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Immune responses are arising as a common feature of several neurodegenerative
diseases, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Amyotrophic
Lateral Sclerosis (ALS), but their role as either causative or consequential remains
debated. It is evident that there is local inflammation in the midbrain in PD patients
even before symptom onset, but the underlying mechanisms remain elusive. In this
mini-review, we discuss this midbrain inflammation in the context of PD and argue that
cellular senescence may be the cause for this immune response. We postulate that
to unravel the relationship between inflammation and senescence in PD, it is crucial
to first understand the potential causative roles of various cell types of the midbrain
and determine how the possible paracrine spreading of senescence between them
may lead to observed local immune responses. We hypothesize that secretion of pro-
inflammatory factors by senescent cells in the midbrain triggers neuroinflammation
resulting in immune cell-mediated killing of midbrain dopaminergic (DA) neurons in PD.

Keywords: Parkinson’s disease, cellular senescence, dopamine neurons, immune response, neuroinflammation,
aging

INTRODUCTION

Parkinson’s disease (PD) is an age-related disorder that is characterized by the progressive loss
of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain,
which results in well-characterized motor symptoms (Bernheimer et al., 1973; Fearnley and Lees,
1991; de Rijk et al., 2000; Strickland and Bertoni, 2004). In addition to age, PD risk factors
include environmental toxins, drugs, and pesticides, and genomic mutations (Emamzadeh and
Surguchov, 2018). Although the cause of sporadic PD is unknown, it has been hypothesized
that pre-symptomatic midbrain inflammation plays a critical role (Riessland, 2020). DA neurons
of the SNpc are particularly vulnerable because of their high levels of reactive dopamine, high
energy demand and mitochondrial turnover, calcium handling, and their large axonal arborizations
(Guzman et al., 2010; Pacelli et al., 2015; Riessland et al., 2017). Recently, it has been shown that
these neurons are particularly prone to enter a state of cellular senescence (Riessland et al., 2019).
In line with this discovery, it has been reported that both mitotic and post-mitotic cells in the
brain have the potential to become senescent, including neurons, astrocytes, microglia, endothelial
cells, and oligodendrocyte progenitor cells (Minamino et al., 2002; Streit et al., 2004; Bitto et al.,
2010; Jurk et al., 2012; Zhang et al., 2019). Cellular senescence can be described as a multi-
step evolution, with an initial transition into stable cell-cycle arrest characterized by prolonged
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p21 and/or p16 activity. Activation of p16 or p21 is usually
driven by activation of the DNA damage response machinery
(Yoon et al., 2022). Progression into a full state of senescence
includes lamin B1 downregulation, triggering both local and
global modifications in chromatin methylation (Hayflick and
Moorhead, 1961; Kurz et al., 2000; Beauséjour et al., 2003;
Shimi et al., 2011; van Deursen, 2014). Additional phenotypes
of senescent cells include the senescence-associated secretory
phenotype (SASP), dysfunctional mitochondria and lysosomes,
elevated levels of reactive oxygen species (ROS), lipofuscin
accumulation, and senescence-associated β-galactosidase (SA-
β-gal) (Martínez-Zamudio et al., 2017). These features are
characteristic of both mitotic and post-mitotic senescent cells and
their combined presence is widely used for defining senescent
cells in vitro and in vivo. The SASP involves the secretion of
growth factors, chemokines, and cytokines into the extracellular
space acting to modify the microenvironment, trigger immune
surveillance, and mediate a paracrine transmission of senescence
(Rodier and Campisi, 2011; Acosta et al., 2013; Tasdemir and
Lowe, 2013; Hohn et al., 2017). With age, there is evidence of a
declined immune response to senescence where these senescent
cells are less efficiently removed by the adaptive and innate
immune systems (van Deursen, 2014). Interestingly, there is
increasing evidence that the adaptive and innate immune systems
are involved in the progression of PD. Activated microglia
directly contribute to the loss of DA neurons in the midbrain in
PD (Qian and Flood, 2008) and activated cells of the adaptive
immune system are present in postmortem PD brain tissues
(Garretti et al., 2019). Although brain senescence in PD is evident,
it remains unclear how the cellular senescence of DA neurons
relates to the inflammation seen in PD. We hypothesize that the
cellular senescence of DA neurons itself is the cause of the local
inflammation in the midbrain observed in PD. In order to better
understand the relationship between inflammation and cellular
senescence, it is important to characterize the various cell types at
play and their potential role in the neuroinflammation observed
in the midbrain of PD patients.

SENESCENCE ASSOCIATED
SECRETORY PHENOTYPE

Senescence associated secretory phenotype (SASP) expression
by senescent cells reinforces senescence, activates immune
surveillance, and has pro-tumorigenic properties (Acosta et al.,
2013). This phenotype of senescent cells is characterized by
the secretion of soluble factors such as interleukin-6 (IL-
6), interleukin-1 (IL-1), and chemokine ligand 1 (CXCL1),
secreted proteases including matrix metalloproteinases (MMPs),
and secreted insoluble proteins such as extracellular matrix
components (Coppé et al., 2010; Acosta et al., 2013). Interestingly,
proinflammatory cytokines are elevated in the blood of PD
patients and their levels correlate with clinical stage of the disease
(Garretti et al., 2019). The SASP develops dynamically over time
and has been shown to promote cell proliferation, stimulate
cell motility, regulate cell differentiation, and affect leukocyte
infiltration, causing inflammation. In addition, the SASP has

been shown to induce a paracrine spreading of senescence in
normal cells both in culture and in mouse models of oncogene
induced senescence (OIS) in vivo (Acosta et al., 2013). There
are multiple SASP components that are known to mediate
this paracrine senescence, including vascular endothelial growth
factor (VEGF), chemokine ligand 2 (CCL2), and chemokine
ligand 20 (CCL20). Expression of the SASP is controlled by
inflammasome-mediated IL-1 signaling, which is activated in
senescent cells (Acosta et al., 2013). Other SASP factors are
more closely associated with the reinforcement of senescence,
including insulin like growth factor binding protein 7 (IGFBP-7),
plasminogen activator inhibitor 1 (PAI-1), IL-6, and chemokine
receptor 2 (CXCR2)-binding chemokines such as interleukin-8
(IL-8) or CXCL1. The SASP contributes to the surveillance and
elimination of senescent cells by the immune system (Acosta
et al., 2013). It has been shown that p21, a potent cyclin-
dependent kinase inhibitor that regulates cell proliferation,
plays an important role in SASP expression which can induce
immunosurveillance of senescent cells to recruit macrophages as
a first line of defense (Sturmlechner et al., 2021). In terms of
PD, this could play a role in loss of DA neurons in the SNpc.
Based on the upregulation of CCL2, interleukin-17 receptor
(IL17-R), and major histocompatibility complex (MHC) genes
human leukocyte antigen B (HLA-B) and C (HLA-C) in senescent
midbrain DA neurons (Riessland, 2020), it is plausible that the
SASP of senescent midbrain DA neurons in PD patients triggers
both an adaptive and innate immune response. Specifically, CCL2
has been shown to attract T-cells which actively kill DA neurons
that express the IL17-R in PD patients via the interleukin-17
(IL-17) pathway (Garretti et al., 2019).

NEURONS

In contrast to the classic view of senescence as an irreversible
cell-cycle arrest mechanism, senescence in post-mitotic neurons
has become evident (Jurk et al., 2012; van Deursen, 2014). The
production of proinflammatory cytokines and chemokines are
a common feature of senescent cells, regardless of the stressor
or mechanism that induces the senescence (van Deursen, 2014).
The SNpc of the midbrain contains DA neurons which have
been shown to become senescent in PD (Riessland et al., 2019)
and have been characterized to express various markers of
cellular senescence. This neuronal senescence can be mediated
by the loss of transcription factor and PD risk factor special
AT-rich sequence-binding protein 1 (SATB1), which binds to
and represses CDKN1A, the gene encoding p21 protein in DA
neurons. Neurons in the PD-vulnerable brain region the SNpc
express high levels of SATB1, whereas ablation of SATB1 (SATB1-
KO) was shown to induce neuronal senescence in midbrain
DA neurons (Riessland et al., 2019). Elimination of SATB1 in
cortical neurons did not induce senescence, suggesting a cell type-
specific role of SATB1. Accordingly, removal of p21 was shown
to robustly reduce inflammation (Jurk et al., 2012), suggesting
that neuronal senescence may contribute to the ‘inflamm-aging’
seen in PD. SATB1-knockdown in vivo led to p21 elevation and
consequently to a local immune response (Riessland et al., 2019).
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Interestingly, specific sub-types of neurons have also been found
to enter a state of cellular senescence in Alzheimer’s disease (AD)
(Musi et al., 2018; Dehkordi et al., 2021).

MICROGLIA

Microglia are glial cells that function as macrophages in
the central nervous system as a part of the innate immune
response (Yang et al., 2010). In the normal aging brain there
is a constant, low level of chronic inflammation which has
been termed ‘inflamm-aging’ (Franceschi et al., 2000; Chinta
et al., 2015). Chronic inflammation is characterized by the
production of cytokines and has been shown to act as both
an intrinsic and extrinsic inducer of senescent phenotypes in
microglia (Franceschi et al., 1999; Yu et al., 2012; Caldeira
et al., 2014; Sah et al., 2021). With age, there is evidence
for age-associated microglia senescence which includes both
morphological changes and an inflammatory profile shift (Luo
et al., 2010). The production of inflammatory products by
microglia has been shown to contribute to DA neuron death
in PD (Qian and Flood, 2008). There is evidence for an
overactivation of microglia in PD patients, which could point
to microglia being primed to become neurotoxic (Luo et al.,
2010). Lipopolysaccharide (LPS) injections, which are widely
used to stimulate an immune response, have been shown
to lead specifically to SNpc neurodegeneration with a loss
of DA neurons. This LPS-induced neurotoxicity and region-
specific DA neuron susceptibility was positively correlated
with microglia density, which was highest in the SNpc
(Kim et al., 2000). α-Synuclein accumulation has been shown
to lead to a robust inflammatory activation of microglia
(Grozdanov et al., 2019) and interaction between microglia and
α-synuclein has been suggested to play a role in the propagation
of α-synuclein aggregation in PD (Sanchez-Guajardo et al.,
2013; Tansey et al., 2022). Additionally, SATB1-knockdown
senescent midbrain DA neurons, as a model of in vivo
senescent cells, were shown to be actively removed by microglia
(Riessland et al., 2019).

ASTROCYTES

In addition to microglia, astrocyte senescence in aging has been
clearly demonstrated (Pertusa et al., 2007; Bitto et al., 2010;
Chinta et al., 2015). Specifically, senescent astrocytes have been
found in PD brain tissue (Chinta et al., 2018). In response
to treatment with paraquat (PQ), a well-known environmental
toxin that has been correlated with increased risk for developing
PD, astrocyte senescence was shown to be induced in vitro
and in vivo. This astrocyte senescence included a SASP and
depletion of these senescent cells protected against the PQ-
induced neuropathology (Chinta et al., 2018). Further support for
a role of astrocyte senescence in neurodegeneration comes from
AD research, where senescent astrocytes have been observed in
AD and have been shown to be triggered by β-amyloid and to
produce inflammatory cytokines (Bhat et al., 2012).

OLIGODENDROCYTES

Cellular senescence is apparent in astrocytes, microglia,
and neurons of the midbrain which are neighbors to
oligodendrocytes. There is accumulating evidence of senescence-
like features in oligodendrocytes and their progenitors (Sams,
2021) with increasing age, but a clear demonstration of
oligodendrocyte senescence in PD has yet to be shown.
Senescence of oligodendrocytes has been reported in white
matter lesions which are common in brain aging and
are associated with dementia (Al-Mashhadi et al., 2015).
Oligodendrocyte progenitor cells exhibit a senescence-like
phenotype characterized by upregulated p21, p16, and SA-β-gal
activity in AD mouse models as well as in the brains of patients
with AD (Zhang et al., 2019).

ENDOTHELIAL CELLS

Endothelial cell senescence is evident in the aging and diseased
brain (Nation et al., 2019; Graves and Baker, 2020), contributing
to an age-dependent uncoupling of the neurovascular unit and
impairment of the integrity of the blood brain barrier (BBB).
This leads to increased permeability of the BBB, which results
in neurotoxicity in both aging and disease. Senescent endothelial
cell accumulation leads to increase SASP expression, which in
turn could stimulate chronic neuroinflammation (Graves and
Baker, 2020). This endothelial cell senescence at the BBB has
been shown to directly contribute to BBB breakdown (Yamazaki
et al., 2016). In line with the development of age-related
neurodegenerative diseases, the BBB has been shown to be
compromised in the midbrain region of PD patients (Garretti
et al., 2019). It is thus plausible that in PD, endothelial cells at
the BBB become senescent causing impairment of BBB integrity
allowing for the paracrine spreading of senescence via the SASP
to diverse cell types in the midbrain or for the SASP of BBB
endothelial cells itself to trigger an immune response.

PERICYTES

Pericytes act to maintain the BBB and regulate immune cell
entry into the central nervous system (Attwell et al., 2016).
Although the existence of senescent pericytes in PD is not known,
treatment with hydrogen peroxide, a commonly used model
for stress-induced senescence, led to senescence in pericytes as
shown by a decreased growth rate and increased p16 levels
(Yamazaki et al., 2016).

PERIPHERAL IMMUNE CELLS (T-CELLS)

Inflammation is a characteristic hallmark of many
neurodegenerative disorders, including AD, ALS, multiple
sclerosis (MS), and PD (Baker et al., 2011; Chitnis and Weiner,
2017; Trias et al., 2019) and there is evidence that the immune
cells play an active role. Aging and age-related neurodegenerative
diseases are associated with increased SASP-expressing senescent
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cells of non-neuronal origin in the brain and this correlates
with the degree of neurodegeneration (Chinta et al., 2015).
A link between neuroinflammation and PD pathogenesis was
made apparent with the discovery of reactive microglia positive
for human leukocyte antigen-DR isotype (HLA-DR), a marker
of T-cell activation, in the SNpc of PD patients (McGeer
et al., 1988). It was later shown that the number of HLA-
DR+ microglia correlates with the degree of neurodegeneration
along the nigrostriatal pathway (Imamura et al., 2003; Tansey
et al., 2022). The exact role of the adaptive immune system in
PD pathogenesis is unclear, although there is increasing evidence
that it is indeed involved. It is hypothesized that this SASP
recruits natural killer cells to facilitate the removal of senescent
cells and neighboring tumor cells. DA receptors are expressed
by both cluster of differentiation 4 (CD4)+ and 8 (CD8)+
T-cells (Baird et al., 2019; Liu et al., 2021) and CD4+ and CD8+

T-cells have been shown to infiltrate the midbrain in animal
models of PD (Galiano-Landeira et al., 2020). In an animal
model for PD treated with 6-hydroxydopamine (6-OHDA),
which is a well-characterized neurotoxin that specifically targets
DA neurons, T-cell infiltration was observed (Baird et al.,
2019). In an assessment of T-cell infiltration in the brain of
PD patients, a ten-fold increase in both CD4+ and CD8+

T-cells was determined (Brochard et al., 2009). CD8+ T-cells
were seen in the SNpc of PD patients both surrounding and
contacting DA neurons (Galiano-Landeira et al., 2020). A higher
density of CD8+ T-cells was correlated with a lower density
of DA neurons in PD patients, indicating that CD8+ T-cells
are key mediators of neuronal death in PD. This CD8+ T-cell

infiltration preceded both α-synuclein aggregation and neuronal
cell death, where patients with incidental Lewy body disease
(iLBD), which is considered to be an early, pre-symptomatic
stage of PD, also demonstrated CD8+ T-cell infiltration in
the SNpc and colocalization with midbrain DA neurons. This
indicates an adaptive immune attack on midbrain neurons
before neurodegeneration or protein aggregation were apparent
(Galiano-Landeira et al., 2020). Thus, CD8+ T-cells contribute
to nigral DA neuron impairment and death in PD even before
Lewy body deposition. T-cells observed in post-mortem PD brain
tissue have been shown to actively kill midbrain DA neurons via
the IL-17 pathway in sporadic PD cases (Garretti et al., 2019).
In addition, DA neurons are known to express MHC-I under
control conditions (Cebrián et al., 2014). In PD specifically,
DA neurons have been shown to express MHC which present
α-synuclein as an antigen causing T-cell activation in patients
(Sulzer et al., 2017). Elevated α-synuclein T-cell responses have
been reported prior to PD diagnosis and α-synuclein reactive
T-cells are present in PD patients (Lindestam Arlehamn et al.,
2020). It is specifically the increased presence of CD8+ T-cells in
the midbrain leading to dysregulation associated with the severity
of PD, rather than patient age, age of onset, or the duration or
progression of PD (Bhatia et al., 2021). Since we have found
that senescent DA neurons upregulate HLA-B and HLA-C, it is
likely that these cells are highly prone to be attacked by killer
T-cells (Riessland et al., 2019; Riessland, 2020). It is plausible that
the SASP expressed by senescent DA neurons would trigger a
long-distance attraction, recruiting and activating T-cells prior
to their attack.

FIGURE 1 | Proposed model for spreading of senescence and local inflammation in the midbrain. Various cell types, including DA neurons, microglia, astrocytes,
and OPCs, are present in the midbrain. (A) At the BBB there is a coupling of the neurovascular unit in a normal midbrain, composed of the brain vasulature
containing endothelial cells, as well as astrocytes, and their connections to neurons: (A) an impermeable BBB of normal integrity is present and (B) microglia and
astrocytes are present for surveillance and support of DA neurons, respectively. (B) In an aged/senescent midbrain, there are three plausible hypotheses for the
spreading of cellular senescence and its role in the uncoupling of the neurovascular unit and local inflammation: (A) endothelial cells at the BBB become senescent
and release SASP factors, resutling in a recruitment of T-cells, which are able to enter the midbrain as a result of weakened BBB integrity, (B) midbrain DA neurons
become senescent in PD and their secreted SASP factors are able to spread senescence to other cell types, including astrocytes, microglia, OPCs, and/or
endothelial cells, which eventually leads to the weakening of the BBB and recruitment of adaptive immune cells, or (C) some other cell type in the midbrain,
astrocytes, microglia, OPCs, or endothelial cells, become senescent and act negatively on surrounding cells by initiating the paracrine spreading of senescence to
other cell types, including DA neurons, and BBB integrity is eventually impaired allowing for T-cell infiltration, as observed in PD. Specifically, HLA-DR + microglia are
present in the case of neurodegeneration as an additional marker of T-cell infiltration. In turn, (D) the MHC-I presentation of α-synuclein as an antigen allows for
T-cells present in the midbrain to become activated. These activated T-cells can then act to kill DA neurons as seen in PD. Created with BioRender.com.
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DISCUSSION

Overall, there is evidence of senescence in various cell types of
the brain in aging and disease and specifically in the midbrain
in PD, yet there is still more research to be done. There is a
major gap remaining regarding how the paracrine spreading of
senescence between different cell types in the midbrain occurs
both in normal aging and PD, and how this may contribute
to the pathology of the disease. There is an abundance of
microglia and T-cells in the SNpc of PD patients even before
neurodegeneration and symptoms occur. One explanation might
be that senescent endothelial cells at the BBB cause impairment
of BBB integrity and a SASP that may recruit T-cells into the
midbrain. Alternatively, a senescent cell type in the midbrain
of PD patients—DA neurons, astrocytes, or even microglia
themselves—may spread senescence via the SASP to other cell
types, recruit active microglia, and, in conjunction with decreased
BBB permeability, recruit T-cells to actively kill midbrain DA
neurons. In either case, some senescent cell type(s) in the SNpc
of PD patients would trigger local inflammation and attract
immune cells that actively remove the senescent DA neurons
(Figure 1). Accordingly, PD may be looked at as a senescence
disorder, with senescence in the midbrain and/or at the BBB
activating an immune response leading to DA neuron death
in the SNpc. Additional support for this hypothesis comes
from evidence demonstrating commonalities between triggers
of senescence and features of PD. Mutations in PINK1 and
PARKIN, which are involved in mitochondrial turnover, are
causative for PD (Kitada et al., 1998; Valente et al., 2004)
and mitochondrial impairment triggers senescence. Additionally,

α-synuclein, a hallmark protein aggregate seen in PD, induces
DNA damage and cellular senescence (Yoon et al., 2022). In
line with this, lysosomal dysfunction is central to PD pathology
(Wallings et al., 2019) and can trigger cellular senescence (Tai
et al., 2017). An interesting future area of study would be the
relationship between senescence and PD, as it is clear that PD-
linked mutant genes are capable of causing senescence and that
senescence itself plays a role in PD neuropathology. Given this
plethora of evidence, it may be possible to make use of senolytic
drugs which target and clear senescent cells as a potential
therapeutic intervention for PD. In theory, if senescent cells
can be cleared in prodromal PD patients, it may be possible to
ameliorate local inflammation and consequently lessen the extent
of DA neuron death, thereby preventing PD development or
slowing disease progression. In fact, clinical trials for AD using
senolytics are currently ongoing, an approach that would be
highly promising for PD as well.
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