo exit from the ER and

to observe the initial dynamics of endogenous protein-protein

interaction during early cargo transport, when the NR2 and NR1-

PDZ binding domain-containing cytoplasmic tails associate with

their potential respective endogenous binding partners, and where

the cytoplasmic tails are initially targeted.

Our observations of early trafficking events are made primarily

by imaging the soma and proximal dendrites of neurons. Our

observations of subsequent synaptic targeting events are made by

imaging both distal and proximal dendrites. No clear pattern of

differential SAP102 or PSD-95 antibody immunofluorescence

could be observed in the soma and proximal dendrites without the

VSVG-NR2A/B chimeras; only by synchronously releasing a

wave of NMDA receptor C-termini were we able to discern clear

differences along the secretory pathway among the potential

interacting proteins. We find, to our surprise, that SAP102 appears

to associate with NR2A/B subunits early after ER exit,

significantly so at the level of the cis-medial-Golgi apparatus, but

does not show the same colocalization with the PDZ-binding

domain of the NR1 subunit, nor does the NR1-C29 splice cassette-

containing cytoplasmic PDZ binding domain induce clustering

early in the secretory pathway. Our observations lead us to

conclude that in spite of the general capacity of the PSD-95 family

of MAGUK proteins for binding all of the PDZ binding domain-

containing subunits of NMDA receptors in heterologous cells,

these NMDA receptor subunit-MAGUK interactions are more

specific, dynamic, and unpredictable than heterologous cell

protein-protein interactions suggest. We further find, as was found

previously much more profoundly in hippocampal neurons up

until day 2 in vitro [27], that NR2B subunits further appear to

colocalize with PSD-95 in clusters at the TGN. Our data suggest

that co-transport of NR2B/SAP102/PSD-95 macromolecular

clusters to the synapse may occur. However, our data are

correlative in nature, and do not directly demonstrate this

phenomenon. Our observations suggest that these well-established

potential interactions are exquisitely controlled, and nuanced,

when observed in neurons.

Results

ER Retention and Early Trafficking of VE and VE-NR2
Chimeras

The distal C-terminal segments [168 or 169 amino acids of rat

NMDAR2A (2A) and NMDAR2B (2B), respectively] were

subcloned in frame with VSVGts045-EGFP (VE) at the stop

codon for EGFP (Fig. 1A). VE-2A and VE-2B chimeras retained

the temperature-dependent trafficking characteristics of VE. We

then confirmed the capability of PSD-95 to cluster VE-2B in

COS-1 cells, as has been shown with full-length receptors [28].

This was confirmed also at the level of the ER when maintained at

40uC as well (Fig. S2A). Further, we verified that there was no

leakage, or pre-existing cell surface population of VE using our

transfection protocol and 24 hour, 40uC incubation (Fig. S3).

Complete sensitivity to Endoglycosidase H (Endo H) when VE was

maintained at 40uC for 24 hours indicated that all the VE cargo

was distributed from the ER to, at most, cis-Golgi (see Fig. S3). In

hippocampal neurons, VE-2A and VE-2B demonstrated diffuse

intracellular fluorescence indistinguishable from VE (Fig. S1A)

when maintained at 40uC for 18–24 hours.

Transfected hippocampal neurons (14 DIV) were incubated for

18–24 hours at 40uC, and the medium was exchanged with a

medium equilibrated at 32uC. Time of medium exchange equals

time zero, at which VE and VE-NR2 chimeras were allowed to

exit the ER. VE, 10 minutes after ER exit, showed strong

colocalization with the cis-medial- Golgi marker GM130 in the

perinuclear region (Fig. 1B, top row). Note in particular the

smooth continuity with the GM130 marker in the higher

magnification micrographs. In contrast, VE-2A and VE-2B

cytoplasmic tails demonstrated extensive clustering into small,

regular, and circular patches that co-localized with perinuclear

GM130 at the same time point (Fig. 1B, second row). After

switching to 32uC, the VE constructs were immediately trans-

ported predominantly into the perinuclear Golgi apparatus.

However, a minority of puncta appeared to remain in peripheral

dendrites, as described previously using VSVGts045-YFP [data

not shown; [29]]. We were not able to establish that the peripheral

puncta co-localized with markers for the TGN, suggesting a small

amount of transit through ‘satellite secretory pathways’ [30]. An

important point to be considered is that we imaged the perinuclear

Golgi region of the soma, and proximal dendrites, to observe early

trafficking events. Since there is a large concentration of secretory

NMDA Receptor Trafficking
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Figure 1. The NR2 cytoplasmic tails induced clustering early and throughout the secretory pathway. (A) The distal C-terminal one-third
of NR2A and NR2B cytoplasmic tails was appended to the VSVGts045-EGFP in frame, beginning at the stop codon for EGFP (168 amino acids for NR2A
and 169 for NR2B). (B) VE (top, left; scale bar 10 mm) 10 minutes after release from the ER co-localized with GM130, a cis- medial-Golgi marker. Panels
to the right are enlargements of VE, and GM130, from left to right, respectively. Note the continuity of VE with GM130 at this stage in the secretory

NMDA Receptor Trafficking
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cargo traversing this region, it afforded a robust signal, however it

precluded observing more faint cargo, or distal dendrites. Thus,

our imaging limitations could account for our inability to see

secretory cargo in the peripheral dendrites traversing satellite

secretory pathways. Indeed, recent evidence has indicated that

secretory cargo emerging from the ER in neurons is spatially

restricted by increased complexity at bifurcations and synapses in

dendrites [31]. Thus, our observations should be tempered with

the prospect that early secretion of spatially restricted cargo in

distal dendrites might be different. Forty-five minutes after release

from the ER, the leading edge of the pulse of cargo could be

detected on the cell surface using the i1 antibody that recognizes

an extracellular epitope of VE. We noted that VE was added to

the surface abundantly on the soma and all neurites at regular

intervals extending out from the soma to distal dendrites (Fig. 1C,

top panels), eventually resulting in an even distribution over the

entire neuronal plasma membrane (Fig. S2B, upper right panel).

In contrast, VE-2A and VE-2B were added to the cell surface as

circular clusters (Fig. 1C, bottom panels; also, see Fig. S2B, bottom

right panel in comparison to the upper right panel). Clusters in one

or more distal dendrites often appeared at more than 100 mm from

the soma in the absence of comparable staining on the surface of

the soma (data not shown), suggesting fusion of VE-2B cargo

vesicles with the plasma membrane distal to the soma, although we

cannot rule out vectored lateral diffusion from the soma. Recent

evidence has also indicated that large AMPA receptor-containing

recycling endosomes are exocytosed onto syntaxin 4-containing

microdomains adjacent to postsynaptic specializations [32].

However, it remains to be determined whether emerging secretory

NMDA receptor cargo is added in the same fashion. Surface

expression of VE-2A and VE-2B clusters appeared unpredictable

compared to VE, emerging variably on the soma or not, and on

any one or more neurites. Thus, both NR2A and NR2B

cytoplasmic tails induce the formation of clusters that undergo

vesicle-mediated transport throughout the secretory pathway, and

that appear to be added en bloc to the neuronal surface. Moreover,

the limited and variable addition of VE-NR2 clusters to the

plasma membrane compared to VE suggested that the distal C-

termini of NR2 subunits of NMDA receptors imparted significant

targeting and membrane fusion characteristics on the constitu-

tively exocytosed VE reporter molecule.

VE-2B Chimeras have Full-length NR2B Characteristics
To assess whether native NR2-NR1 heteromers appear as

clusters early in the secretory pathway, 50 mm thin sections of

adult rat brain were immunostained with antibodies to GM130

and NR2A/B. The staining pattern over the soma of adult (P60)

rat hippocampal CA1 pyramidal cells appeared punctate, with

puncta co-localized with GM130 (Fig. 2A). Hippocampal neuronal

cultures were transfected with a myc-tagged full-length NR2B

subunit and placed at 20uC to block progression through the TGN

[33,34]. Cultures were then immunostained with anti-myc and

anti-SAP102 antibodies (Fig. 2B). The resulting distribution was

limited to between the ER and TGN, and showed the beginnings

of cluster formation in a perinuclear region consistent with the

Golgi apparatus. Immunostaining also suggested that intracellular

myc-NR2B was associated with SAP102 (Fig. 2B) as were VE-2A

and VE-2B (see below). This was confirmed at the EM level by

immunogold double labeling with anti-NR2B and anti-SAP102

antibodies (Fig. 2C). The picture in 2C was taken at the base of the

apical dendrite of a CA1 pyramidal cell.

To assess whether VE-2B possessed a sufficient amount of the

cytoplasmic tail to be targeted in a manner similar to that of full-

length receptors, we used a serial transfection and temperature

manipulation scheme. Myc-NR2B was transfected into hippo-

campal neurons previously transfected with VE-2B and main-

tained at 40uC. Three hours later, neurons were switched to 20uC
for 2.5 hours and 100 mM cycloheximide was added to limit ER

staining from newly synthesized myc-NR2B. Neurons were

subsequently shifted from 20uC to 32uC media for 30 minutes to

allow both VE-2B and myc-NR2B to exit the TGN. When exiting

in this synchronized manner, myc-NR2B and VE-2B were

colocalized in dendrites (Fig. 2D). This suggested that the distal

C-terminal segment of NR2B contains some sequence determi-

nants for appropriate targeting.

NR2 Association with Different PSD-95-family Proteins
Along the Secretory Pathway

Since the PSD-95 family of neuronal MAGUKs has been shown

to cluster NR2 cytoplasmic tails, we reasoned that endogenous

MAGUKs were likely to participate in the formation of the orderly

clusters of VE-2A and VE-2B in neurons. As there were no

significant differences between VE-2A and VE-2B by quantitative

immunofluorescence with respect to any of the neuronal MAGUKs

at any time point or condition analyzed after ER exit, colocalization

data for VE-2A are only shown in Table S1. VE-2B transfected into

hippocampal neurons were allowed to exit the ER for 10 minutes

(Fig. 3A, top row) and 45 minutes (Fig. 3A second row), after which

neurons were immunolabelled with an antibody specific to SAP102.

Co-clustering of VE-2B with endogenous SAP102 was present at

both time points. These results were confirmed with a second

SAP102 specific antibody (Alomone Labs, data not shown).

Quantitative analysis was performed by selecting high intensity

SAP102 positive puncta (see Experimental Methods) and varying

the threshold for VE-2B fluorescence from low to high. Results

indicated that high intensity clusters of VE-2B were highly co-

localized with SAP102 clusters (see Fig. 3C). Removal of the distal C-

terminal 7 amino acids of VE-2B abolished its colocalization with

endogenous SAP102, but had little effect on clustering (VE-2BD7;

Fig. 3, bottom panels; quantified in Fig. 3C; clustering further

quantified below). Early clustering of VE-2BD7 suggested that

SAP102 may only be part of the early preassembly, and that other

proteins could also participate in clustering, as proteins associated

with domains other than the PDZ-binding domain of NR2s have

been reported [for review; [19]]. SAP102 has also been shown to

bind to the PDZ binding-domain of NMDAR1 splice variants,

pathway and the lack of clustering. At the same time point, VE-NR2 chimeras (VE-2B not shown; VE-2A, bottom panels, left; scale bar 10 mm) mostly
exhibited uniformly round clusters that also co-localized with GM130-defined Golgi cisternae. (C) GFP-fluorescence (top left panel; scale bar 10 mm)
and i1 antibody surface staining (top panel, second from left) of VE 45 minutes after ER release (top panels) indicated surface targeting largely to the
soma, and also at intervals to all neurites, extending the length of the processes without any preference for a particular one. Small, circular vesicles
appeared in neurites; some exhibited surface staining while others were intracellular (see top right panels). However, 3 hours after release, VE surface
staining was spread over the entire surface of the neuron (Fig. S2B, top right panel) and did not exhibit a clustered or organized geometric
appearance in comparison to VE-2A/B. GFP-fluorescence (bottom left panel; scale bar 10 mm) and i1 antibody surface staining (bottom panel, second
from left) of VE-2A (VE-2B shown in Fig. S2B at 3 hours permissive temperature) formed regular, organized clusters on the neuronal surface, similar to
the cis- medial-Golgi co-localized VE-2A clustering at 10 minutes after ER release. Yellow lines extend along the regions enlarged in the right panels
for VE (top) and VE-2A (bottom).
doi:10.1371/journal.pone.0039585.g001
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NR1-3 and 1–4 [20], when co-expressed in HEK293 cells.

However, the NR1-3 cytoplasmic C-terminus appended to

VSVG-EGFP demonstrated neither clustering nor co-localization

with endogenous neuronal SAP102 clusters (Fig. S1B) at the level of

the Golgi apparatus, suggesting that PDZ binding domain

interactions may be far more selective in neurons.

Incubation at 15uC has been used to block secretory cargo

transport to the Golgi apparatus and cause cargo to build up in the

intermediate compartment [IC; for instance, see [35]]. We took

advantage of this temperature blockade of transport to the Golgi

apparatus to determine if SAP102 was capable of associating with

NR2 as early as in the IC (Fig. 3B). VE transfected neurons

subjected to 15uC medium exchange and incubation at 15uC for 1

hour demonstrated no colocalization with SAP102 clusters

(Fig. 3B, top panels); however, VE demonstrated an appearance

consistent with concentrating with COPII into budding vesicles

and tubules [36]. In contrast to VE, VE-2B showed some specific

colocalization with SAP102 under the same conditions (Fig. 3B,

bottom panels). However, under 15uC incubation conditions for 1

hour, VE-2B cargo still appeared to be distributed between the ER

and the IC, and the ER-localized VE-2B did not colocalize with

SAP102.

Co-localization experiments with VE-2B and antibodies to

PSD-95 indicated that PSD-95 did not associate with NR2 at early

time points such as 10 minutes after release from the ER (Fig. 4A,

upper panels), and quantification indicated that PSD-95 coloca-

lization was not significantly different from background levels

defined by colocalization with VE-2BD7 (Fig. 4D). At 45 minutes

after ER release, VE-2B exhibited increased colocalization with

PSD-95 (Fig. 4A, second row of panels; quantified in Fig. 4D).

While from 0–10 minutes following ER release all constructs

condensed into the perinuclear region, at 45 minutes VE-2B

puncta were observed spread out along proximal and distal

dendrites. This indicated a transition from processing through the

central Golgi apparatus to transport in at least proximal dendrites.

VE-2B colocalized with PSD-95 in dendrites as well (Fig. 4B).

Quantification of colocalization of VE-2B with PSD-95 at 10 and

45 minutes was performed over the soma, and the results showed a

significant increase in colocalization at 45 minutes, as compared to

10 minutes after release at most thresholds (Fig. 4D; p,0.05; see

Experimental Methods for a description of the statistical methods

used). To assess whether PSD-95 may associate with VE-2B before

it reaches the cell surface, we took advantage of the well-

characterized temperature blockade of exit from the TGN [33,34].

When VE-2B was released from the ER at 20uC for 1 hour

(Fig. 4C) and collected in the TGN (as assessed by the TGN

marker TGN38), association with PSD-95 was significantly

increased, as compared to its colocalization at 10 minutes

(quantified in Fig. 4D, and pictured in 4C).

To determine whether VE-2A or VE-2B directly interacted with

SAP102 and/or PSD-95 at different points along the secretory

pathway, we constructed Lentiviral vectors containing VE, VE-

2A, and VE-2B to improve chimera expression in neurons.

Hippocampal and cortical neurons transfected with VE, VE-2A,

and VE-2B showed indistinguishable properties when examined

by immunofluorescence to those described following calcium

phosphate transfection (data not shown). Because of the larger

amount of neurons obtained from cortical cultures as compared to

hippocampal cultures, cultured cortical neurons (14 DIV) were

transfected with a Lentivirus containing VE and VE-2B, held at

40uC for approximately 24 hours, and switched to 32uC to trigger

release from ER for 10 minutes or 3 hours. VE and VE-2B were

then immunoprecipitated using the i1 antibody. Input, unbound,

and immunoprecipitate fractions were probed with antibodies to

VSVG, SAP102 and PSD-95. SAP102 was preferentially coim-

munoprecipitated with VE-2B over PSD-95 (Fig. 5A) at both 10

minutes and 3 hours after release, as was previously indicated by

quantitative immunofluorescence in transfected neurons (compare

Fig. 3C with Fig. 4D). Immunoprecipitation of VE at 10 minutes

demonstrated no SAP102 co-immunoprecipitation (Fig. 5B).

Neither VE-2B nor VE-2A immunoprecipitation resulted in

substantial amounts of PSD-95 (VE-2A data not shown). However,

immunofluorescence staining for VE-2B, SAP102, and PSD-95

simultaneously at 3 hours demonstrated the presence of both PSD-

95 and SAP102 in the same puncta in many cases (Fig. 5C). Thus,

while PSD-95 may become part of the VE-2A and VE-2B

complexes as early as the TGN, these complexes may not interact

directly with PSD-95 at the time points we assessed. A substantial

amount of VE-2A, VE-2B and PSD-95 was insoluble in the 1%

deoxycholate solution we used for immunoprecipitation, and

therefore it remains quite possible that these proteins do associate

directly and that the interacting proteins may be detergent

insoluble.

Synaptic Targeting of NR2A and NR2B Cytoplasmic Tails
Analysis of surface targeting of VE-2A and VE-2B constructs

indicated that, while the leading edge of surface delivery began at

45 minutes after ER exit, most clusters remained intracellular at

this time (see below). At 3 hours following ER exit, more robust

surface staining of VE-2A and VE-2B was evident (see Fig. S2B for

example); therefore, we chose 3 hours after ER release to first

examine synaptic targeting. VE-2A, VE-2B, and VE-2BD7

exhibited clustering and colocalization with SAP102 compared

to VE (compare examples in Fig. 6A). Percent pixel overlap with

SAP102 (Fig. 6C) or synaptophysin (Fig. 6D) was quantified with

all thresholds at 2x background and the results indicated that VE-

2B, and even VE-2BD7 staining overlapped with SAP102 and

synaptophysin staining significantly more than VE (* one-way

Figure 2. Relationship between native, full-length NR2s, and VE-NR2 chimeras. (A) Adult rat hippocampal CA1 pyramidal cells were
immunostained with antibodies for GM130 (green) and NR2A/B C-termini (red). NR2 clusters co-localized with GM130 (yellow arrows), consistent with
native receptor clustering early in the secretory pathway (scale bar 10 mm). (B) Full-length myc-tagged NR2B was transfected for 3.5 hours, and
maintained at 20uC for 2.5 additional hours to block progress of myc-NR2B-NR1 beyond the TGN. Cycloheximide (100 mM) was added for the last 1.5
hours to reduce ER staining from recently synthesized myc-NR2B. The results shown above consist of a pulse of myc-NR2B-NR1 heteromeric receptors
limited to between the ER and the TGN. Antibody staining for myc (left panel) and SAP102 (middle panel) demonstrated some clustering and co-
localization of myc-NR2B with SAP102. Yellow arrows indicate co-localized puncta in the Golgi region, and green arrows indicate diffuse staining
consistent with ER (scale bar 10 mm). (C) Immunogold labeling of intracellular NR2A/B (5 nm gold) and SAP102 (10 nm gold) along microtubules in
the pyramidal cell body layer of hippocampal CA1 indicated co-localization of NR2A/B and SAP102, which was consistent with NR2A/B and SAP102
association early in the secretory pathway (scale bar is 100 nm). (D) VE-2B was transfected and the following day incubated for 24 hours at 40uC. Full-
length myc-NR2B was serially transfected as described in (B) while neurons were incubated at 40uC. After 3 hours at 40uC, neurons were shifted to
20uC incubation for an additional 2.5 hours in the presence of Cycloheximide (100 mM) followed by 30 minutes at 32uC to allow both VE-2B and myc-
NR2B to exit the TGN. The top panel shows VE-2B in a proximal dendrite targeted similarly to myc-NR2B (middle panel; scale bar 5 mm) in the same
dendrite (bottom panel, merge).
doi:10.1371/journal.pone.0039585.g002
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Figure 3. VE-2B clustered with SAP102 at 10 and 45 minutes after release from the ER. (A) At 10-minutes after ER exit VE-2B clearly co-
localized with endogenous SAP102 (top panels, VE-2B EGFP fluorescence in green, and endogenous immunostaining with antibody to SAP102 in red;
boxes depicts the enlargements; scale bars are 10 mm). At 45 minutes after ER exit (panels second from the top), a time point at which the leading
edge of the pulse of VE-2B cargo is arriving at the cell surface (see Fig. 1C), endogenous SAP102 continued to exhibit strong colocalization. VE-2A
demonstrated indistinguishable patterns of colocalization with SAP102 along the secretory pathway (summarized in Table S1). Colocalization of VE-
2B with SAP102 is dependent on the distal C-terminal seven amino acid residues that contain the PDZ-binding domain of NR2B (bottom panels), as
VE-2BD7 exhibited little colocalization with SAP102. Note that VE-2BD7 still exhibited apparent clustering (left panel at bottom; for quantification see
Fig. 6E) and that endogenous SAP102 did not concentrate in the perinuclear Golgi region in the absence of bound receptor (bottom red panel). (B)
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Anova with pairwise post hoc comparisons using the Tukey

method; p,0.05). Percent overlap of VE, VE-2B, and VE-2BD7

staining with synaptophysin staining was calculated across a range

of thresholds (green, 52–255 to 182–255; blue 52–255 to 110–255)

and demonstrated the same relative relationship (data not shown).

However, significant VE-2BD7 colocalization with SAP102

compared to VE was only observed at 2x background (see below).

Clustering was assessed as described in Fig. 6E and demonstrated

that both VE-2B and VE-2BD7 clustered significantly more than

VE, and not significantly different than eachother. Examples of

VE-2B and VE-2BD7 clusters co-localized with both SAP102 and

synaptophysin in Fig. 6B illustrate the similarity of post- and

presynaptic targeting. It also hints at one of the differences

between VE-2B and VE-2BD7, namely that VE-2BD7 does not

seem to co-transport with the MAGUKs to postsynaptic sites.

Notice that the intensity of SAP102 co-localized with VE-2BD7 is

lower than that of SAP102 associated with VE-2B (Fig. 6B).

Cultures infected with Lentivirus containing VE-2B were pro-

cessed for immunogold labeling 3 hours after ER exit. Immuno-

gold labeling with antibodies to a VSVG epitope confirmed that a

substantial number of the total synapses counted were labeled both

directly, and also within 500 nm of a postsynaptic density (38.3%;

see Fig. 6F).

Note that VE-2A showed less pixel overlap with synaptophysin

than VE-2B (Fig. 6D), and was not significantly different than VE.

This clear difference was unexpected, and seemed counterintuitive

since NR2A subunits were thought to be enriched at the synapse

[for review, see [19]]. However, evidence has indicated that

synaptic targeting of NR2A-containing receptors is regulated, and

not just a de facto consequence of NR2A expression [11]. In spite of

VE-2A and VE-2B showing similar colocalization patterns with

both SAP102 and PSD-95, and possessing the same extreme C-

terminal 6 amino acids, their capacity to be targeted to synaptic

markers was significantly different. This also suggested that specific

association with SAP102 or PSD-95 via the PDZ binding domain

was not playing a defining role in targeting VE-2A to the vicinity

of the synapse.

When we analyzed VE-2B, VE-2BD7, and VE for pixel overlap

with high intensity PSD-95 and SAP102 (red, thresholded at 4X

background; Fig. 7A), as was performed to assess co-localization

along the secretory pathway (Figs. 3 and 4), VE-2BD7 no longer

showed significant overlap with SAP102, as compared to VE

(Fig. 7A, right graph). VE-2B showed significantly greater overlap

with PSD-95 and SAP102 at 4x background than VE-2BD7

(* p,0.05; Anova with repeated measures; Fig. 7A, left and right

graphs, respectively).

To determine VE-2B clusters that were transported along

dendrites were associated with SAP102, we compared the

distances between VE-2B, VE-2BD7, and both SAP102 and

synaptophysin. We calculated a centroid for each color within a

2 mm region of interest (a ring) placed around GFP puncta for

both VE-2B and VE-2BD7 as described in Fig. 7B. The distances

from GFP centroids to SAP102 and to synaptophysin centroids

were calculated. Our results indicated that VE-2B puncta were

significantly more likely to be localized at the ,0.3 unresolvable

(colocalized) distance from SAP102 puncta (Fig. 7B, left graph;

Student’s unpaired t-test of the ,0.3 groups of 2B and 2BD7). VE-

2B and VE-2BD7 showed no significant difference in the ,0.3

groups with respect to synaptophysin (Fig. 7B, right graph). These

results are consistent with our colocalization results at 10 minutes

and 45 minutes after ER exit, and suggest that VE-2B is not only

co-localized with SAP102 at synapses, but may be co-transported

with SAP102. However, we do not show this directly.

Mean intensities of all puncta for SAP102 and synaptophysin

within the 2 mm ring were quantified for VE-2B and VE-2BD7

(Fig. 7C, left histogram). There was a significant difference in

mean intensity of SAP102 puncta in the VE-2B group compared

to VE-2BD7 (Fig. 7C, left histogram, indicated) and no difference

in mean intensity of synaptophysin (Fig. 7C, left histogram,

indicated). Recall that colocalization with SAP102 high intensity

puncta was quantified with the threshold for inclusion of SAP102

at 4X background (Fig. 7A). The arrow in Fig. 7C, left histogram,

indicates that threshold. As was the case with all images used to

quantify colocalization, there was no difference in the mean

intensity of any color when we assessed the entire fields (VE-2B,

8.362.7 gray scale; synaptophysin, 43.666.9; SAP102, 37.867.9;

VE-2BD7, 9.063.3; synaptophysin, 45.167.0; SAP102,

41.8611.9). The mean intensity obtained in Fig. 7C, left

histogram, includes both synaptic and non-synaptic VE-2B

colocalized with SAP102. In order to determine if VE-2B and

higher –intensity SAP102 were coincident at synaptic sites, we

selected only SAP102 puncta localized ,0.3 mm from VE-2B and

synaptophysin and determined the mean intensity of SAP102

(Fig. 7C, right histogram). We found that synaptic VE-2B

fluorescence was accompanied by an increase in mean intensity

of synaptic SAP102 compared to synaptic SAP102 in the same

fields that was not localized with VE-2B (* p,0.05). A typical

example of VE-2B concentrating SAP102 with localization to

synaptic sites is shown in Fig. 7D. Notice that VE-2B-colocalized

SAP102 puncta are the brightest in the field regardless of non-

synaptic (yellow arrows) or synaptic localization (white arrows).

Surface Targeting of NR2 Chimeras
Because the PDZ binding domains of both NR2A and B are

known to be important for synaptic localization as measured by

electrophysiological responses in transfected neurons and since we

could find no difference in the overall targeting of VE-2B and VE-

2BD7, we explored how the PDZ binding domain might affect

Neurons transfected with VE, or VE-2B were incubated overnight at 40uC, then switched to media incubated at 15uC for 1 hour to block transport to
the Golgi apparatus, and limit secretory cargo transport to no further than the IC. Neurons were then immunostained for endogenous SAP102.
Concentration of VE was observed along the lengths of dendrites that was consistent with budding and protrusion from ER exits sites and initial
transport to the Golgi (top panels; characterized previously [29]). However, concentrations of VE were not well colocalized with SAP102. Alternatively,
concentrations of VE-2B demonstrated the beginnings of co-localization with SAP102 at the IC (bottom panels; scale bars 5 mm). (C) Colocalization
was quantified as described in Experimental Methods with 5–15 images of neuronal soma from at least 3 separate transfection experiments for a
minimum of 15 and a maximum of 26 measures. To assess whether concentrated clusters of VE-2B were co-localized with concentrated SAP102
clusters, the threshold of SAP102 was held constant at a threshold that included concentrated SAP102 clusters (104-255 gray level, inclusive), and the
threshold of inclusion for VE-2B (green threshold) was varied from 52-255 to 182-255 (x-axis). The percent colocalization was averaged within
transfection to reduce random error (the number of transfections equals N), and then within-group to obtain the means 6 SEM. By one-way Anova
with repeated measures, there was a significant group effect (P,0.01), and post hoc pairwise comparisons using the Tukey method that were
significant are indicated by asterisks (p,0.05). E-2B was co-localized with SAP102 at both 10 minutes (filled circles), and 45 minutes (open squares)
after ER exit. At 10 minutes after ER exit, VE-2B was also predominantly co-localized with GM130, a marker of cis- media- Golgi (filled squares). VE-
2BD7 (filled triangles) showed incidental background levels of colocalization with SAP102. Similar results were obtained holding the green threshold
at a high constant value and varying the red threshold.
doi:10.1371/journal.pone.0039585.g003
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surface expression by examining antibody surface staining of VE-

2B and VE-2BD7 at 45 minutes after ER release. Using a 2X

background criterion, only about 30% of VE-2B (31.763.1%) and

VE-2BD7 (34.266.4%) puncta were expressed on the cell surface.

Total VE-2B, VE-2BD7, and VE percent pixel overlap with

synapsin, another presynaptic marker, trended toward the same

differences that were obtained at 3 hours after ER exit with

synaptophysin (Fig. 8A, examples; quantified in Fig. 8B, right

panel). Distances from surface puncta to synapsin were then

assessed separately for VE-2B, VE-2BD7, and VE at 2X

background as described for Fig. 7B (Fig. 8B, left panel) and the

results indicated that surface VE-2B and VE-2BD7 puncta were

similarly targeted to synapsin. However a significant portion of

VE-2BD7 surface clusters were more than 1 mm away from

synapsin, and the mean intensity of surface expression did not

differ between VE-2B and VE-2BD7 (VE-2B, 16.360.9; VE-

2BD7, 17.460.9 gray scale; p = 0.34). This suggests that while the

intracellular and surface targeting is similar, VE-2BD7 surface

clusters are unable to maintain location at or near the synapse. We

sought to confirm this result with the same data pool (VE-2B,

N = 7, 72 total images; VE-2BD7, N = 6, 53 total images; VE,

N = 6, 51 total images) by examining pixel overlap. Surface (red)

and total (green) puncta were thresholded at 2X and 3X

background (2X, 52-255; 3X, 78-255 gray scale) and overlaid.

Images were then color-thresholded to select for yellow and pixel

overlap with synapsin at 2X and 3X was assessed. The results

confirmed that VE-2BD7 surface puncta showed a marked

decrease in colocalization with synapsin while the total pixel

overlap was no different from that of VE-2B (Fig. 8B, right panel).

Discussion

In this study we used chimeras of VSVG and C-terminal

segments of NR2A and NR2B to explore trafficking of NMDA

receptors in neurons. While significant amounts of information on

NMDA receptor trafficking have been obtained using subunits

tagged with GFP or other markers, a major limitation of this

approach is the inability to identify the compartments with which

the receptors are associated and the uncertainty of the origin of the

receptors analyzed. Newly synthesized receptors cannot be

distinguished from receptors destined for degradation. Since its

exit from the ER can be controlled by temperature, VSVGts045

overcomes these limitations and offers the major advantage that

the chimera can be analyzed at specific points along the secretory

pathway. Using this approach our results showed an association of

NMDA receptors with endogenous MAGUKs early in the

secretory pathway, although SAP102 and PSD-95 associated at

different locations. VE-2B and SAP102 colocalization appeared as

early as the IC, and VE-2B colocalization with PSD-95 appeared

as early as the TGN. Note, however, that we did not repeat all of

the same experiments with VE-2A, so it is conceivable that VE-2A

and VE-2B differ to some degree with respect to where they begin

to associate with SAP102 and PSD-95. A chimera of VSVG

containing the distal one-third of the C-terminus of NR2B was

significantly targeted to synapses, supporting previous data that

synaptic trafficking determinants are contained within the distal C-

terminus of NR2B. VE-2A, on the other hand, while trending

toward synaptic targeting, was not observed to be significantly

greater than VE control. We found that NR2/MAGUK

interactions were not necessary for the initial trafficking of the

NR2B to the vicinity of the synapse, but that the MAGUK

interaction appeared to be necessary to stabilize receptors on the

cell surface near the synapse. These data are further supported by

earlier findings in cerebellar granule cells that the PDZ-binding

domain was necessary for restriction to the synapse, but not total

surface expression [37], and by a recent study live-imaging

indicating the PDZ-binding domain plays a direct role in

maintaining NMDA receptors at or near synapses [24].

NR2s are Necessary and Sufficient for Synaptic Targeting
When NR2 subunits are transcribed, translated, and translo-

cated into the lumen and membrane of the ER, they oligomerize

with NR1 subunits [38]. However, several studies have demon-

strated that synaptic localization is dependent on the C-terminus

of NR2A [9] and specifically the distal C-termini [11] of NR2A

and NR2B, while a parallel role for NR1 subunits in synaptic

targeting is not yet apparent, or appears thus far at least not to be

able to rescue a synaptic targeting defect in combination with a

truncated NR2A/B. We took advantage of these findings that

determined the necessity of NR2 for synaptic targeting and

focused specifically on the roles of NR2 distal C-termini in

directing both specific protein-protein interactions and immediate

targeting to synaptic sites. Our results clearly indicated the NR2B

cytoplasmic C-terminus is not only necessary, but sufficient for

immediate and significant synaptic targeting. Although the

targeting of VE-2A under basal conditions is inconsistent with

the greater synaptic targeting of NR2A/NR1 complexes [39,40], it

is consistent with the need for prior synaptic activity for synaptic

targeting of NR2A. Indeed, while the cytoplasmic C-termini play a

key role in synaptic localization, and are necessary and sufficient

for synaptic targeting, additional structural elements appear to

contribute to differential synaptic targeting of NR2A/NR1 or

NR2B/NR1 heteromultimers. For instance, the glycosylation site

in the B-loop of NR2B appears to differentially drive NR2B into

the synapse under conditions of inactivity [41].

On the other hand, our conclusions are also made with some

degree of caution, since there are four different splice-variants of

the NR1 cytoplasmic C-terminus, two of which encode C-terminal

Figure 4. VE-2B co-localized with PSD-95 from the TGN to the plasma membrane. (A) At 10 minutes after release from the ER, VE-2B
showed little colocalization with antibody staining to endogenous PSD-95 in the soma (top panels; scale bars are 10 mm). Forty-five minutes after ER
release (second row), a time point at which the leading edge of VE-2B reaches the surface, PSD-95 showed significant colocalization with VE-2B.
Similar results were obtained with VE-2A (see Table S1). (B) Colocalization with PSD-95 was also evident in dendrites at 45 minutes and later time
points, such as 3 hours (see Fig. 6). VE-2B (top panel) showed co-localization with endogenous PSD-95 (middle panel) in dendrites at 45 minutes after
permissive temperature, and later (scale bar 5 mm). (C) Neurons transfected with VE-2B were subjected to 40uC then the medium was exchanged with
medium equilibrated at 20uC. Cultures were maintained at 20uC for 1 hour to allow VE-2B cargo exiting the ER to build up in the TGN.
Immunostaining for endogenous TGN38 (a TGN marker; top panels) and PSD-95 (second row) in VE-2B transfected neurons subjected to the 20uC
temperature manipulation showed robust colocalization (scale bars 5 mm). (D) Quantification of PSD-95 co-localization at different stages of the
secretory pathway. There was a significant difference among the groups using a one-way Anova. However, post hoc comparisons demonstrated an
insignificant pairwise difference at 10 minutes following ER exit. PSD-95 showed levels of co-localization with VE-2B (open circles) not significantly
different from those of VE-2BD7 (filled triangles) 10 minutes after ER release. Forty-five minutes after ER exit, VE-2B co-localization with PSD-95 (filled
circles) was significantly enhanced at most thresholds when compared to VE-2B colocalization at 10 minutes after ER exit. The significant increase in
colocalization of VE-2B with PSD-95 seen at 45 minutes after ER exit could be reproduced by switching media to 20uC for 1 hour (open squares). To
verify that VE-2B was concentrated in the TGN after 1 hour 20uC incubation, colocalization of VE-2B with TGN38 was quantified (filled squares).
doi:10.1371/journal.pone.0039585.g004

NMDA Receptor Trafficking

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e39585



NMDA Receptor Trafficking

PLoS ONE | www.plosone.org 11 June 2012 | Volume 7 | Issue 6 | e39585



PDZ binding domains as well as PDZ binding domain-embedded,

di-valine, exit signal motifs [NR1-3 and NR1-4; [20,42]]. In spite

of earlier indirect evidence suggesting SAP102 may bind to and

suppress the ER retention signal of NR1-3 beginning at the level of

the ER [18], contrary evidence suggesting that the extreme C-

terminal di-valines of NR1-3 and NR1-4, acting as exit signals,

may abrogate ER retention have raised doubt about the former

conclusion [42]. Thus, absent direct evidence, the precise role of

NR1 C-terminal splice variants in trafficking and protein-protein

interactions remains unknown and unpredictable.

SAP102 Associates with the NR2 C-terminus Early in the
Secretory Pathway

SAP102 and PSD-95 are normally found in abundance as part

of the molecular scaffold at the postsynaptic density [43]. SAP102

can also be found abundantly in rat brain microsomal fractions

[20], which are enriched in smooth ER membranes, Golgi and

endosomal vesicles. Much less PSD-95 is found in this fraction.

Immunogold localization of PSD-95 in rat brain hippocampal

CA1 neurons does, however, indicate the presence of PSD-95 in

association with intracellular organelles [27].

Our data indicated that at least some VE-NR2 chimeras were

associated with endogenous SAP102 as early as the IC, however it

is not clear if significance is reached until the cis-medial-Golgi. We

observed this colocalization throughout the entire secretory

pathway and at synaptic loci. In fact, VE-2B chimeras appeared

responsible for delivering additional SAP102 to synapses, since the

mean intensity of SAP102 staining increased specifically in the

synaptic locations where VE-2B chimeras had been delivered.

However, we do not show this directly by live-imaging, nor do we

know if the additional SAP102 proteins become a permanent part

of the postsynaptic architecture.

Several studies have indicated that PDZ proteins interact at the

level of the ER [[20–22], [44,45]], and play an important role in

the early trafficking of membrane proteins. PDZ protein

interactions appear to be required for ER exit in the case of

pro-TGFa [44] and of the NMDA receptor subunits, NR1-3 [20–

22]. Also SAP97 has been shown to interact with the AMPA

receptor, GluR1 subunits, in greater abundance before the medial-

Golgi than on the cell surface [23]. Full-length NR2B subunits

remain in the ER in the absence of oligomerization with NR1

subunits [45]. In COS-1 cells, NR2B transfected without NR1,

which remained in the ER, was shown to associate with

endogenous SAP102 and co-transfected SEC8 at the level of the

ER [45]. However, no such interaction at the level of the ER has

been demonstrated between NR2B and endogenous SAP102 in

neurons. Moreover, PDZ binding-containing NR1 splice variants

(NR1-3 and NR1-4) have been shown to directly interact by

coimmunoprecipitation experiments with all of the PSD-95 family

of MAGUKs, including SAP102, in HEK293 cells [20]. Prior

work also indicated that SAP102 may be the MAGUK associated

with endogenous NR1 subunits in rat brain microsomal fractions,

which contain ER membranes and Golgi vesicles [20]. However,

no observable co-localization between VE-NR1-3 and SAP102

was found early in the secretory pathway in neurons (Fig. S1B). In

COS-1 cells, VE-2B did show colocalization at the level of the ER

with co-transfected SAP102, or co-transfected PSD-95 (Fig. S2A).

However, the earliest we were able to observe any qualitatively

reasonable co-localization between VE-2B and endogenous

SAP102 in neurons was at the level of the IC. Also, we were

able to observe significant colocalization and direct interaction by

coimmunoprecipitation between VE-2B and SAP102 as early as

the cis- medial- Golgi apparatus in neurons. Together, these studies

point to specific pre-assembly of NMDA receptor NR2A/B

subunits and SAP102 complexes early in the secretory pathway.

However, it is unclear precisely where these interactions begin in

neurons, and what other proteins are integrated into these pre-

assembled complexes.

PSD-95 Associates with NR2B-SAP102 Complexes at
the TGN

VE-NR2 association with PSD-95 was not significantly higher

than controls when VE-NR2 chimeras were co-localized with the

cis-, -medial-Golgi marker GM130. If VE-2B cargo was allowed to

exit the ER and concentrate in the TGN, PSD-95 showed

significant colocalization. Therefore, in all likelihood, either

recycling or newly synthesized PSD-95 begins to associate with

emerging NR2B cargo in significant quantity at the TGN; our

data did not discriminate between the former two PSD-95

pathways. However, cotransfection of VE-2B with PSD-95-

dsRED2 in neurons showed earlier association of VE-2B and

PSD-95 (unpublished observations). This suggested that the VE-

2B/PSD-95 colocalization we observed may be recycled PSD-95.

However, we did not directly demonstrate such recycling. We

were not able to coimmunoprecipitate substantial amounts of

PSD-95 with VE-NR2s at any point up to three hours after exit

from the ER. This result could be interpreted in several ways.

First, PSD-95 could be added to VE-NR2/SAP102 containing

clusters but not interact directly with VE-NR2s. Immunostaining

for both PSD-95 and SAP102 with VE-2B indicated that some

clusters contained both SAP102 and PSD-95, which supports the

possibility that PSD-95 was not interacting directly with VE-NR2s.

Alternatively, a substantial amount of VE-NR2 chimeras was

insoluble in deoxycholate, leaving open the possibility that VE-

NR2s interact directly with PSD-95 but that the complexes are

insoluble. Yet a third alternative is that the NR2B-PSD-95

interaction requires a sequence in the C-terminus of NR2B that is

not included in our VE-2B chimeras [46,47]. This sequence,

amino acids 1149-1157 of NR2B, is followed C-terminally by a

long unfolded (i.e., intrinsically disordered) sequence that causes

ER retention [[48]; and see [49]]. Including such a sequence on

our reporter molecule may have resulted simply in ER retention;

we chose to use a sequence that we were sure would traverse the

secretory pathway. Thus, with this additional PSD-95-binding

Figure 5. VE-2B interacted directly with SAP102, and VE-2B, SAP102 and PSD-95 formed co-clusters. (A) Western blotting was
performed on cortical neurons infected with VE-2B and immunoprecipitated with i1 antibody to VSVG at 10 minutes and 3 hours after switch to
permissive temperature (24 fold enrichment). Immunoblots were performed with rabbit anti-VSVG, PSD-95, and SAP102. Input, unbound, and
immunoprecipitation fractions (IP) were run for each blot. To minimize the possibility of false-positives, buffer only was added to the lanes adjacent
to the VE-2B IP lanes. Identical film exposure times for both anti-PSD-95 and anti-SAP102 indicate that SAP102 associates at 10 minutes and 3 hours
after ER exit whereas PSD-95 does not. Longer film exposure times did not unambiguously indicate that PSD-95 was directly associated. (B) Western
blotting was performed on cortical neurons infected with VE and immunoprecipitated with antibody to VSVG at 10 minutes after switch to permissive
temperature. Immunoblots were then performed with rabbit anti-VSVG, and SAP102. Input, unbound, and IP fractions were run for each blot. The
results indicated that VE (left panel) did not co-immunoprecipitate measurable quantities of SAP102 (right panel). (C) VE-2B transfected neurons 3
hours after ER release were immunostained for PSD-95 (red) and SAP102 (blue; scale bar, 5 mm). Aqua-colored arrows indicate VE-2B co-localized with
SAP102 primarily. White arrows indicate VE-2B co-localized with both PSD-95 and SAP102.
doi:10.1371/journal.pone.0039585.g005
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Figure 6. Targeting to pre- and postsynaptic markers. (A) Examples of VE-2A, VE-2B, VE-2BD7, and VE three hours after exit from the ER
immunostained for SAP102 (red), and synaptophysin (Sp; pseudocolored blue), and merged. VE-2B, and VE-2BD7 demonstrate significant clustering
compared to VE (quantified in E), and targeting to synaptophysin (quantified in D). (B) Higher magnifications of clusters from VE-2B and VE-2BD7 seen
in A (indicated by boxes) demonstrate roughly equivalent colocalization to SAP102 (quantified in C) and synaptophysin (quantified in D; scale bars
1 mm). (C) VE-2B and VE-2BD7 co-localized with postsynaptic SAP102 at 2X background (52–255 inclusive gray scale). By one way Anova (P,0.01)
there was a significant group difference. Using Tukey’s post hoc pairwise comparisons, both VE-2B and VE-2BD7 pixel overlap with SAP102 was
significantly greater than VE (p,0.05), however VE-2B and VE-2BD7 were not significantly different than eachother. This relationship between VE-2B
and VE-2BD7 overlap with SAP102 was only obtained when analyzing pixel overlap at 2X background. (D) The percent of overlap of VE-2B, and VE-
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sequence, the direct interaction of NR2B with PSD-95 may be

accomplished even without dissociation of the NR2B PDZ-binding

domain from SAP102, and accomplished via a more proximal

sequence on the NR2B molecule. In any case, colocalization with

PSD-95 with our chimeras was dependent on the PDZ binding

domain, as VE-2BD7 was not co-localized with PSD-95 at higher

intensity thresholds. Thus, if the interaction is indirectly through

the PDZ-binding domain it must still be accomplished through

direct association with SAP102 or another interaction involving

the PDZ binding domain of NR2B. A final possibility is that only a

small fraction of VE-NR2B interacts with PSD-95 directly. Thus it

would be too little to detect by co-immunoprecipitation experi-

ments.

Several functional aspects of the TGN highlight the importance

of an interaction beginning there. The TGN has been shown to

serve as a sorting station for newly synthesized cargo destined for

different subcellular locations [for review, see [50]]. It is possible

that the addition of PSD-95 to specific VE-NR2/SAP102 clusters

imparts unique targeting or elaborates significantly on the

molecular make-up of emerging clusters. Also, the TGN receives

molecules that recycle through the endosomal pathway. It is

possible that some subpopulation of PSD-95, removed from

postsynaptic compartments, recycles to the TGN and associates

with new cargos. Molecules recycled to the TGN such as TGN38

and furin contain tyrosine motifs essential for that recycling [see

for instance [50–52]]. PSD-95 contains a functional endocytic

tyrosine motif at the extreme C-terminus [53] that serves both

synaptic targeting and endocytic functions that result in perinu-

clear localization. Moreover, transfected PSD-95 in heterologous

cells shows substantial overlap with subcellular markers for both

endosomes and TGN [27]. Thus, given the right subunit

combination or ensemble of proteins, the tyrosine motif of PSD-

95 could also be essential for recycling to the TGN in neurons,

however PSD-95-mediated endocytosis and TGN targeting of

NMDA receptors has been tried to some unknown degree, and has

failed so far to be demonstrated [54], and it remains to be

determined how our observations, and prior observations of NR2,

NR1, and PSD-95 colocalization with TGN markers can be

explained [27]. It is noteworthy, however, that prior studies of

NMDA receptor trafficking which concluded that NMDA

receptors undergoing transport were not associated with PSD-95

did not evidence the full scope of receptor subunit combinations

[55,56]; only dsRED or GFP tagged and transfected NR1-1a

subunit movement has been observed relative GFP-tagged PSD-

95, and there are 3 other splice variations of the NR1 C-terminus.

Thus, there is ample untested scope to potentially observe

abundant NMDA receptor/PSD-95 cotransport in neurons.

Another body of observations relating to synaptic versus non-

synaptic NMDA and PSD-95 localization concerns the effect of

activity on NMDA receptor localization. In particular, it was

concluded that the effect of application of the NMDA receptor

competitive antagonist, AP5, over several days to several weeks

appeared to cause non-synaptic NMDA receptors to migrate to

PSD-95-containing postsynaptic sites [57]. However, the same

group later noted that not all NMDA receptors that colocalized

with PSD-95 were synaptic [58], opening up the possibility of

NMDA receptor/PSD-95 cotranport to the synapse. Indeed,

under the same conditions of inactivity with either TTX or AP5,

wherein an increase in synaptic PSD-95 colocalized NMDA

receptors was observed [57], a significant decrease in both the

number of synaptic puncta containing PSD-95, and a decrease in

total PSD-95 that was unrelated to turnover was observed [59].

Also, application of AP5 to neuronal culture has been shown to

radically alter the NR1 splice variant(s) expressed, and that the

splice variant expressed with inactivity (NR1-C2’), is responsible

for synaptic accumulation of NMDA receptors [42]. Considering

the totality of the findings above with respect to AP5 and NMDA

receptor trafficking, we believe there is considerable indirect

evidence and scope to propose that synaptic PSD-95 may not

simply remain at the synapse in perpetuity until it is discarded or

until NMDA receptors migrate to it, but instead it could be

removed and recycled back to the TGN to associate with emergent

NMDA receptor cargo complexes better disposed to precisely

associate with established presynaptic input. This would explain

the effect of AP5 on both the increase in synaptic NMDA receptor

localization and the decrease in synaptic PSD-95 by proposing a

trafficking function for PSD-95 that is inherently related to

activity. Thus, it is unlikely that prior observations of NR1-1

transport alone fully evidence the scope of NMDA/PSD-95

cotransporation, and therefore they are not necessarily in contrast

to this study.

Subunit-specific Differences in Synaptic Targeting
When we compared percent overlap of VE-2B, and VE, the

VE-2B subunit cytoplasmic tail showed a significantly greater

portion of their area overlapping with synaptophysin and synapsin

than VE. VE was widely distributed and showed a predominantly

smooth appearance with the exception of transport vesicles. While

this represented random or indiscriminate targeting, VE did show

substantial overlap with synaptic markers because it was so

widespread. In contrast, both VE-NR2s formed clusters that were

generally transported and restricted to areas co-localized with

presynaptic and postsynaptic markers.

Although VE-2A percent pixel overlap with synaptic markers

trended toward an increase compared to VE, it did not reach

significance and was also significantly less than that of VE-2B (and

VE-2BD7; Fig. 6D). This was unexpected. However in light of the

fact that there were no measured differences between VE-2A and

VE-2B in association with SAP102 and PSD-95, it also suggested

that sequence determinants other than the PDZ binding domain

influenced VE-2A targeting. Since the developmental transition

from NR2B to NR2A-containing NMDA receptors is dependent

2BD7 with synaptophysin was significantly greater than VE (one-way Anova with post hoc pairwise comparisons to VE * p,0.05). Surprisingly, VE-2A
was not significantly different than VE among the 4 groups in a post hoc comparison. VE-2B targeted to synaptophysin significantly better than VE-2A
(** p,0.05) but no differently than VE-2BD7. These relative differences were the same regardless of the green or blue threshold. The same results
were obtained at this time point after ER release using synapsin as the presynaptic marker (data not shown). (E) Clustering was measured using Zeiss
LSM510 image analysis software. Average intensity was calculated from each intensity graph of 20–30 dendrites for a total of 839.5 mm (VE-2B),
750.4 mm (VE-2BD7), and 776.0 mm (VE). A cluster was defined as being more than twice the average intensity of each dendrite for equal to or greater
than 0.4 mm. The average number of clusters per mm 6 SEM is plotted in E. There was a significant effect of group by one-way Anova. Post hoc
comparisons indicated Both VE-2B and VE-2BD7 showed significantly more clustering than VE (p,0.05), and were not significantly different from each
other. (F) Examples of immunogold labeling with i14 a-VSVG antibody (10 nm; arrowheads) and a-NR2A/B antibody (5 nm; arrows) indicate
localization of VE-2B at synapses 3 hours after release from the ER (pre, presynaptic terminal; post, postsynaptic process). Scale bar is 100 nm.
Quantification of 10 nm gold indicated that 10 of 47 synapses were labeled within 0–100 nm, and 18 of 47 (38.3%) synapses showed immunogold
labeling within 0–500 nm of the postsynaptic density.
doi:10.1371/journal.pone.0039585.g006
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Figure 7. VE-2B and the MAGUKs are consistent with co-transportation to the synapse. (A) VE-2B chimeras co-localized with high intensity
PSD-95 (left graph) and SAP102 (right graph) in dendrites 3 hours after release with the red threshold fixed at 4X background (104–255 inclusive gray
scale). Colocalization was quantified as described in Experimental Methods. VE, VE-2B, and VE-2BD7 colocalization was assessed across the range of
inclusive thresholds for green indicated on the x-axis. There was a significant group effect by one-way Anova even at even the lowest green threshold
(p,0.05). VE-2B colocalization with SAP102 was significantly greater across all green thresholds using an Anova with repeated measures compared to
both VE and VE-2BD7 (p,0.01), while the percent overlap of VE-2B with PSD-95 by Anova with repeated measures was significantly different than VE-
2BD7 (p,0.01). (B) The distances between GFP, SAP102, and synaptophysin were obtained at 3 hours after release from the ER by defining a 2 mm
region of interest around GFP puncta, and calculating the centroid for each color within the region of interest above 2X background using
Metamorph software. Lengths are binned as ,0.3 mm (unresolvable) to .1 mm in 100 nm increments as shown above. Results are shown as a
fraction of the total puncta in all bins for 3 separate transfections with .50 GFP puncta per transfection 6SEM. A significantly greater percentage of
VE-2B puncta are within an unresolvable distance to SAP102 compared to VE-2BD7 (B, left graph; p,0.05; one-way Anova with repeated measures),
whereas there is no significant difference in the unresolvable groups of VE-2B, VE-2BD7, and synaptophysin (B, right graph). (C) Synaptic association
of VE-2B is associated with an increase in SAP102 intensity. The mean intensity was calculated for all SAP102 and synaptophysin puncta within the
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on agonist binding to pre-existing surface NMDA receptors [11],

proper targeting of newly expressed NR2A-NR1 is not simply a

consequence of synthesis but an active regulation of the targeting

process. Considering the requirement for pre-activation of NMDA

receptors, VE-2A synaptic targeting may be dependent on prior

NMDA receptor activity.

The Role of the PDZ Binding Domain in NR2 Trafficking
It is well established that PSD-95 clusters NR2 subunits co-

transfected into heterologous cell lines and that the clustering is

dependent on the distal C-terminal PDZ binding domain [for

review, see [60]]. In cultured hippocampal neurons from mutant

mice with nearly the entire C-terminus of NR2A truncated, a

significant reduction in clustering was observed [9]. By the criteria

described in Fig. 6E, we found that VE-2BD7 chimera clusters

significantly compared to VE. Moreover, the frequency of

clustering was similar to that of VE-2B. This strongly suggests

that other sequence determinants, and likely other protein-protein

interactions, contribute to clustering NR2 molecules in vivo.

Several lines of evidence indicate that the PDZ binding domain

of NR2 subunits is essential for precise synaptic localization [for

review, see [19]]. Evidence from several groups indicates that

truncation of the C-terminus (which includes the PDZ binding

domain) reduces NMDA receptor-mediated evoked synaptic

responses [9,11], and has an even more profound effect on

miniature excitatory postsynaptic currents [9,10]. However, as

previously noted [9], these experiments were unable to distinguish

between impairment in transport, targeting, or anchoring of

NMDA receptors.

Using VSVG chimeras we were able to determine more

precisely among the three possibilities for impairment. The

amount of VE-2B and VE-2BD7 surface staining was not different

at 45 minutes after release from the ER, indicating that the lack of

PDZ-binding domain does not have a significant effect on

transport to, or exocytosis at the neuronal surface. Our results

are consistent with VE-NR2 cargo being tightly regulated, but that

the PDZ binding-domain does not play a dominant role in

transport to synapses, or initial cell-surface targeting. Our data

further support the role of the PDZ-binding domain as that of

restricting NMDA receptors to the synapse [24,37], and further

suggest that it does not serve a primary role in determining where

NMDA receptors are inserted into the plasma membrane as well.

Truncation of the PDZ binding domain of VE-2B (VE-2BD7)

had no effect on the initial targeting to the vicinity of two different

presynaptic markers (synapsin and synaptophysin). However, VE-

2B synaptic targeting was significantly coincident with additional

SAP102 and PSD-95 appearing in the postsynaptic area. Forty-

five minutes after ER release, a minority of both VE-2B and VE-

2BD7 puncta were on the cell surface (about 30% of GFP puncta).

While the targeting of total VE-2BD7 was identical to that of VE-

2B, the two chimeras could be distinguished by examining their

smaller cell-surface pools. The surface pool of VE-2BD7 demon-

strated both a significantly diminished percentage of pixel overlap

with synapsin, and a larger population of surface clusters .1.0 mm

away from synapsin. Note also from the distance graph in Fig. 8B

that the relative quantity of surface VE-2BD7 puncta localized at

,0.3 mm was not significantly different from that of VE-2B.

Taken together these data indicate VE-2BD7 chimeras are initially

targeted (even to the cell surface) appropriately, but lack the

capacity to remain anchored in the vicinity of the postsynaptic

structure (see summary model, Fig. 8C). We therefore confirmed

that the MAGUK/NR2 protein association serves to anchor

NMDA receptor complexes in the postsynaptic area.

The NR2/MAGUK Interactions and the Construction of
the PSD

Modularity of vesicles or packets destined to pre- or postsyn-

aptic structures has been the topic of many live imaging studies

[55,61–65]. It has been shown that as many as ten different

proteins that function at presynaptic active zones are preassembled

into dense-core vesicles for transport to presynaptic terminals [62].

These preassembled modules apparently constitute a relatively

fixed portion of the total proteins at a mature presynaptic bouton.

In comparison, other work has indicated that both NMDA

receptors and PSD-95 form mobile transport ‘packets’ [55] or

‘modules’ [63,64]. Movement of PSD-95 modules has produced

speculation that postsynaptic densities are preassembled [63].

However, the size and molecular composition of postsynaptic

packets or modules remains unexplored.

Some evidence suggests that NR2B-NR1 heteromeric receptors

may be linked to and transported by KiF17, a mLin-10 binding

kinesin, via mLin-10/mLin-2/mLin-7 interactions [13,16]. Addi-

tionally, KiF1ba has been shown to interact directly with PSD-95

and SAP97 [66]. While our data indicated that the bulk of

transport appears to be in association with SAP102, it is possible

that NR2B binds to mLin-7 and forms a subpopulation

transported by KiF17. Another possibility is that KiF17 binds

SAP102 as well as mLin10.

We identified at least two neuronal MAGUKs, SAP102 and

PSD-95, that can be preassembled with NMDA receptors before

addition to postsynaptic structures. This represents only a small

fraction of proteins that have been identified at the postsynaptic

density [67]. Based on these observations we can only assert that

subcomponents of the postsynaptic structure are preassembled.

Another possibility is that the MAGUKs that are associated early

are serving a function limited to the transfer of NR2s to PSDs, and

that the interaction is short-lived; this may even involve SAP102

and PSD-95 being recycled to an intracellular compartment for

interaction with new emerging cargo. Yet another view is that

NR2s might be responsible for directed transport of SAP102/

PSD-95 to synapses. However, recent experiments examining

recovery from photobleaching have demonstrated recovery of

SAP102-GFP fluorescence within minutes [68]. This suggests that

perhaps SAP102 is playing a broader role in delivering cargo to

2 mm region of interest from the data pool in B. The resulting measure included both synaptic and non-synaptic VE-2B/SAP102. VE-2B-associated
SAP102 staining showed a significantly higher mean intensity than VE-2BD7-associated puncta (C, left histogram; * p,0.05, Student’s t-test), while
the mean synaptophysin intensity remained unchanged (C, left histogram). The mean intensities for the entire images from the data pool were the
same. The arrow indicates the threshold at which SAP102 was included (104–255) for measurement of VE-2B/high-intensity MAGUK pixel overlap in A.
To assess the effect of VE-2B on synaptic SAP102 (right histogram), the mean intensity of SAP102 puncta co-localized with both VE-2B and
synaptophysin (,0.3 mm from each other) was extracted from a larger data pool (N = 4 transfections; total synaptic puncta, 289) and compared to the
mean intensity of synaptic SAP102 in the same image pool and in the absence of VE-2B (total synaptic puncta, 699). Synaptic VE-2B significantly
enhanced synaptic SAP102 intensity (*p,0.05, Student’s t-test; illustrated in D). (D) A typical example of how VE-2B (right picture, green)
concentrated both synaptic and non-synaptic endogenous SAP102 (left picture, SAP102 in red; synaptophysin in blue) 3 hours after ER release (scale
bar, 5 mm). Note that those SAP102 puncta that are co-localized with VE-2B (all arrows) are brighter than SAP102 puncta in the rest of the field. Yellow
arrows indicate non-synaptic VE-2B/SAP102 puncta. White arrows indicate synaptic VE-2B/SAP102/synaptophysin puncta.
doi:10.1371/journal.pone.0039585.g007
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Figure 8. Surface targeting distinguished VE-2B from VE-2BD7. (A) VE-2B and VE-2BD7 were allowed to exit the ER for 45 minutes and then
immunostained for surface expression with I1 antibody and presynaptic terminals with anti-synapsin. Yellow arrows in VE-2BD7 indicate surface
puncta not in the vicinity of synapsin (right panels). At 45 minutes after ER exit, only about 30% of VE-2B and VE-2BD7 puncta in dendrites showed
any immunostaining with i1 antibody. (B) The VE and VE-2BD7 surface puncta more than 1 mm away from synapsin were significantly greater in
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the postsynaptic area than one limited to delivery of NMDA

receptor cargo. On the other hand, SAP102-associated NMDA

receptor recycling cargo may be relatively free of compartmental

specificity. It will be of great interest to determine which additional

molecules NR2s might be directing through the secretory pathway

and into the postsynaptic area. The collective observations that

both pre- and postsynaptic components may preassemble suggest a

general theme in neuronal protein trafficking: Preassembly could

serve to rapidly secure fully functional nascent synapses, as well as

provide a means for rapid, all-or-none-changes in the molecular

(sub)-composition of developing synapses, such as the switch from

NR2B-containing synapses to NR2A-containing synapses that

occurs in early development in as little time as 2 hours [69].

Materials and Methods

Ethics Statement
All animal procedures used in this study were conducted

according to the guidelines of the National Institutes of Health

Animal Care and Use Committee.

Antibodies
I1 hybridoma monoclonal antibodies to VSVG were a generous

gift from Doug Lyles (Wake Forest), and have been characterized

previously [70]. Rabbit VSVG antibody was a generous gift from

Carolyn Machamer (Johns Hopkins), and has been characterized

previously [71]. Two separate anti-SAP102, and anti-PSD-95

antibodies have been characterized previously (rabbit anti-

SAP102, JH62514; rabbit anti-SAP102, Alomone Labs; rabbit

anti-PSD-95, T60; mouse PSD-95, Transduction Labs; [43]. Anti-

SAP97 monoclonal antibody was from Stressgen (Victoria, B.C.).

GM130, and TGN-38, and PDS-95 monoclonal antibodies were

acquired from BD Biosciences, Transduction labs (San Diego,

CA). Rabbit anti-NR2A/B (T12) has been characterized previ-

ously [72]. Monoclonal anti-synaptophysin antibody was from

Chemicon International, Inc. (Temecula, CA), and anti-rabbit

synapsin from Synaptic Systems (Gottingen, Germany). Rabbit

anti-calnexin antibody was from Abcam. Highly cross-adsorbed

Alexa-555 and 633-conjugated mouse and rabbit anti-IgG

antibodies from Invitrogen were used for both representative

micrographs and quantitative measurements. These antibodies

showed minimal cross-reactivity and no measurable bleed across

channels.

Constructs
The VSVGts045-EGFP (a generous gift from Nelson B. Cole,

NHLBI, NIH) was subcloned into the PCDL vector via XhoI/

EcoRV sites. An XbaI site was added in-frame, beginning at the

stop codon for EGFP, by site-directed mutagenesis using a

Quickchange kit from Stratagene. The last 168, and 169 amino

acids of NR2A and NR2B, respectively and NR2BD7 cytoplasmic

tails were appended to VSVG-EGFP (XbaI), via PCR with XbaI/

EcoRV restriction sites. Correct cytoplasmic tails were confirmed

by DNA sequencing. Because the NR1-3 cytoplasmic tail DNA

sequence contains an EcoRV site, NR1-3 cytoplasmic tail (amino

acids 859 to 944) was subcloned into only the XbaI site of VSVG-

EGFP, and then sequenced for orientation and correct amino acid

sequence.

Cultures, Transfections, and Immunostaining
Hippocampal and cortical neuronal cultures were prepared and

cultured in serum-free Neurobasal medium (Invitrogen, Carlsbad,

CA) as previously described [53], except that no antibiotics were

used. COS-1 (ATCC #CRL-1650) and HEK293T (a gift from

Fred Gage, Salk Institute, La Jolla, CA) cells were grown in

DMEM with 10% fetal calf serum and Gentamicin at 5 mg/ml.

Transfection of VE constructs was performed using the calcium

phosphate method as previously described [20]. Neurons were

then washed extensively with DMEM (Invitrogen; Carlsbad, CA),

placed back in conditioned Neurobasal and allowed to incubate

overnight at 37uC. The following day, hippocampal and cortical

neurons were placed in a 40uC incubation chamber (5% CO2)

overnight. On the third day, Neurobasal media equilibrated to the

appropriate temperature was substituted. Incubations were termi-

nated at various time points after media substitution by fixation in

220uC methanol (MAGUK staining), or 4% paraformaldehyde in

PBS (i1 surface staining). After two washes in 1X PBS, neurons

were then blocked with 10% normal goat serum (Vector

Laboratories) for 1 hour. Neurons were incubated with primary

antibodies for 1 hour using the following dilutions: anti-GM130,

1:200; anti-TGN38, 1:200; anti-PSD-95, 1:500 (T60); anti-PSD-

95, 1:150 (TL); anti-SAP102, 1:500 (JH62514); anti-SAP102,

1:200 (Alomone); anti-Synapsin, 1:500; anti-Synaptophysin, 1:500;

anti-VSVG, 1:3 (i1 hybridoma). After 3 successive washes in PBS,

neurons were incubated with Alexa-555 (1:1000), or Alexa-633

(1:500) for 30 minutes. Neurons were then washed in PBS 3 times

and mounted on slides using a Prolong̈ Antifade Kit (Molecular

Probes).

Lentiviral Infection
VE, VE-2A, and VE-2B transgenes were inserted into a third

generation, self-inactivating lentiviral vector [73]. The particular

genomic construct we used has been reported previously [74]. The

genes were expressed under control of the cytomegalovirus (CMV)

immediate early gene promoter. For the generation of vector

particles, vector DNA was transfected into HEK293T cells

together with several support plasmids encoding the structural

relative number than VE-2B (left panel). The surface VE-2BD7 within 0.3 mm is similar to VE-2B but not significantly different from VE, while VE-2B
within 0.3 mm is significantly different than VE (one-way Anova considering VE, VE-2B, and VE-2BD7 in the .1.0 micron bins and then in the ,0.3
micron bins, then pairwise post hoc comparisons; p,0.05). Centroids and distances were calculated with images thresholded at 2X mean
background. Percent pixel overlap of green puncta with synapsin in the same data set showed no difference in the total VE-2B and VE-2BD7 at any
threshold and trended toward increased synaptic localization at 45 minutes after permissive temperature, but did not reach significance when
compared to VE, as was apparent at 3 hours (one-way Anova, p = 0.11; right panel, indicated as ‘total’). Green and red images from the same data set
also were merged and color-thresholded for yellow to define the surface population. Percent overlap of yellow puncta with synapsin (blue) was then
assessed for VE, VE-2B, and VE-2BD7 (right panel, indicated as ‘surface’). VE-2BD7 surface pixel overlap with synapsin trended toward a decrease
compared to VE-2B at 2X background but not significantly until thresholded at 3X background (one-way Anova, post hoc comparison p,0.05). (C)
Model of trafficking of NR2B. NR2B forms hetero-oligomers with NR1 subunits at the level of the ER [38], but the NR2 distal C-terminus is necessary
and sufficient to confer significant synaptic localization [9,11]. NR2A/B clusters with SAP102 early in the secretory pathway, and significantly so at the
level of the cis-medial- Golgi. PSD-95 is added as part of the NR2B/NR1-SAP102 complex as soon as the TGN. NR2B/NR1-SAP102 complexes may be
cotransported to the vicinity of the synapse, and also cotransported at least in-part along dendrites via Kif-17, mLin-2/Cask, mLin7, mLin10, and
SAP97 in a poly-protein complex [see [18]] and added to postsynaptic structures. The NR2B/SAP102/PSD-95 association does not appear to be
essential for immediate synaptic targeting, but is required for maintenance of position on the synaptic surface.
doi:10.1371/journal.pone.0039585.g008
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and regulatory proteins of the vector. Vector particles were

collected from the medium for three consecutive days, purified and

concentrated by ultra-centrifugation. Subsequent infections of

hippocampal neurons for immunogold labeling, or cortical

neurons for immunoprecipitation, were carried out in small

volumes of medium. Stable transduction of the cells and transgene

expression was evaluated 24 hours later. Infected neurons were

then subjected to temperature manipulations identical to those of

neurons transfected for immunofluorescence microscopy. Tissue

was harvested and prepared for either immunoprecipitation or

electron microscopy.

Confocal Microscopy
Transfected neurons were imaged using a Zeiss LSM510

scanning confocal microscope. Representative pictures were taken

with a 63X (1.4 N.A.) PlanApo oil objective at 3X zoom and

1024x1024 pixels (each image 50 mm650 mm), as stacks of 0.8 mm

optical sections for each color track, scanned at 0.4 mm intervals,

and presented as cropped projections of approximately 2–4 mm

total. For quantitative microscopy, all pictures were taken with the

same laser power settings across compared groups. The lower

magnification images in Figs. 1C, S1A, and S2B were taken with a

40X (1.3 N.A.) Plan Apo oil objective at 0.7X zoom (each image

325 mm6325 mm), as projections of 2.75–4 mm, scanned at

0.55 mm intervals.

Quantitative Analysis
Data collection for quantitative analysis was performed blind,

except for colocalization with subcellular markers, such as GM130

and TGN38. Images taken for quantification of dual-color

colocalization were all one optical section of 0.8 mm for each

color track, the same objective and settings as above were used

with the amplitude offset and amplitude gain held constant across

compared groups. The signal gain was varied to obtain matched-

intensity distributions across pictures. This allowed a standardized

comparison of colocalization within each picture measurement.

Each experimental condition measured contains 3 to 5 separate

transfections and 5–25 repeated entire field measures per

transfection. Means and standard errors were calculated by

averaging within and then across transfections within experimental

groups. For three-color measurements with VE, VE-2A, VE-2B,

and VE-2BD7 (EGFP) with PSD-95 or SAP102 (Alexa-555) and

synaptophysin (Alexa-633) single optical sections of 1.2 mm per

color track were taken as indicated above for two-color

measurements. The data pool consisted of three-color images of

both proximal and distal dendrites captured in the absence of the

neuronal cell body. Unless otherwise indicated, between 4 and 9

separate transfections were performed, with 5-20 repeated

measures (pictures) for each transfection were averaged within

transfection. Means and standard errors were calculated as above.

For analysis of surface expression all settings were fixed across

groups for the channel used to measure surface expression (Alexa-

555) so that relative intensities could be compared.

Image analysis was performed using Metamorph (Universal

Imaging). LSM files were converted to 2- and 3-color TIFF files.

No significant differences in average intensity were observed across

any groups. Percent of EGFP area overlapping with other colors

was calculated (except Figs. 7 and 8; see figure legend).

Colocalization was determined for comparison by using the same

thresholds for each image in every compared group. Significance

(P,0.05) was assessed using a two-tailed, unpaired Students’ t-test

when two groups were compared. When more than 2 groups were

compared, or when repeated-measures were taken into account, a

one-way Anova was used, and subsequent pairwise post hoc

comparisons were made using Tukey’s test with a 95% confidence

interval. Statistical tests were performed using either Excel

(Student’s T-test) or Minitab16.

Electron Microscopy
Rat brains and hippocampal cultures (14 DIV) were treated

with 4% paraformaldehyde/0.5% glutaraldehyde, and processed

for immunocytochemistry as described previously [e.g., [72]].

Tissue was cryoprotected and frozen in liquid propane in a Leica

CPC, then freeze-substituted into Lowicryl HM-20 in a Leica

AFS. Thin sections were labeled with primary antibody, followed

by 5 and/or 10 nm gold secondary antibody, and were stained

with uranyl acetate and lead citrate

Immunoprecipitation and Western Blotting
Immunoprecipitation experiments were performed as described

previously [43]. Cortical cultures (14 DIV) were homogenized in

50 mM Tris-HCl, pH 8, containing Complete�, a protease

inhibitor cocktail (Roche), and 1 mM EDTA. Membranes were

solubilized in 1% deoxycholate (DOC), 50 mM Tris-HCl, 1 mM

EDTA, pH 8, for 45 min at 37uC. Insoluble material was

removed by centrifugation for 1 hour at 100,000xg. Triton X-

100 was added to a final concentration of 0.1%. For immunopre-

cipitation, supernatant from i1 hybridoma culture was used.

Protein G beads were then pelleted, washed in PBS plus 0.1%

Triton X-100 and incubated with 1 ml of the DOC-solubilized

tissue at 4uC with constant rotation. The beads were then washed

with 50 mM Tris-HCl, pH 7.5, containing 0.1% Triton X-100

three times, resuspended in 2x SDS sample buffer and boiled for

3 min. Proteins were separated with SDS-PAGE and transferred

to Immobilon-P membrane and treated as described [35]. Bands

were visualized on Hyperfilm with ECL+plus (Amersham Biosci-

ences). Endoglycosidase H experiments were performed as

described previously [20].

Supporting Information

Figure S1 VE-NR2s were indistinguishable from VE at
the level of the ER, and VE-2A/B clustering and SAP102
association after ER exit is PDZ binding-domain specif-
ic. (A) VE (far right panel) and VE-2A (left and middle panels) both

showed indistinguishable diffuse fluorescence in neurons that co-

localized with ER markers (not shown), as has been described for

VE previously [see [29], Fig. 1A] when maintained at 40uC. The left

panel shows an entire VE-2A transfected neuron (scale bar 30 mm).

The white arrow indicates the region enlarged for comparison in the

center panel to a neurite of the same length from a VE transfected

neuron maintained at 40uC. (B) VE-NR2 association and clustering

with SAP102 is PDZ binding-domain specific. The entire

NMDAR1-3 cytoplasmic C-terminus was appended to VE (VE-

NR1-3; see Experimental Methods) and transfected into neurons.

Transfected VE-NR1-3 neurons were maintained at 40uC, then

switched to 32uC media for 10 minutes, and immunostained for

endogenous SAP102 and GM130. The cytoplasmic tail of NR1-3,

although having a similar PDZ binding-domain and the demon-

strated capacity to bind SAP102 and all other members of the PSD-

95 family of MAGUKs in co-transfected HEK293 cells (see [20],

Fig. 7A), showed no co-localization with endogenous SAP102 in

neurons (compare panels; the panel to the far right is an

enlargement of the Golgi region of the Merge panel; scale bar is

20 mm) 10 minutes after release from the ER. All neurons that were

examined exhibited the same lack of co-localization of VE-NR1-3

with SAP102 10 minutes after permissive temperature.

(TIF)
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Figure S2 Characterization of VE-NR2 chimeras. (A) VE-

2B and PSD-95 co-clustered in the ER in heterologous cells. VE-

2B (upper left green panel; scale bar 25 mm) and PSD-95 (upper

panel pseudocolored blue, fourth from the left most upper panel)

were transfected into COS-1 cells and maintained at 40uC
overnight, then immunostained with mouse anti-PSD-95, and

rabbit anti-calnexin (CNX; upper red panel, third from the left).

The large merged panel (far right panel, predominantly white,

indicating 3-color colocalization) clearly indicated VE-2B co-

clustered with both PSD-95 and Calnexin at the level of the ER.

Moreover, the clustering appeared similar to prior examples of

PSD-95 clustering at the plasma membrane [75]. VE-2B also co-

localized with SAP102 when maintained at 40uC (lower four

panels from left to right are VE-2B, followed by enlarged VE-2B,

SAP102, and Merge). We noted, however, that SAP-102 did not

induce clustering per se, but showed the same pattern of co-

localization accumulated on the nuclear membrane and in

intracellular perinuclear structures as has been previously noted

when SAP102 was co-expressed with another receptor binding

partner, Kv1.4, which resulted in an intracellular accumulation of

both proteins, and an absence of surface targeting [75]. (B) VE is

normally added in a constitutive fashion to the cell surface in other

cell types (see for example, [76]), and appeared to exhibit the same

characteristic in neurons. At 3 hours of permissive temperature,

VE alone covered the entire surface of the neuron and exhibited a

relatively equal distribution throughout (compare the left upper

panel EGFP fluorescence of VE to the I1 surface staining in the

upper right panel; scale bars, 10 mm). In comparison, much of VE-

2B appeared to remain intracellular (compare the lower left panel

to lower right panel), and the neuronal-surface VE-2B was limited

to discrete clusters even after 3 hours at permissive temperature.

VE and VE-2B images were processed in the same manner.

(TIF)

Figure S3 VE is tightly restricted to the ER when
maintained at 40uC for 24 hrs. VE was transfected into

COS-1 cells for 8 hours, then incubated overnight at 37uC
(approximately 16 hours), then placed in a culture incubator

equilibrated at 40uC for 24 hrs. Media was preincubated to 32uC,

and then the 40uC media was rapidly switched out for the 32uC
media. Trafficking of VE was terminated by placing the tissue

culture plates on ice after 6 hours at 32uC. Plates were scraped of

cells and prepared for Endoglycosidase H (Endo H) treatment and

gel electrophoresis. Samples were loaded into a polyacrylamide gel

with molecular weight standards, and transferred to membranes

using standard methods. Note that the 40uC, 24 hour sample is

completely Endo H sensitive (second band from the right). Note

also that the small lower molecular weight band in the 32uC lane is

a non-specific band that is seen at 32uC but not in samples

incubated with or without Endo H at 40uC. Further, N-

Glycosidase F treatment, which cleaves all forms of N-glycosyl

moieties, migrates no lower than the Endo H-sensitive band (data

not shown).

(TIF)

Table S1 Summary of co-localization and targeting of
VE constructs. Percent overlaps with PSD-95, SAP102, GM130

and TGN38 are given at 4X background, while overlap of VE

constructs with synaptophysin is given at 2X background. Asterisks

indicate significance after one-way Anova, with post hoc

comparisons using the Tukey method.
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