LETTER TO THE EDITOR

Can iron chelation as an adjunct treatment of COVID-19 improve the clinical outcome?

Anis Abobaker¹

Received: 27 May 2020 / Accepted: 17 June 2020 / Published online: 30 June 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Dear Editor;

A recent bioinformatic study showed that one of the important pathogenic effects of coronavirus disease 2019 (COVID-19) is through the direct damage of haemoglobin molecules by the novel coronavirus (SARS-CoV-2) [1]. The haemoglobin molecule consists of four globulin subunits: two beta chains and two alpha chains [1]. Each subunit attaches to heme which has two main components: iron and porphyrin [1]. SARS-CoV-2 attacks one of the beta chains of the haemoglobulin which leads to dissociation of iron from heme [1]. This leads to increased free iron level in the body, which could explain why most patients with COVID-19 have very high ferritin level [2]. Although the result of this study has not been fully validated, it might explain multiple aspects of the pathogenesis of COVID-19. Increased iron level in the body generates reactive oxygen species which causes oxidative stress and damage to the lung, leading to subsequent lung fibrosis and decline in the lung function [3, 4]. There is evidence shows that iron overload increases viral replication, which might have a role in the severity of the infection [5]. Infection with SARS-CoV-2 causes diffuse endothelial inflammation which leads to widespread microvascular thrombosis, organ ischemia and multi-organ failure [6]. Interestingly, an in vitro study showed that iron had a similar effect by inducing the release of endothelial inflammatory cytokines, such as IL-6 [7]. Through its iron chelation effect, deferoxamine reduces iron availability in serum and body tissue which could prevent lung injury and fibrosis following COVID-19 infection. An in vitro study showed that deferoxamine decreased the level of viral replication of some RNA viruses, such as HIV-1. Moreover, when it was combined with an antiviral drug, it led to a synergistic effect on reducing the viral replication cycle [8]. This might

Anis Abobaker anis.abobaker@yahoo.com

In conclusion, iron chelation drugs, such as deferoxamine, can be used as a supportive treatment to improve the clinical outcome and to reduce the severity of COVID-19 infection. However, multiple randomised control studies are required to test their efficacy and safety.

Funding information No financial or nonfinancial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

Compliance with ethical standards

Conflict of interest The author declares that he has no conflict of interest.

References

- Wenzhong L, Hualan L (2020) COVID-19: attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. [cited 2020 Apr 10]; Available from: https://chemrxiv. org/articles/COVID-19_Disease_ORF8_and_Surface_ Glycoprotein_Inhibit_Heme_Metabolism_by_Binding_to_ Porphyrin/11938173. Accessed 10 April 2020
- Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J', Yu T, Zhang X, Zhang L (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223):507–513

¹ Spire Fylde Coast Hospital, St Walburgas road, Blackpool FY3 8BP, UK

- Turi JL, Yang F, Garrick MD, Piantadosi CA, Ghio AJ (2004) The iron cycle and oxidative stress in the lung. Free Radic Biol Med 36(7):850–857
- Ali M, Kim R, Brown A, Donovan C, Vanka K, Mayall J et al (2020) Critical role for iron accumulation in the pathogenesis of fibrotic lung disease. J Pathol 251(1):49–62
- Drakesmith H, Prentice A (2008) Viral infection and iron metabolism. Nat Rev Microbiol 6(7):541–552
- Varga Z, Flammer A, Steiger P, Haberecker M, Andermatt R, Zinkernagel A et al (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet 395(10234):1417–1418
- 7. Visseren F, Verkerk M, van der Bruggen T, Marx J, van Asbeck B, Diepersloot R (2002) Iron chelation and hydroxyl radical scavenging reduce the inflammatory response of endothelial cells after infection

with Chlamydia pneumoniae or influenza A. Eur J Clin Investig 32(s1):84–90

- Georgiou N, van der Bruggen T, Oudshoorn M, Nottet H, Marx J, van Asbeck B (2000) Inhibition of human immunodeficiency virus type 1 replication in human mononuclear blood cells by the iron chelators deferoxamine, deferiprone, and bleomycin. J Infect Dis 181(2):484–490
- Yang Y, Ma J, Xiu J, Bai L, Guan F, Zhang L, Liu J, Zhang L (2014) Deferoxamine compensates for decreases in B cell counts and reduces mortality in enterovirus 71-infected mice. Marine Drugs 12(7):4086–4095

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.