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Abstract

Novel experimental techniques reveal the simultaneous activity of larger and larger numbers of neurons. As a result there is
increasing interest in the structure of cooperative – or correlated – activity in neural populations, and in the possible impact
of such correlations on the neural code. A fundamental theoretical challenge is to understand how the architecture of
network connectivity along with the dynamical properties of single cells shape the magnitude and timescale of correlations.
We provide a general approach to this problem by extending prior techniques based on linear response theory. We consider
networks of general integrate-and-fire cells with arbitrary architecture, and provide explicit expressions for the approximate
cross-correlation between constituent cells. These correlations depend strongly on the operating point (input mean and
variance) of the neurons, even when connectivity is fixed. Moreover, the approximations admit an expansion in powers of
the matrices that describe the network architecture. This expansion can be readily interpreted in terms of paths between
different cells. We apply our results to large excitatory-inhibitory networks, and demonstrate first how precise balance – or
lack thereof – between the strengths and timescales of excitatory and inhibitory synapses is reflected in the overall
correlation structure of the network. We then derive explicit expressions for the average correlation structure in randomly
connected networks. These expressions help to identify the important factors that shape coordinated neural activity in such
networks.
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Introduction

New multielectrode and imaging techniques are revealing the

simultaneous activity of neural ensembles and, in some cases,

entire neural populations [1–4]. This has thrust upon the

computational biology community the challenge of characterizing

a potentially complex set of interactions – or correlations – among

pairs and groups of neurons.

Beyond important and rich challenges for statistical modeling

[5], the emerging data promises new perspectives on the neural

encoding of information [6]. The structure of correlations in the

activity of neuronal populations is of central importance in

understanding the neural code [7–13]. However, theoretical [9–

11,14–16], and empirical studies [17–19] do not provide a

consistent set of general principles about the impact of correlated

activity. This is largely because the presence of correlations can

either strongly increase or decrease the fidelity of encoded

information depending on both the structure of correlations

across a population and how their impact is assessed.

A basic mechanistic question underlies the investigation of the

role of collective activity in coding and signal transmission: How

do single-cell dynamics, connection architecture, and synaptic

dynamics combine to determine patterns of network activity?

Systematic answers to this question would allow us to predict how

empirical data from one class of stimuli will generalize to other

stimulus classes and recording sites. Moreover, a mechanistic

understanding of the origin of correlations, and knowledge of the

patterns we can expect to see under different assumptions about

the underlying networks, will help resolve recent controversies

about the strength and pattern of correlations in mammalian

cortex [1,20,21]. Finally, understanding the origin of correlations

will inform the more ambitious aim of inferring properties of

network architecture from observed patterns of activity [22–24].

Here, we examine the link between network properties and

correlated activity. We develop a theoretical framework that

accurately predicts the structure of correlated spiking that emerges

in a widely used model – recurrent networks of general integrate

and fire cells. The theory naturally captures the role of single cell

and synaptic dynamics in shaping the magnitude and timescale of

spiking correlations. We focus on the exponential integrate and

fire model, which has been shown to capture membrane and spike

responses of cortical neurons [25]; however, the general approach

we take can be applied to a much broader class of neurons, a point

we return to in the Discussion.

Our approach is based on an extension of linear response theory

to networks [24,26]. We start with a linear approximation of a

neuron’s response to an input. This approximation can be

obtained explicitly for many neuron models [27–29], and is
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directly related to the spike triggered average [30]. The correlation

structure of the network is then estimated using an iterative

approach. As in prior work [31–33], the resulting expressions

admit an expansion in terms of paths through the network.

We apply this theory to networks with precisely balanced

inhibition and excitation in the inputs to individual cells. In this

state individual cells receive a combination of excitatory and

inhibitory inputs with mean values that largely cancel. We show

that, when timescales and strengths of excitatory and inhibitory

connections are matched, only local interactions between cells

contribute to correlations. Moreover, our theory allows us to

explain how correlations are altered when precise tuning balance

is broken. In particular, we show how strengthening inhibition

may synchronize the spiking activity in the network. Finally, we

derive results which allow us to gain an intuitive understanding of

the factors shaping average correlation structure in randomly

connected networks of neurons.

Results

Our goal is to understand how the architecture of a network

shapes the statistics of its activity. We show how correlations

between spike trains of cells can be approximated using response

characteristics of individual cells along with information about

synaptic dynamics, and the structure of the network. We start by

briefly reviewing linear response theory of neuronal responses

[28,34,35], and then use it to approximate the correlation

structure of a network.

Network model
To illustrate the results we consider a network of N nonlinear

integrate-and-fire (IF) neurons with membrane potentials modeled

by

ti _vvi~{(vi{EL,i)zy(vi)zEiz

ffiffiffiffiffiffiffiffi
s2

i ti

q
ji(t)zfi(t)zgi(t): ð1Þ

Here EL,i is the leak reversal potential, and Ei represents the mean

synaptic input current from parts of the system not explicitly

modeled. A spike-generating current y(vi) may be included to

emulate the rapid onset of action potentials. Unless otherwise

specified, we utilize the exponential IF model (EIF), so that

y(v):DT exp½(v{vT )=DT � [25]. Cells are subject to internally

induced fluctuations due to channel noise [36], and externally

induced fluctuations due to inputs not explicitly modelled [37]. We

model both by independent, Gaussian, white noise processes,ffiffiffiffiffiffiffiffi
s2

i ti

q
ji(t) [38]. An external signal to cell i is represented by gi(t).

Upon reaching a threshold vth, an action potential is generated,

and the membrane potential is reset to vr, where it is held constant

for an absolute refractory period tref . The output of cell i is

characterized by the times, ti,k, at which its membrane potential

reaches threshold, resulting in an output spike train

yi(t)~
P

k d(t{ti,k). Synaptic interactions are modeled by

delayed a-functions

fi(t)~
X

j

(Jij � yj)(t), where

Jij(t)~
Wij

t{tD,j

t2
S,j

 !
exp {

t{tD,j

tS,j

� �
t§tD,j

0 tvtD,j

8>><
>>: :

ð2Þ

The N|N matrix J contains the synaptic kernels, while the

matrix W contains the synaptic weights, and hence defines the

network architecture. In particular, if gL is the membrane

conductance, gLWij is the area under a post-synaptic current

evoked in cell j by a spike in the presynaptic cell i, and along with

the membrane and synaptic time constants, determines the area

under a post-synaptic potential. Wij~0 represents the absence of a

synaptic connection from cell j to cell i.

Table 1 provides an overview of all parameters and variables.

Linear response of individual cells
Neuronal network models are typically described by a complex

system of coupled nonlinear stochastic differential equations. Their

behavior is therefore difficult to analyze directly. We will use linear

response theory [28,34,35,39] to approximate the cross-correlations

between the outputs of neurons in a network. We first review the

linear approximation to the response of a single cell. We illustrate

the approach using current-based IF neurons, and explain how it

can be generalized to other models in the Discussion.

The membrane potential of an IF neuron receiving input EX (t),
with vanishing temporal average, SX (t)T~0, evolves according to

t _vv~{(v{EL)zy(v)zEz
ffiffiffiffiffiffiffi
s2t
p

j(t)zEX (t): ð3Þ

The time-dependent firing rate, r(t), is determined by averaging

the resulting spike train, y(t)~
P

j d(t{tj), across different

realizations of noise, j(t), for fixed X (t). Using linear response

theory, we can approximate the firing rate by

r(t)~r0z(A � EX )(t), ð4Þ

where r0 is the (stationary) firing rate when E~0. The linear

response kernel, A(t), characterizes the firing rate response to first

order in E. A rescaling of the function A(t) gives the spike-triggered

average of the cell, to first order in input strength, and is hence

equivalent to the optimal Weiner kernel in the presence of the

signal j(t). [39,40]. In Figure 1, we compare the approximate

firing rate obtained from Eq. (4) to that obtained numerically from

Monte Carlo simulations.

Author Summary

Is neural activity more than the sum of its individual parts?
What is the impact of cooperative, or correlated, spiking
among multiple cells? We can start addressing these
questions, as rapid advances in experimental techniques
allow simultaneous recordings from ever-increasing pop-
ulations. However, we still lack a general understanding of
the origin and consequences of the joint activity that is
revealed. The challenge is compounded by the fact that
both the intrinsic dynamics of single cells and the
correlations among then vary depending on the overall
state of the network. Here, we develop a toolbox that
addresses this issue. Specifically, we show how linear
response theory allows for the expression of correlations
explicitly in terms of the underlying network connectivity
and known single-cell properties – and that the predic-
tions of this theory accurately match simulations of a
touchstone, nonlinear model in computational neurosci-
ence, the general integrate-and-fire cell. Thus, our theory
should help unlock the relationship between network
architecture, single-cell dynamics, and correlated activity in
diverse neural circuits.

Impact of Network Structure on Spike Correlations
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The linear response kernel A(t) depends implicitly on model

parameters, but is independent of the input signal, EX (t), when E is

small relative to the noise
ffiffiffiffiffiffiffi
s2t
p

j(t). In particular, A(t) is sensitive

to the value of the mean input current, E. We emphasize that the

presence of the background noise, j, in Eq. (3) is essential to the

theory, as noise linearizes the transfer function that maps input to

output. In addition, when applying linear response methods, there

is an implicit assumption that the fluctuations of the input X (t) do

not have a significant effect on the response properties of the cell.

Linear response in recurrent networks
The linear response kernel can be used to approximate the

response of a cell to an external input. However, the situation is

more complicated in a network where a neuron can affect its own

activity through recurrent connections. To extend the linear

response approximation to networks we follow the approach

introduced by Lindner et al. [26]. Instead of using the linear

response kernel to approximate the firing rate of a cell, we use it to

approximate a realization of its output

y(t)&y0(t)z(A � X )(t): ð5Þ

Here y0(t) represents a realization of the spike train generated by

an integrate-and-fire neuron obeying Eq. (3) with X (t)~0.

Our central assumption is that a cell acts approximately as a

linear filter of its inputs. Note that Eq. (5) defines a mixed point

and continuous process, but averaging y(t) in Eq. (5) over

realizations of y0 leads to the approximation in Eq. (4). Hence, Eq.

(5) is a natural generalization of Eq. (4) with the unperturbed

output of the cell represented by the point process, y0(t), instead of

the firing rate, r0.

We first use Eq. (5) to describe spontaneously evolving networks

where gi(t)~0. Equation (1) can then be rewritten as

ti _vvi~{(vi{EL,i)zy(vi)zEi
’z

ffiffiffiffiffiffiffiffi
s2

i ti

q
ji(t)z(fi(t){E fi½ �), ð6Þ

where Ei’~EizE fi½ � and E :½ � represents the temporal average.

Lindner et al. used Eq. (5) as an ansatz to study the response of

an all–to–all inhibitory network. They postulated that the spiking

output yi(t) of cell i in the network, can be approximated in the

Table 1. Notation used in the text.

Symbol Description

vi ,ti ,EL,i ,si Membrane potential, membrane time constant, leak reversal potential, and noise intensity of cell i.

Ei ,si Mean and standard deviation of the background noise for cell i.

vth,vr,tref Membrane potential threshold, reset, and absolute refractory period for cells.

y(v),VT ,DT Spike generating current, soft threshold and spike shape parameters for the IF model [25].

fi(t),gi(t) Synaptic input from other cells in the network, and external input to cell i.

tS,i ,tD,i Synaptic time constant and delay for outputs of cell i.

yi(t) Spike train of cell i.

Wij The j?i synaptic weight, proportional to the area under a single post-synaptic current for current-based synapses.

Jij (t) The j?i synaptic kernel - equals the product of the synaptic weight Wij and the synaptic filter for outputs of cell j.

Cij (t) The cross-correlation function between cells i,j defined by Cij (t)~cov(yi(tzt),yj(t)).

Nyi
(t,tzt),rij (t) Spike count for cell i, and spike count correlation coefficient for cells i,j over windows of length t.

ri ,Ai(t),C
0
ii

Stationary rate, linear response kernel and uncoupled auto-correlation function for cell ij.

Kij (t) The j?i interaction kernel - describes how the firing activity of cell i is perturbed by an input spike from cell j. It is defined by
Kij (t)~(Ai � Jij )(t).

yn
i (t),Cn

ij (t) The nth order approximation of the activity of cell i in a network which accounts for directed paths through the network graph up to length n

ending at cell i, and the cross-correlation between the nth order approximations of the activity of cells i,j.

g(t),~gg(v) ~gg(v) is the Fourier transform of g(t) with the convention

~gg(v)~F½g�(v):
Ð?
{? e{2pivtg(t)dt

doi:10.1371/journal.pcbi.1002408.t001

Figure 1. Illustrating Eq. (4). (A) The input to the post-synaptic cell is
a fixed spike train which is convolved with a synaptic kernel. (B) A
sample voltage path for the post-synaptic cell receiving the input
shown in A) in the presence of background noise. (C) Raster plot of 100
realizations of output spike trains of the post-synaptic cell. (D) The
output firing rate, r(t), obtained by averaging over realizations of the
output spike trains in C). The rate obtained using Monte Carlo
simulations (shaded in gray) matches predictions of linear response
theory obtained using Eq. (4) (black).
doi:10.1371/journal.pcbi.1002408.g001

Impact of Network Structure on Spike Correlations
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frequency domain by

~yyi(v)~~yy0
i (v)z~AAi(v)

X
j

~JJij(v)~yyj(v)

 !
,

where ~yyi~F½yi{ri� are the zero-mean Fourier transforms of the

processes yi, and ~ff ~F (f ) for all other quantities (see Table 1 for

the Fourier transform convention). The term in parentheses is the

Fourier transform of the zero-mean synaptic input, (fi(t){E fi½ �),
in Eq. (6), and ~yy0

i (v) represents a realization of the spiking output

of cell i in the absence of synaptic fluctuations from the recurrent

network (i.e assuming fi~E fi½ �). In matrix form this ansatz yields a

simple self-consistent approximation for the firing activities ~yyi

which can be solved to give

~yy(v)~(I{~KK(v)){1~yy0(v),

where the interaction matrix ~KK has entries defined by

Kij(t):(Ai � Jij)(t). When averaged against its conjugate trans-

pose, this expression yields an approximation to the full array of

cross-spectra in the recurrent network:

S~yy(v)~yy�(v)T~(I{~KK(v)){1S~yy0(v)~yy0�(v)T(I{~KK�(v)){1: ð7Þ

We next present a distinct derivation of this approximation

which allows for a different interpretation of the ansatz given by

Eq. (5). We iteratively build to the approximation in Eq. (7),

showing how this expression for the correlation structure in a

recurrent network can be obtained by taking into account the

paths through the network of increasing length.

We start with realizations of spike trains, y0
i , generated by IF

neurons obeying Eq. (6) with fi(t)~E fi½ �. This is equivalent to

considering neurons isolated from the network, with adjusted DC

inputs (due to mean network interactions). Following the

approximation given by Eq. (5), we use a frozen realization of all

y0
i to find a correction to the output of each cell, with X (t) set to

the mean-adjusted synaptic input,

X (t)~fi(t){E fi½ �:

As noted previously, the linear response kernel is sensitive to

changes in the mean input current. It is therefore important to

include the average synaptic input E fi½ � in the definition of the

effective mean input, E’i.
The input from cell j to cell i is filtered by the synaptic kernel

Jij(t). The linear response of cell i to a spike in cell j is therefore

captured by the interaction kernel Kij , defined above as

Kij(t):(Ai � Jij)(t):

The output of cell i in response to mean-adjusted input, y0
j (t){rj ,

from cell j can be approximated to first order in input strength

using the linear response correction

y1
i (t)~y0

i (t)z
X

j

(Kij � ½y0
j {rj �)(t): ð8Þ

We explain how to approximate the stationary rates, rj , in the

Methods.

The cross-correlation between the processes y1
i (t) in Eq. (8)

gives a first approximation to the cross-correlation function

between the cells,

Cij(t)&C1
ij(t)~E (y1

i (tzt){ri)(y
1
j (t){rj)

h i
~E (y0

i (tzt){ri)(y
0
j (t){rj)

h i
z
X

k

E (Kik � ½y0
k{rk�)(tzt)(y0

j (t){rj)
h i

z
X

k

E (y0
i (tzt){ri)(Kjk � ½y0

k{rk�)(t)
� �

z
X
k,l

E (Kik � ½y0
k{rk�)(tzt)(Kjl � ½y0

l {rl �)(t)
� �

which can be simplified to give

Cij(t)&C1
ij(t)~dijC

0
ii(t)z(Kij � C0

jj)(t)z

(K{
ji � C0

ii)(t)z
X

k

(Kik � K{
jk � C0

kk)(t)
ð9Þ

where we used f {(t)~f ({t). Ostojic et al. obtained an

approximation closely related to Eq. (9). [24] They first obtained

the cross-correlation between a pair of neurons which either

receive a common input or share a monosynaptic connection. This

can be done using Eq. (4), without the need to introduce the mixed

process given in Eq. (5). Ostojic et al. then implicitly assumed that

the correlations not due to one of these two submotifs could be

disregarded. The correlation between pairs of cells which were

mutually coupled (or were unidirectionally coupled with common

input) was approximated by the sum of correlations introduced by

each submotif individually.

Equation (9) provides a first approximation to the joint spiking

statistics of cells in a recurrent network. However, it captures only

the effects of direct synaptic connections, represented by the

second and third terms, and common input, represented by the

last term in Eq. (9). The impact of larger network structures, such

as loops and chains are not captured, although they may

significantly impact cross-correlations [41–43]. Experimental

studies have also shown that local cortical connectivity may not

be fully random [44–46]. It is therefore important to understand

the effects on network architecture on correlations.

We therefore propose an iterative approach which accounts for

successively larger connectivity patterns in the network [32,33].

We again start with y0
i (t), a realization of a single spike train in

isolation. Successive approximations to the output of cells in a

recurrent network are defined by

ynz1
i (t)~y0

i (t)z
X

j

(Kij � ½yn
j {rj �)(t), n§0: ð10Þ

To compute the correction to the output of a neuron, in the first

iteration we assume that its inputs come from a collection of

isolated cells: When n~1, Eq. (10) takes into account only inputs

from immediate neighbors, treating each as disconnected from the

rest of the network. The corrections in the second iteration are

computed using the approximate cell responses obtained from the

first iteration. Thus, with n~2, Eq. (10) also accounts for the

Impact of Network Structure on Spike Correlations
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impact of next nearest neighbors. Successive iterations include the

impact of directed chains of increasing length: The isolated output

from an independent collection of neurons is filtered through n

stages to produce the corrected response (See Figure 2.)

Notation is simplified when this iterative construction is recast in

matrix form to obtain

ynz1(t) ~y0(t)z(K � ½yn{r�)(t)

~y0(t)z
Pnz1

k~1

(K(k) � ½y0{r�)(t),
n§0, ð11Þ

where yn(t)~½yn
i (t)� and r~½ri� are length N column vectors, and

K(k) represents a k-fold matrix convolution of K with itself. We

define the convolution of matrices in the Methods.

The nth approximation to the matrix of cross-correlations can

be written in terms of the interaction kernels, Kij , and the

autocorrelations of the base processes y0 as

Cij(t)&Cn(t) ~E (yn(tzt){r)(yn(t){r)T
� �

~
Pn

k,l~0

(K(k) � C0 � (K{)(lT))(t), n§0,
ð12Þ

where K{(t)~K({t), X(kT)~(X(k))T , and X(k) is the k-fold

matrix convolution of X with itself.

Eq. (12) can be verified by a simple calculation. First, Eq. (11)

directly implies that

yn(t)~y0(t)z
Xn

k~1

(Kk � ½y0{r�)(t), n§0,

which we may use to find, for each n§0,

Cn(t) :E (yn(tzt){r)(yn(t){r)T
� �

~E (y0(tzt){r)(y0(t){r)T
� �

z
Pn

k~1

E (Kk � ½y0{r�)(tzt)(y0(t){r)T
� �

z
Pn

k~1

E (y0(tzt){r)(Kk � ½y0{r�)T (t)
� �

z
Pn

k,l~1

E (Kk � ½y0{r�)(tzt)(Kl � ½y0{r�)T (t)
� �

~C0(t)z
Pn

k~1

(Kk � C0)(t)z
Pn

k~1

(C0 � (K{)kT )(t)

z
Pn

k,l~1

(Kk � C0 � (K{)lT )(t):

ð13Þ

Since K0
ij(t)~dijd(t), Eq. (13) is equivalent to Eq. (12).

If we apply the Fourier transform, to Eq. (12), we find that for

each v,

Figure 2. Iterative construction of the linear approximation to
network activity. (A) An example recurrent network. (B)–(D) A
sequence of graphs determines the successive approximations to the
output of neuron 1. Processes defined by the same iteration of Eq. (11)
have equal color. (B) In the first iteration of Eq. (11), the output of
neuron 1 is approximated using the unperturbed outputs of its
neighbors. (C) In the second iteration the results of the first iteration are
used to define the inputs to the neuron. For instance, the process y1

2

depends on the base process y0
1 which represents the unperturbed

output of neuron 1. Neuron 4 receives no inputs from the rest of the
network, and all approximations involve only its unperturbed output,

y0
4 . (D) Cells 3 and 4 are not part of recurrent paths, and their

contributions to the approximation are fixed after the second iteration.
However, the recurrent connection between cells 1 and 2 implies that
subsequent approximations involve contributions of directed chains of
increasing length.
doi:10.1371/journal.pcbi.1002408.g002

Impact of Network Structure on Spike Correlations
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~
C

n
(v)~E½~yn(v)~yn�(v)� ~

Pn
k,l~0

~
K

k
(v)E½~y0(v)~y0�(v)�(~K�)l(v)

~
Xn

k~0

~
K

k
(v)

 !
E ~y0(v)~y0�(v)
� �

Xn

l~0

(
~
K
�
)l(v)

 !
,

ð14Þ

where X� denotes the conjugate transpose of the matrix X. As

before, the zero-mean Fourier transforms ~yyn
i of the processes yn

i are

defined by ~yyn
i ~F½yn

i {ri�, and ~ff ~F (f ) for all other quantities.

Defining Y(X) to be the spectral radius of the matrix X, when

Y(~KK)v1, we can take the limit n?? in Eq. (14) [47,48], to

obtain an approximation to the full array of cross-spectra

~
C(v)&~

C
?

(v)~ lim
n??

~
C

n
(v)

~(I{
~
K(v)){1~

C
0
(v)(I{

~
K
�
(v)){1:

ð15Þ

As noted previously, this generalizes the approach of Lindner et al.

[26] (also see [13]). In the limit n??, directed paths of arbitrary

length contribute to the approximation. Equation (15) therefore

takes into account the full recurrent structure of the network. Note

that Eq. (15) may be valid even when Y(~KK)w1. However, in this

case the series in Eq. (14) do not converge, and hence the

expansion of the correlations in terms of paths through the

network is invalid. We confirmed numerically that Y(~KK)v1 for all

of the networks and parameters we considered.

Finally, consider the network response to external signals, gi(t),
with zero mean and finite variance. The response of the neurons in

the recurrent network can be approximated iteratively by

ynz1~y0zK � ½yn{r�zA � g,

where A~diag(Ai) and g(t)~½gi(t)�. External signals and

recurrent synaptic inputs are both linearly filtered to approximate

a cell’s response, consistent with a generalization of Eq. (4). As in

Eq. (12), the nth approximation to the matrix of correlations is

C(t)&Cn(t)~
Xn

k,l~0

(K(k) � C0 � (K{)(lT))(t)z

Xn{1

k,l~0

(K(k) � A � Cg � (A{) � (K{)(lT))(t),

where Ch(t)~E g(tzt)g(t)T
� �

is the covariance matrix of the

external signals. We can again take the Fourier transform and the

limit n??, and solve for ~CC(v). If Y(~KK)v1,

~CC?(v)~(I{~KK(v)){1(~CC0(v)z~AA(v)~CCg(v)~AA�(v))(I{~KK�(v)){1:ð16Þ

When the signals comprising g are white (and possibly correlated)

corrections must be made to account for the change in spectrum

and response properties of the isolated cells [26,49,50] (See

Methods).

We note that Eq. (11), which is the basis of our iterative approach,

provides an approximation to the network’s output which is of

higher than first order in connection strength. This may seem at

odds with a theory that provides a linear correction to a cell’s

response, cf. Eq. (4). However, Eq. (11) does not capture nonlinear

corrections to the response of individual cells, as the output of each

cell is determined linearly from its input. It is the input that can

contain terms of any order in connection strength stemming from

directed paths of different lengths through the network.

We use the theoretical framework developed above to analyze

the statistical structure of the spiking activity in a network of IF

neurons described by Eq. (1). We first show that the cross-

correlation functions between cells in two small networks can be

studied in terms of contributions from directed paths through the

network. We use a similar approach to understand the structure of

correlations in larger all–to–all and random networks. We show

that in networks where inhibition and excitation are tuned to

exactly balance, only local interactions contribute to correlations.

When such balance is broken by a relative elevation of inhibition,

the result may be increased synchrony in the network. The theory

also allows us to obtain averages of cross-correlation functions

conditioned on connectivity between pairs of cells in random

networks. Such averages can provide a tractable yet accurate

description of the joint statistics of spiking in these networks.

The correlation structure is determined by the response properties

of cells together with synaptic dynamics and network architecture.

Network interactions are described by the matrix of synaptic filters,

J, given in Eq. (2), while the response of cell i to an input is

approximated using its linear response kernel Ai. Synaptic dynamics,

architecture, and cell responses are all combined in the matrix K,

where Kij describes the response of cell i to an input from cell j (See

Eq. (1)). The correlation structure of network activity is approxi-

mated in Eq. (15) using the Fourier transforms of the interaction

matrix, K, and the matrix of unperturbed autocorrelations C0.

Statistics of the response of microcircuits
We first consider a pair of simple microcircuits to highlight some

of the features of the theory. We start with the three cell model of

feed-forward inhibition (FFI) shown in Figure 3A [51]. The

interaction matrix, ~KK(v), has the form

~KK(v)~

0 0 0

~KKE2E1
(v) 0 ~KKE2I (v)

~KKIE1
(v) 0 0

0
B@

1
CA,

where cells are indexed in the order E1,E2,I . To simplify notation,

we omit the dependence of ~KK(v) and other spectral quantities on

v.

Note that ~KK is nilpotent of degree 3 (that is, ~KK3:0), and the

inverse of (I{~KK) may be expressed as

(I{~KK){1~(Iz~KKz~KK2)~

1 0 0

~KKE2E1
z ~KKE2I

~KKIE1
1 ~KKE2I

~KKIE1
0 1

0
B@

1
CA: ð17Þ

Substituting Eq. (17) into Eq. (15) (and noting that a similar

equation as Eq. (17) holds for (I{~KK�){1) yields an approximation

to the matrix of cross-spectra. For instance,

~CC?
E2I~

~KKE2I
~CC0

I z
~KKE2E1

~KK�IE1
~CC0

E1
z ~KKE2I D~KKIE1

D2 ~CC0
E1

~ (~AAE2
~JJE2I ) ~CC0

I|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
I

z (~AAE2
~JJE2E1

)(~AAI
~JJIE1

)� ~CC0
E1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

z (~AAE2
~JJE2E1

)D~AAI
~JJIE1

D2 ~CC0
E1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III

:

ð18Þ
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Figure 3B shows that these approximations closely match

numerically obtained cross-correlations. ~CC0
X is the uncoupled

power spectrum for cell X .

Equation (18) gives insight into how the joint response of cells in

this circuit is shaped by the features of the network. The three

terms in Eq. (18) are directly related to the architecture of the

microcircuit: Term I represents the correlating effect of the direct

input to cell E2 from cell I . Term II captures the effect of the

common input from cell E1. Finally, term III represents the

interaction of the indirect input from E1 to E2 through I with the

input from E1 to I (See Figure 3C). A change in any single

parameter may affect multiple terms. However, the individual

contributions of all three terms are apparent.

To illustrate the impact of synaptic properties on the cross-

correlation between cells E2 and I we varied the inhibitory time

constant, tI (See Figure 3B and C). Such a change is primarily

reflected in the shape of the first order term, I: Multiplication by
~JJE2I is equivalent to convolution with the inhibitory synaptic filter,

JE2I . The shape of this filter is determined by tI (See Eq. (2)), and a

shorter time constant leads to a tighter timing dependency

between the spikes of the two cells [24,52–55]. In particular,

Ostojic et al. made similar observations using a related

approximation. In the FFI circuit, the first and second order

terms, I and II, are dominant (red and dark orange, Figure 3B).

The relative magnitude of the third order term, III (light orange,

Figure 3B), is small. The next example shows that even in a simple

recurrent circuit, terms of order higher than two may be

significant.

More generally, the interaction matrices, ~KK, of recurrent

networks are not nilpotent. Consider two reciprocally coupled

excitatory cells, E1 and E2 (See Figure 4A, left). In this case,

~KK~
0 ~KKE1E2

~KKE2E1
0

 !

so that

(I{~KK){1~
1

1{ ~KKE1E2
~KKE2E1

(Iz~KK):

Equation (15) gives the following approximation to the matrix of

cross-spectra

~
C

?
~

1

j1{ ~KKE1E2
~KKE2E1

j2
(Iz

~
K)

~CC0
E1

0

0 ~CC0
E2

0
@

1
A(Iz

~
K
�
)

~
1

j1{ ~KKE1E2
~KKE2E1

j2

~CC0
E1

zj ~KKE1E2
j2 ~CC0

E2
~KK�E2E1

~CC0
E1

z ~KKE1E2
~CC0

E2

KE2E1
~CC0

E1
zK�E1E2

~CC0
E2

~CC0
E2

zjKE2E1
j2 ~CC0

E1

0
@

1
A:
ð19Þ

In contrast to the previous example, this approximation does

not terminate at finite order in interaction strength. After

expanding, the cross-spectrum between cells E1 and E2 is

approximated by

Figure 3. The relation between correlation structure and response statistics in a feed-forward inhibitory microcircuit. (A) The FFI
circuit (left) can be decomposed into three submotifs. Equation (18) shows that each submotif provides a specific contribution to the cross-
correlation between cells E2 and I . (B) Comparison of the theoretical prediction with the numerically computed cross-correlation between cells E2

and I . Results are shown for two different values of the inhibitory time constant, tI (tI ~5 ms, solid line, tI ~10 ms, dashed line). (C) The
contributions of the different submotifs in panel A are shown for both tI ~5 ms (solid) and tI ~10 ms (dashed). Inset shows the corresponding
change in the inhibitory synaptic filter. The present color scheme is used in subsequent figures. Connection strengths were +40 mV:ms for
excitatory and inhibitory connections. In each case, the long window correlation coefficient r(?) between the two cells was &{0:18.
doi:10.1371/journal.pcbi.1002408.g003
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~CC?
E1E2

~
X?

k,l~0

( ~KKE1E2
~KKE2E1

)k( ~KK�E1E2
~KK�E2E1

)l

( ~KK�E2E1
~CC0

E1
z ~KKE1E2

~CC0
E2

):

ð20Þ

Directed paths beginning at E1 and ending at E2 (or vice-versa)

are of odd length. Hence, this approximation contains only odd

powers of the kernels ~KKEiEj
, each corresponding to a directed

path from one cell to the other. Likewise, the approximate

power spectra contain only even powers of the kernels

corresponding to directed paths that connect a cell to itself

(See Figure 4A).

The contributions of different sub-motifs to the cross- and auto-

correlations are shown in Figures 4C, D when the isolated cells are

in a near-threshold excitable state (CV&0:98). The auto-

correlations are significantly affected by network interactions.

We also note that chains of length two and three (the second and

third submotifs in Figure 4A) provide significant contributions.

Earlier approximations do not capture such corrections [24].

The operating point of a cell is set by its parameters (ti,EL,i, etc.)

and the statistics of its input (Ei,si). A change in operating point

can significantly change a cell’s response to an input. Using linear

response theory, these changes are reflected in the response

functions Ai, and the power spectra of the isolated cells, ~CC0. To

highlight the role that the operating point plays in the

approximation of the correlation structure given by Eq. (15), we

Figure 4. The relation between correlation structure and response statistics for two bidirectionally coupled, excitatory cells. (A) The
cross-correlation between the two cells can be represented in terms of contributions from an infinite sequence of submotifs (See Eq. (20)). Though we
show only a few ‘‘chain’’ motifs in one direction, one should note that there will also be contributions to the cross-correlation from chain motifs in the
reverse direction in addition to indirect common input motifs (See the discussion of Figure 5). (B), (E) Linear response kernels in the excitable (B) and
oscillatory (E) regimes. (C), (F) The cross-correlation function computed from simulations and theoretical predictions with first and third order
contributions computed using Eq. (19) in the excitable (C) and oscillatory (F) regimes. (D), (G) The auto-correlation function computed from
simulations and theoretical predictions with zeroth and second order contributions computed using Eq. (19) in the excitable (D) and oscillatory (G)
regimes. In the oscillatory regime, higher order contributions were small relative to first order contributions and are therefore not shown. The
network’s symmetry implies that cross-correlations are symmetric, and we only show them for positive times. Connection strengths were 40 mV:ms.
The long window correlation coefficient r(?) between the two cells was &0:8 in the excitable regime and &0:5 in the oscillatory regime. The ISI CV
was approximately 0.98 for neurons in the excitable regime and 0.31 for neurons in the oscillatory regime.
doi:10.1371/journal.pcbi.1002408.g004
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elevated the mean and decreased the variance of background noise

by increasing Ei and decreasing si in Eq. (1). With the chosen

parameters the isolated cells are in a super-threshold, low noise

regime and fire nearly periodically (CV&0:31). After the cells are

coupled, this oscillatory behavior is reflected in the cross- and

auto-correlations where the dominant contributions are due to first

and zeroth order terms, respectively (See Figures 4F,G).

Orders of coupling interactions. It is often useful to

expand Eq. (15) in terms of powers of ~KK [31]. The term
~KKn ~CC0(~KK�)m in the expansion is said to be of order nzm.

Equivalently, in the expansion of ~CC?
ij , the order of a term refers

to the sum of the powers of all constituent interaction kernels ~KKab.

We can also associate a particular connectivity submotif with each

term. In particular, nth order terms of the form

~KKian{1
~KKan{1an{2

� � � ~KKa1j
~CC0

jj

are associated with a directed path j?a1? � � �?an{2?an{1?i

from cell j to cell i. Similarly, the term ~CC0
ii

~KK�ia1
� � � ~KK�an{2an{1

~KK�an{1 j

corresponds to a n-step path from cell i to cell j. An (nzm)th order

term of the form

~KKian{1
~KKan{1an{2

� � � ~KKa1a0
~CC0

a0a0
~KK�a0b1

� � � ~KK�bm{2bm{1
~KK�bm{1j

represents the effects of an indirect common input n steps removed

from cell i and m steps removed from cell j. This corresponds to a

submotif of the form i/an{1/ � � �/a0?b1? � � �?bn{1?j
consisting of two branches originating at cell a0. (See Figure 5,

and also Figure 6A and the discussion around Eqs. (18,20).)

Statistics of the response of large networks
The full power of the present approach becomes evident when

analyzing the activity of larger networks. We again illustrate the

theory using several examples. In networks where inhibition and

excitation are tuned to be precisely balanced, the theory shows

that only local interactions contribute to correlations. When this

balance is broken, terms corresponding to longer paths through

the network shape the cross-correlation functions. One conse-

quence is that a relative increase in inhibition can lead to elevated

network synchrony. We also show how to obtain tractable and

accurate approximation of the average correlation structure in

random networks.

A symmetric, all–to–all network of excitatory and

inhibitory neurons. We begin with an all–to–all coupled

network of N identical cells. Of these cells, NE make excitatory,

and NI make inhibitory synaptic connections. The excitatory cells

are assigned indices 1, . . . ,NE , and the inhibitory cells indices

NEz1, . . . ,N. All excitatory (inhibitory) synapses have weight

WE~
GE

NE

(WI~
GI

NI

), and timescale tE (tI ). The interaction

matrix ~KK may then be written in block form,

~KK~~AA~JJ, where ~JJ~
~JJE1NE NE

~JJI 1NE NI

~JJE1NI NE
~JJI 1NI NI

 !
:

Here 1N1N2
is the N1|N2 matrix of ones, ~JJX is the weighted

synaptic kernel for cells of class X (assumed identical within each

class), and ~AA is the susceptibility function for each cell in the

network. Although the effect of autaptic connections (those from a

cell to itself) is negligible (See Figure S2 in Text S1), their inclusion

significantly simplifies the resulting expressions.

We define ~mmE~NE
~JJE ,~mmI~NI

~JJI , and ~mm~~mmEz~mmI . Using

induction, we can show that

~KKk~~AAk~mmk{1~JJ:

Direct matrix multiplication yields

~JJ~JJ�~~mmc1NN where ~mmc~NE D~JJE D2zNI D~JJI D2,

Figure 5. The motifs giving rise to terms in the expansion of Eq. (15). (A) Terms containing only unconjugated (or only conjugated)
interaction kernels ~KKab correspond to directed chains. (B) Terms containing both unconjugated and conjugated interaction kernels ~KKab correspond to
direct or indirect common input motifs.
doi:10.1371/journal.pcbi.1002408.g005
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which allows us to calculate the powers ~KKk ~KKl� when k,l=0,

~KKk ~KKl�~~AAk(~AA�)l ~mmk{1(~mm�)l{1~mmc1NN :

An application of Eq. (15) then gives an approximation to the

matrix of cross-spectra:

~
C

?
~~CC0

X?
k,l~0

~
K

k~
K

l�
~

~CC0
~AA

1{~AA~mm

 !
~
Jz

~AA

1{~AA~mm

 !�
~
J
�
z

~AA

1{~AA~mm

����
����
2

~mmc1NNzIN

" # ð21Þ

The cross-spectrum between two cells in the network is therefore

given by

½~C?
ij �i[X ,j[Y ~

~CC0
~AA

1{~AA~mm

 !
~mmY

NY

z
~AA

1{~AA~mm

 !�
~mm�X
NX

z
~AA

1{~AA~mm

����
����
2

~mmczdij

" #
,
ð22Þ

where X ,Y[fE,Ig. In Eq. (22) the first two terms represent the

effects of all unidirectional chains originating at cell j and

terminating at cell i, and vice versa. To see this, one should

expand the denominators as power series in ~AA~mm. The third term

represents the effects of direct and indirect common inputs to the

two neurons, which can be seen by expanding this denominator as

a product of power series in ~AA~mm and (~AA~mm)�. In Figure 6A, we

highlight a few of these contributing motifs.

Interestingly, when excitation and inhibition are tuned for

precise balance (so that the mean excitatory and inhibitory

synaptic currents cancel, and ~mm~~mmEz~mmI~0). Using ~mm~0 in Eq.

(22) yields

½~CC?�i[X ,j[Y ~~CC0 ~AA
~mmY

NY

z~AA�
~mm�X
NX

zD~AAD2~mmczdij

� �
: ð23Þ

Effects of direct connections between the cells are captured by the

first two terms, while those of direct common inputs to the pair are

captured by the third term. Contributions from other paths do not

appear at any order. In other words, in the precisely balanced case only

local interactions contribute to correlations.

To understand this cancelation intuitively, consider the

contribution of directed chains originating at a given excitatory

neuron, j. For tw0, the cross-correlation function, Cij(t), is

determined by the change in firing rate of cell i at time t given a

spike in cell j at time 0. By the symmetry of the all–to–all

connectivity and stationarity, the firing of cell j has an equal

probability of eliciting a spike in any excitatory or inhibitory cell in

the network. Due to the precise synaptic balance, the postsynaptic

current generated by the elicited spikes in the excitatory

population will cancel the postsynaptic current due to elicited

spikes in the inhibitory population on average. The contribution of

other motifs cancel in a similar way.

In Figure 6B, we show the impact of breaking this excitatory-

inhibitory balance on cross-correlation functions. We increased

the strength and speed of the inhibitory synapses relative to

excitatory synapses, while holding constant, for sake of compar-

ison, the long window correlation coefficients r(?) between

excitatory pairs (note that, by symmetry, all excitatory pairs should

have the same correlation coefficient). Moreover, the degree of

network synchrony, characterized by the short window correlation

coefficients, is increased (See Figure 6B inset). Intuitively, a spike in

one of the excitatory cells transiently increases the likelihood of

spiking in all other cells in the network. Since inhibition in the

network is stronger and faster than excitation, these additional

spikes will transiently decrease the likelihood of spiking in twice

removed cells.

Linear response theory allows us to confirm this heuristic

observation, and quantify the impact of the imbalance on second

order statistics. Expanding Eq. (22) for two excitatory cells to

second order in coupling strength, we find

~CC?
EiEj

~~CC0 ~AA
~mmE

NE

z~AA�
~mm�E
NE

zj~AAj2~mmcz
~AA2~mm

~mmE

NE

z(~AA�)2~mm�
~mm�E
NE

zdij

� �
zO(jj~Kjj3):

ð24Þ

Compared to the balanced case, there is no longer a complete

cancellation between contributions of chains involving excitatory

and inhibitory cells, and the two underlined terms appear as a

result (compare with Eq. (23)). These terms capture the effects of

Figure 6. All–to–all networks and the importance of higher order motifs. (A) Some of the submotifs contributing to correlations in the all–
to–all network. (B) Cross-correlations between two excitatory cells in an all–to-all network (NE~80,NI ~20) obtained using Eq. (21) (Solid – precisely
tuned network with ~mm:0 [GE~{GI ~140mVms,tE~tI~10ms], dashed – non-precisely tuned network with ~mm=0 [GE~168mVms,GI ~{210mVms,
tE~10ms,tI ~5ms]). (C) Comparison of first and second order contributions to the cross-correlation function in panel A in the precisely tuned (left) and
non-precisely tuned (right) network. In both cases, the long window correlation coefficient r(?) was 0.05.
doi:10.1371/journal.pcbi.1002408.g006
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all length two chains between cells Ei or Ej , starting at one and

terminating at the other. The relative strengthening of inhibition

implies that chains of length two provide a negative contribution to

the cross-correlation function at short times (cf. [56], see the

dashed orange lines in Figure 6C). Additionally, the impact of

direct common input to cells Ei and Ej on correlations is both

larger in magnitude (because we increased the strength of both

connection types) and sharper (the faster inhibitory time constant

means common inhibitory inputs induce sharper correlations).

These changes are reflected in the shape of the second order,

common input term D~AAD2~mmc in Eq. (24) (see dotted orange lines in

Figure 6C).

In sum, unbalancing excitatory and inhibitory connections via

stronger, faster inhibitory synapses enhances synchrony, moving a

greater proportion of the covariance mass closer to t~0 (See

Figure 6B). To illustrate this effect in terms of underlying

connectivity motifs, we show the contributions of length two

chains and common input in both the precisely tuned and non-

precisely tuned cases in Figure 6C. A similar approach would

allow us to understand the impact of a wide range of changes in

cellular or synaptic dynamics on the structure of correlations

across networks.

Random, fixed in-degree networks of homogeneous

excitatory and inhibitory neurons. Connectivity in cortical

neuronal networks is typically sparse, and connection probabilities

can follow distinct rules depending on area and layer [57]. The

present theory allows us to consider arbitrary architectures, as we

now illustrate.

We consider a randomly connected network of NE excitatory and

NI inhibitory cells coupled with probability p. To simplify the

analysis, every cell receives exactly pNE excitatory and pNI

inhibitory inputs. Thus, having fixed in-degree (that is, the number

of inputs is fixed and constant across cells), each cell receives an

identical level of mean synaptic input. In addition, we continue to

assume that cells are identical. Therefore, the response of each cell

in the network is described by the same linear response kernel. The

excitatory and inhibitory connection strengths are GE=(pNE) and

GI=(pNI ), respectively. The timescales of excitation and inhibition

may differ, but are again identical for cells within each class.

The approximation of network correlations (Eq. (15)) depends

on the realization of the connectivity matrix. For a fixed

realization, the underlying equations can be solved numerically

to approximate the correlation structure (See Figure 7A). How-

ever, the cross-correlation between a pair of cells of given types has

a form which is easy to analyze when only leading order terms in

1=N are retained.

Specifically, the average cross-spectrum for two cells of given

types is (See Section 1 in Text S1)

Figure 7. Correlations in random, fixed in-degree networks. (A) A comparison of numerically obtained excitatory-inhibitory cross-correlations
to the approximation given by Eq. (26). (B) Mean and standard deviation for the distribution of correlation functions for excitatory-inhibitory pairs of
cells. (Solid line – mean cross-correlation, shaded area – one standard deviation from the mean, calculated using bootstrapping in a single network
realization). (C) Mean and standard deviation for the distribution of cross-correlation functions conditioned on cell type and first order connectivity
for a reciprocally coupled excitatory-inhibitory pair of cells. (Solid line – mean cross-correlation function, shaded area – one standard deviation from
the mean found by bootstrapping). (D) Average reduction in L2 error between cross-correlation functions and their respective first-order conditioned
averages, relative to the error between the cross-correlations and their cell-type averages. Blue circles give results for a precisely tuned network, and
red squares for a network with stronger, faster inhibition. Error bars indicate two standard errors above and below the mean. GE ,GI ,tE ,tI for panels
A-C are as in the precisely tuned network of Figure 6, and the two networks of panel D are as in the networks of the same figure.
doi:10.1371/journal.pcbi.1002408.g007
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~mmY
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~AA
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,

ð25Þ

when i=j. This shows that, to leading order in 1=N, the mean

cross-spectrum between two cells in given classes equals that in the

all–to–all network (see Eq. (22)). Therefore our previous discussion

relating network architecture to the shape of cross-correlations in

the all–to–all network extends to the average correlation structure

in the random network for large N.

Pernice et al. [31] derived similar expressions for the correlation

functions in networks of interacting Hawkes processes [58,59], which

are linear, self-exciting point processes with history-dependent

intensities. They assumed that either the network is regular (i.e.,

both in- and out-degrees are fixed) or has a sufficiently narrow

degree distribution. Our analysis depends on having fixed in-

degrees, and we do not assume that networks are fully regular.

Both approaches lead to results that hold approximately (for large

enough N) when the in-degree is not fixed.

Average correlations between cells in the random

network conditioned on first order connectivity. As

Figure 7B shows there is large variability around the mean

excitatory-inhibitory cross-correlation function given by the

leading order term of Eq. (25). Therefore, understanding the

average cross-correlation between cells of given types does not

necessarily provide much insight into the mechanisms that shape

correlations on the level of individual cell pairs. Instead, we

examine the average correlation between a pair of cells

conditioned on their first order (direct) connectivity.

We derive expressions for first order conditional averages

correct to O(1=N2) (See Section 2 in Text S1). The average cross-

spectrum for a pair of cells with indices i=j, conditioned on the

value of the direct connections between them is

E
~
C

?
ij j

~
Jij ,

~
Jji

n o
i[X ,j[Y

~

~CC0 ~AA~
Jijz~AA�~J

�
jiz

~AA2~mm

1{~AA~mm

 !
~mmY

NY

z
~AA2~mm

1{~AA~mm

 !�
~mm�X
NX

z
~AA

1{~AA~mm

����
����
2

~mmc

" #

zO(1=N2):

ð26Þ

Here we set ~JJij~0 if we condition on the absence of a connection

j?i, and ~JJij~~JJY=p if we condition on its presence. The term ~JJji is

set similarly.

Although Eq. (26) appears significantly more complicated than

the cell-type averages given in Eq. (25), they only differ in the

underlined, first order terms. The magnitude of expected

contributions from all higher order motifs is unchanged and

coincides with those in the all–to–all network.

Figure 7C shows the mean cross-correlation function for

mutually coupled excitatory-inhibitory pairs. Taking into account

the mutual coupling significantly reduces variability (Compare

with Figure 7B). To quantify this reduction, we calculate the mean

reduction in variability when correlation functions are computed

conditioned on the connectivity between the cells. For a single

network, the relative decrease in variability can be quantified using

merror~
1

NT

X
(i,j)[T
i w j

DDCij(t){CFOC
T (t)DD2

DDCij(t){CCT
T (t)DD2

,

where T represents pairs of cells of a given type and connection (in

the present example these are reciprocally coupled excitatory-

inhibitory pairs), NT is the number of pairs of that type in the

network, CCT
T (t) is the leading order approximation of average

correlations given only the type of cells in T (as in Eq. (25)), and

CFOC
T (t) the leading order approximation to average correlations

conditioned on the first order connectivity of class T (as in Eq.

(26)). We make use of the norm DD:DD2 defined by DDf DD2~
Ð

Df D2
	 
1=2

.

Figure 7D shows merror averaged over twenty networks. In

particular, compare the reduction in variability when conditioning

on bidirectional coupling between excitatory-inhibitory pairs

shown in Figures 7B,C, with the corresponding relative error in

Figure 7D (circled in red).

Discussion

We have extended and further developed a general theoretical

framework that can be used to describe the correlation structure in

a network of spiking cells. The application of linear response

theory allows us to find tractable approximations of cross-

correlation functions in terms of the network architecture and

single cell response properties. The approach was originally used

to derive analytical approximations to auto- and cross-spectra in

an all–to–all inhibitory network in order to study the population

response of the electrosensory lateral line lobe of weakly electric

fish [26]. The key approximation relies on the assumption that the

activity of cells in the network can be represented by a mixed point

and continuous stochastic process, as given in Eq. (9). This

approximation may be viewed as a generalization of classic

Linear-Poisson models of neural spiking: the crucial difference is

the replacement of the stationary firing rate by a realization of an

integrate-and-fire spiking process. This allows for the retention of

the underlying IF spiking activity while additionally posing that

neurons act as perfect linear filters of their inputs. An iterative

construction then leads to the expressions for approximate cross-

correlations between pairs of cells given by Eq. (15).

The linear response framework of Lindner et al. [26] was

extended by Marinazzo et al. [60] to somewhat more complex

networks, and compared with other studies in which networks

exhibit collective oscillations. In addition, other works [13,61,62]

used linear response techniques to study information in the

collective response of cells in a network. More recently, Ostojic et

al. [24] obtained formulas for cross-correlations given in Eq. (9),

which correspond to the first step in the iterative construction.

Their approach captures corrections due to direct coupling (first

order terms) and direct common input (second order terms

involving second powers of interaction kernels; see also [49,63]).

Our approach can be viewed as a generalization that also accounts

for length two directed chains, along with all higher order

corrections. As Figure 4 illustrates, these additional terms can be

significant. The present approach also allows us to calculate

corrected auto-correlations, in contrast with that of Ostojic et al.

Our work is also closely related to that of Pernice et al. [31],

who analyzed the correlation structure in networks of interacting

Hawkes processes [58,59]. Both studies represent correlations

between cell pairs in terms of contributions of different

connectivity motifs. However, our methods also differ: while their

expressions are exact for Hawkes processes, Pernice et al. did not

compare their results to those obtained using physiological models,

and did not account for the response properties of individual cells

(though it is possible that both can be achieved approximately by

using appropriate kernels for the Hawkes processes). Moreover, for

simplicity Pernice et al. examined only ‘‘total’’ spike count

covariances, which are the integrals of the cross-correlation

Impact of Network Structure on Spike Correlations
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functions. However, as they note, their approach can be extended

to obtain the temporal structure of cross-correlations. Similarly,

Toyoizumi et al. [64] derive expressions for cross-correlations in

networks of interacting point process models in the Generalized

Linear Model (GLM) class. These are very similar to Hawkes

processes, but feature a static nonlinearity that shapes the spike

emission rate.

To illustrate the power of the present linear response theory in

analyzing the factors that shape correlations, we considered a

number of simple examples for which the approximation given by

Eq. (15) is tractable. We showed how the theory can be used both

to gain intuition about the network and cell properties that shape

correlations, and to quantify their impact. In particular, we

explained how only local connections affect correlations in a

precisely tuned all–to–all network, and how strengthening

inhibition may synchronize spiking activity. In each case, we use

comparisons with integrate-and-fire simulations to show that linear

response theory makes highly accurate predictions.

It may be surprising that linear response theory can be used to

provide corrections to cross-correlations of arbitrary order in

network connectivity. The key to why this works lies in the

accuracy of the linearization. A more accurate approximation

could be obtained by including second and higher order

corrections to the approximate response of a single cell, as well

as corrections to the joint response. While including such terms is

formally necessary to capture all contributions of a given order in

network connectivity [32,33], the success of of linear response

theory suggests that they are small for the cases at hand. In short,

the present approximation neglects higher-order corrections to the

approximate response of individual cells, along with all corrections

involving joint responses, but accounts for paths through the

network of arbitrary length.

As expected from the preceding discussion, simulations suggest

that, for IF neurons, our approximations become less accurate as

cells receive progressively stronger inputs. The physical reasons for

this loss of accuracy could be related to interactions between the

‘‘hard threshold’’ and incoming synaptic inputs with short

timescales. Additionally, while the theory will work for short

synaptic timescales, it will improve for slower synaptic dynamics,

limiting towards being essentially exact in the limit of arbitrarily

long synaptic time constants (note the improvement in the

approximation for the FFI circuit for the slower timescale

exhibited in Figure 3). Another important factor is background

noise, which is known to improve the accuracy of the linear

description of single cell responses. We assume the presence of a

white noise background, although it is possible to extend the

present methods to colored background noise [25,65].

We found that linear response theory remains applicable in a

wide range of dynamical regimes, including relatively low noise,

superthreshold regimes where cells exhibit strong oscillatory

behavior. Moreover, the theory can yield accurate approximations

of strong correlations due to coupling: for the bidirectionally

coupled excitatory circuit of Figure 4, the approximate cross-

correlations match numerically obtained results even when

correlation coefficients are large (rE1E2
(?)&0:8 in the excitable

regime, &0:5 in the oscillatory regime). Additional discussion of

the limits of applicability of linear response to the computation of

correlations in networks can be found in the Supplementary

Information. There, we show that the approximation is valid over

a range of physiological values in the case of the all-to-all network,

and that the theory gives accurate predictions in the presence of

low firing rates (see Figures S3, S4 in Text S1).

The limits of linear response approximations of time-dependent

firing activity and correlations have been tested in a number of

other studies. Ostojic and Brunel [66] examined this accuracy in

the relatively simple case of a neuron receiving filtered Gaussian

noise in addition to a white background. Chacron et al. [61] noted

that linear response approaches applied to networks of perfect

integrators begin to display significant errors at larger connection

strengths. Marinazzo et al. [60] remarked on the errors induced by

network effects in linear response approximations to correlations

in a delayed feedback loop. In particular, these errors were

attributed to network effects such as synchrony in the excitatory

population. The authors noted that such activity can not be

correctly modeled by a linear approach.

Although we have demonstrated the theory using networks of

integrate–and–fire neurons, the approach is widely applicable.

The linear response kernel and power spectrum for a general

integrate and fire neuron model can be easily obtained [29]. In

addition, it is also possible to obtain the rate, spectrum, and

susceptibility for modulation of the mean conductance in the case

of conductance-based (rather than current-based) synapses (See

[67] and Section 3 in Text S1). As the linear response kernel is

directly related to the spike triggered average [24,30], the

proposed theoretical framework should be applicable even to

actual neurons whose responses are characterized experimentally.

The possibilities for future applications are numerous. For

example, one open question is how well the theory can predict

correlations in the presence of adaptive currents [67]. In addition,

the description of correlations in terms of architecture and

response properties suggests the possibility of addressing the

difficult inverse problem of inferring architectural properties from

correlations [22–24,64]. Ostojic et al. applied linear response

methods to the latter problem. It is our hope that the present

approach will prove a valuable tool in moving the computational

neuroscience community towards a more complete understanding

of the origin and impact of correlated activity in neuronal

populations.

Methods

Measures of spike time correlation
We quantify dependencies between the responses of cells in the

network using the spike train auto- and cross-correlation functions

[39]. For a pair of spike trains, yi(t),yj(t), the cross-correlation

function Cij(t) is defined as

Cij(t)~cov yi(tzt),yj(t)
	 


:

The auto-correlation function Cii(t) is the cross-correlation

between a spike train and itself, and C(t) is the matrix of cross-

correlation functions. Denoting by Nyi
(t1,t2)~

Ð t2
t1

yi(s)ds the

number of spikes over a time window ½t1,t2�, the spike count

correlation, rij(T), over windows of length t is defined as,

rij(T)~
cov Nyi

(t,tzT),Nyj
(t,tzT)

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Nyi

(t,tzT)
	 


var Nyj
(t,tzT)

� �r :

We assume stationarity of the spiking processes (that is, the network

has reached a steady state) so that rij(T) does not depend on t. We

also use the total correlation coefficient rij(?)~ limT?? rij(T) to

characterize dependencies between the processes yi and yj over

arbitrarily long timescales.

The spike count covariance is related to the cross-correlation

function by [7,68]
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cov Nyi
(t,tzT),Nyj

(t,tzT)
� �

~

ðT

{T

Cij(t)(T{DtD)dt:

We can interpret the cross-correlation as the conditional

probability that cell i spikes at time tzt given that cell j spiked

at time t. The conditional firing rate,

Hij(t)~ lim
Dt?0

1

Dt
Pr Nyi

(tzt,tztzDt)w0DNyj
(t,tzDt)w0

� �
,

is the firing rate of cell i conditioned on a spike in cell j at t units of

time in the past, and Cij(t)~rj(Hij(t){ri):
Define the Fourier transform of a function f (t) as

~ff (v)~F½f (t)�(v):
Ð?
{? f (t)e{2pivtdt: We will often make use

of the cross-spectrum between the output of cells i,j, given by
~CCij(v)~E ~yyi(v)~yy�j (v)

h i
, which is the Fourier transform of the

cross-correlation function of cells i,j. The power spectrum ~CCii(v) is

the cross-spectrum between a cell and itself, and is the Fourier

transform of the auto-correlation function.
Numerical methods. Simulations were run in C++, and the

stochastic differential equations were integrated with a standard Euler

method with a time-step of 0.01 ms. General parameter values were

as follows: ti~20ms, EL,izEi~{54mV, si~
ffiffiffiffiffi
12
p

mV, vth~
20mV, vr~{54mV, tref ~2ms, VT~{52:5mV, DT~1:4mV,

tE~10ms, tI~5ms, tD,i~1ms. Marginal statistics (firing rates,

uncoupled power spectra and response functions) were obtained

using the threshold integration method of [29] in MATLAB. We

have posted a package of code which contains examples of all the

numerical methods used in this paper (both simulations and theory) at

http://www.math.uh.edu/,josic/myweb/software.html. Additional

code is available upon request.
Calculation of stationary rates in a recurrent

network. The stationary firing rate of an IF neuron can be

computed as a function of the mean and intensity of internal noise

(Ei,si) and other cellular parameters (ti,ELi
, etc…) [69]. Denote

the stationary firing rate of cell i in the network by ri, and by

ri,0(E,s) the stationary firing rate in the presence of white noise

with mean E and variance s2. We keep the dependencies on other

parameters are implicit. The stationary rates, ri, in the recurrent

network without external input are determined self-consistently by

ri~ri,0(Ei
’,si)~ri,0(Eiz

X
j

Wijrj ,si) i~1, . . . ,N ,

where we used E fi½ �~
P

j WijE yj

� �
~
P

j Wij rj . This equality

holds because the synaptic kernels, Jij , were normalized to have

area Wij . These equations can typically be solved by fixed-point

iteration.

Note that this provides an effective mean input, Ei’, to each cell,

but does not give adjustments to the variance, si. We assume that

the major impact of recurrent input is reflected in Ei’, and ignore

corrections to the cell response involving higher order statistics of

the input. This approach is valid as long as fluctuations in the

recurrent input to each cell are small compared to si, and may

break down otherwise [27].
Correction to statistics in the presence of an external

white noise signals. Expression (16) can be used to compute

the statistics of the network response to inputs gi(t) of finite

variance. As noted by [26], when inputs have infinite variance

additional corrections are necessary. As a particular example,

consider the case where the processes are correlated white noise,

i.e., when gi(t)~
ffiffiffi
c
p

xc(t)z
ffiffiffiffiffiffiffiffiffiffi
1{c
p

xi(t), where xc,xi are

independent white noise processes with variance se. Then each

gi is also a white noise process with intensity se
i , but

E gi(tzt)gj(t)
� �

~½dijd(t)z(1{dij)cd(t)�se
i . The firing rate of

cell i in response to this input is ri~r0(Ei ’,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(si)

2z(se
i )2

q
), and the

point around which the response of the cell is linearized needs to

be adjusted.

Finally, we may apply an additional correction to the linear

response approximation of autocorrelations. For simplicity, we

ignore coupling in Eq. (16) (so that ~KK~0). Linear response predicts

that ~CCii(v)~~CC0
ii(v; s2

i )z(se
i )2D~AAi(v)D2, where we have introduced

explicit dependence on s2
i , the variance of white noise being

received by an IF neuron with power spectrum ~CC0
ii(v; s2

i ), in the

absence of the external signal. The approximation may be

improved in this case by making the following substitution in

Eq. (16) [26,50]:

~CC0
ii(v; s2

i )z(se
i )2D~AAi(v)D2 ? ~CC0

ii(v; s2
i z(se

i )2)

The response function A should be adjusted likewise.

Convolution of matrices. Let X(t)~½Xij(t)� and

Y(t)~½Yij(t)� be n1|n2 and n2|n3 matrices of functions,

respectively. We define the convolution of matrices (X � Y)(t) to

be the n1|n3 matrix of functions with entries defined by

(X � Y)ij(t)~
X

k

(Xik � Ykj)(t):

Expectations and convolutions commute for matrix convolutions

as matrix expectations are taken entry-wise. Each entry of a matrix

convolution is a linear combination of scalar convolutions which

commute with expectations. Additionally, we adopt the

convention that the zeroth power of the interaction matrix,

K0
ij(t), is the diagonal matrix with K0

ij(t)~d(t) when i~j. Hence

K0
ij(t) acts as the identity matrix under matrix convolution.

Supporting Information

Text S1 Supplementary information file containing derivations

and additional content, such as an exploration of the error of the

theory. Supporting information figures were included in this file

(and not separately).

(PDF)
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between neural spike trains increases with firing rate. Nature 448: 802–806.

50. Vilela R, Lindner B (2009) Comparative study of different integrate-and-fire

neurons: Spontaneous activity, dynamical response, and stimulus-induced
correlation. Phys Rev E 80: 031909.

51. Kremkow J, Perrinet L, Masson G, Aertsen A (2010) Functional consequences of
correlated excitatory and inhibitory conductances in cortical networks. J Comp

Neurosci 28: 579–594.
52. Veredas F, Vico F, Alonso J (2005) Factors determining the precision of the

correlated firing generated by a monosynaptic connection in the cat visual

pathway. J Physiol 567: 1057.
53. Kirkwood P (1979) On the use and interpretation of cross-correlations

measurements in the mammalian central nervous system. J Neurosci Meth 1:
107.

54. Fetz E, Gustafsson B (1983) Relation between shapes of post-synaptic potentials

and changes in firing probability of cat motoneurones. J Physiol 341: 387.
55. Herrmann A, Gerstner W (2001) Noise and the PSTH response to current

transients: I. general theory and application to the integrate-and-fire neuron.
J Comput Neurosci 11: 135–151.

56. Vreeswijk C, Abbott L, Bard Ermentrout G (1994) When inhibition not
excitation synchronizes neural firing. J Comput Neurosci 1: 313–321.

57. Shepherd G (1991) Foundations of the Neuron Doctrine. Oxford: Oxford

University Press. 352 p.
58. Hawkes A (1971) Spectra of some self-exciting and mutually exciting point

processes. Biometrika 58: 83–90.
59. Hawkes A (1971) Point spectra of some mutually exciting point processes. J Roy

Stat Soc B Met 33: 438–443.

60. Marinazzo D, Kappen H, Gielen S (2007) Input-driven oscillations in networks
with excitatory and inhibitory neurons with dynamic synapses. Neural Comput

19: 1739–1765.
61. Chacron M, Longtin A, Maler L (2005) Delayed excitatory and inhibitory

feedback shape neural information transmission. Phys Rev E 72: 051917.
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