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INTRODUCTION

Several decades ago, the list of key nutrients that may in-
fluence metabolic processes was limited studied. Currently, 
the list includes fatty acids, vitamins, microelements, nucleic 
acids and specific amino acids. Common research in nutrient 
support is beginning to investigate exerting organ-specific ef-
fects by modulating metabolic processes rather than by simply 
improving nutrition. Alpha-ketoglutarate (AKG), also referred 
to as 2-ketoglutaric acid, 2-oxoglutamate, 2-oxoglutaric acid, 
oxoglutaric acid and 2-oxopentanedioic acid (Harrison and 
Pierzynowski, 2008), is a rate-determining intermediate in the 
tricarboxylic acid (TCA) and has a crucial role in cellular en-
ergy metabolism. In cellular metabolism, the generation and 
decomposition of AKG involved in a variety of metabolic path-
ways. In the TCA cycle, AKG is decarboxylated to succinyl-
CoA and CO2 by AKG dehydrogenase (encoded by ogdh-1), 
a key control point of the TCA cycle. Otherwise, AKG can be 
generated from isocitrate by oxidative decarboxylation cata-
lysed by isocitrate dehydrogenase (IDH). Also, AKG can be 
produced anaplerotically from glutamate by oxidative deami-
nation using glutamate dehydrogenase, and as a product of 
pyridoxal phosphate-dependent trans-amination reactions in 
which glutamate is a common amino donor. AKG can dissolve 
well in water, does not show toxic properties and its water so-

lutions characterize has high stability.
AKG supplementation in human adult stage is sufficient 

whereas it is found to be insufficient in the senescent stage 
(Chin et al., 2014). In the cellular metabolism, it is impossible 
to utilize AKG from the TCA cycle in the synthesis of amino ac-
ids, for this to occur, one must provide AKG as a pure dietary 
supplement. It was demonstrated that AKG was significantly 
better absorbed from the upper small intestine than from the 
distal sections (Dąbek et al., 2005). Low pH, Fe2+ and/or SO2-

4 
ions can enhance AKG absorption. AKG has a short lifetime, is 
probably dependent on quick metabolism in the enteorcyetes 
and liver (Dąbek et al., 2005). Over 60% of enteral AKG pass-
es through the intestine in different forms and is not oxidized 
to the degree of 100% as glutamine and glutamate (Junghans 
et al., 2006). In the enterocytes, AKG is converted into proline, 
leucine and other amino acids (Lambert et al., 2006). More-
over, enteric feeding of AKG supplements can significantly 
increase circulating plasma levels of such hormones as insu-
lin, growth hormone and insulin like growth factor-1 (IGF-1) 
(Colomb et al., 2004; Cynober, 2004; Son et al., 2007) and all 
derivatives of AKG (e.g. glutamine or glutamate) are imme-
diately converted to CO2 during their passage across the gut 
epithelium (Harrison and Pierzynowski, 2008). Precisely be-
cause AKG play crucial role in cellular energy metabolism and 
participate in a variety of metabolic pathways, in this review, 
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Alpha-ketoglutarate (AKG) is a key molecule in the Krebs cycle determining the overall rate of the citric acid cycle of the organism. 
It is a nitrogen scavenger and a source of glutamate and glutamine that stimulates protein synthesis and inhibits protein degrada-
tion in muscles. AKG as a precursor of glutamate and glutamine is a central metabolic fuel for cells of the gastrointestinal tract 
as well. AKG can decrease protein catabolism and increase protein synthesis to enhance bone tissue formation in the skeletal 
muscles and can be used in clinical applications. In addition to these health benefits, a recent study has shown that AKG can 
extend the lifespan of adult Caenorhabditis elegans by inhibiting ATP synthase and TOR. AKG not only extends lifespan, but also 
delays age-related disease. In this review, we will summarize the advances in AKG research field, in the content of its physiologi-
cal functions and applications.
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we will summarize generally the advances in AKG research 
field to promote the understanding of AKG and calling for more 
research focus on AKG.

PHYSIOLOGICAL FUNCTIONS

AKG can modulate protein synthesis and bone  
development

In the cellular metabolism, AKG provides an important sour-
ce of glutamine and glutamate that stimulates protein synthe-
sis, inhibits protein degradation in muscle, and constitutes an 
important metabolic fuel for cells of the gastrointestinal tract 
(Hixt and Müller, 1996; Jones et al., 1999). Glutamine is an 
energy source for all types of cells in the organism constituting 
more than 60% of the total amino acid pool, so AKG as a pre-
cursor of glutamine, is a main source of energy for intestinal 
cells and a preferred substrate for both enterocytes and other 
rapidly dividing cells. In addition, glutamate, released from 
nerve fibers in bone tissue, is synthesized by the reductive 
amination of AKG in peri-vein hepatocytes (Stoll et al., 1991) 
and can give rise to an increase in proline synthesis, which 
plays a central role in the synthesis of collagen (Kristensen 
et al., 2002). In the liver, glutamine serves as a precursor for 
ureagenesis, gluconeogenesis and acute phase protein syn-
thesis (Espat et al., 1996; Alpers, 2006), plays an important 
role in the inter-organ flow of nitrogen and carbon. Glutamine 
has traditionally been considered to be a non-essential amino 
acid in health, but in catabolic states and stress, it is an es-
sential fuel source for cells of the gastrointestinal tract, rapidly 
dividing leucocytes and macrophages in the immune system 
and can be rapidly depleted despite the significant release 
from muscle tissue (Śliwa et al., 2009). Otherwise, it was also 
shown that AKG can improve absorption of Fe2+. Thus, AKG 
and its derivatives can play a role as a Fe2+ absorption en-
hancer both in rapidly growing animals and humans with Fe2+ 
insufficiency (Dąbek et al., 2005). Furthermore, AKG, ascor-

bate and Fe2+ steer hydroxylation of peptide-bound proline to 
hydroxyproline via prolyl hydrolase, increasing the conversion 
of pro-collagen to collagen and bone matrix formation (Tocaj 
et al., 2003). Therefore, AKG is an important source of amino 
acids for collagen synthesis in the cell and organism.

It has been demonstrated that AKG is involved in collagen 
metabolism through a variety of mechanisms. The main mech-
anism is presented in Fig. 1. First, AKG is a cofactor of prolyl-
4-hydroxylase (P4H). P4H is located within the endoplasmic 
reticulum (ER), and catalyze the formation of 4-hydroxypro-
line, which is crucial for the formation of the collagen triple 
helix. Incomplete hydroxylation of proline residues within the 
repeated amino acid motif: any amino acid-proline-glycine (X-
Pro-Gly), results in incomplete formation of the collagen triple 
helix. Incorrectly folded triple helices are not secreted into cy-
toplasm, and are subsequently degraded in the ER (Lamande 
and Bateman, 1999; Myllyharju, 2003). Second, AKG contrib-
utes to facilitate collagen synthesis by increasing the pool of 
proline residues via glutamate (Panosyan et al., 2004; Wu et 
al., 2004; Dakshayani and Subramanian, 2006; Lambert et al., 
2006; Rani et al., 2012; Korkmaz et al., 2007; Son et al., 2007) 
and about 25% of the dietary AKG is converted to proline in 
the enterocytes (Kristensen et al., 2002). Proline is a prima-
ry substrate for collagen synthesis, and plays a central role 
in collagen metabolism. As seen in Fig. 1, proline is formed 
through the conversion of pyrroline 5-carboxylate (P5C), an 
intermediate in the inter-conversion of proline, ornithine and 
glutamate. Recently, it was reported that in addition to being 
a source of proline residues through the P5C-pathway, P5C 
activates collagen production through the activation of pro-
lidase, a key enzyme in proline recyling (Son et al., 2007). 
This is a significant finding, because the P5C-pathway is a 
minor contributor to the proline pool during collagen synthesis; 
the major source of proline is through recycling of proline from 
collagen degradation products (Isemura et al., 1979; Myara 
et al., 1984; Bissonnette et al., 1993; Palka and Phang, 1997; 
Karna et al., 2013). In this regard, AKG, which is a precursor of 

Fig. 1. Mechanism of AKG in collagen production.
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P5C, also has a close relationship to proline metabolism in the 
cell and organism. In a study performed in growing pigs, it was 
displayed that enteral AKG administration increased the level 
of proline in the portal and arterial blood by 45% and 20%, 
respectively, when compared to animals that were not given 
AKG. Through improved proline and hydroxyproline forma-
tion, enteral AKG is believed to enhance bone tissue formation 
(Bellon et al., 1995; Kristensen et al., 2002).

Another mechanisms of AKG influence on bone tissue re-
sults from its impact on the endocrine system of the organ-
ism. Glutamine and glutamate is transformed in ornithine and 
then to arginine (Pierzynowski and Sjodin, 1998). Both orni-
thine and arginine stimulate the secretion of growth hormone 
(GH) and insulin-like growth factor I (IGF-I) (Harrison et al., 
2004; Fayh et al., 2007). The osteotropic effect of functional 
axis GH-IGF-I is widely known and well described (Giustina et 
al., 2008; Tritos and Biller, 2009). AKG may also affect bone 
structure by the interaction of glutamate-glutamate receptors 
(GluR). The presence of GluR has been confirmed on osteo-
blasts (Gu et al., 2002) and osteoclasts (Mentaverri et al., 
2003), whereas Genever et al (Spencer et al., 2007) reported 
its significance in bone tissue metabolism. Additionally, there 
is a preliminary evidence to show that dietary AKG counteracts 
the bone losses in rats with experimental osteopenia induced 
by ovariectomy (Bieńko et al., 2002; Radzki et al., 2002) and 
fundectomy (Dobrowolski et al., 2008). Although we can infer 
the importance of AKG in collagen metabolism based on these 
studies, the direct effects of AKG on collagen production have 
yet to be reported.

AKG can stabilize immune system homeostasis
AKG is also called the immune nutrient factor and it play an 

important role in the general immune metabolism (Abcouwer, 
2000; Ziegler and Daignault, 2000; Yeh et al., 2004). It is al-
ready known that AKG is an important source of glutamine and 
glutamate, is defined as glutamine homologue and derivative 
(Pesty et al., 1997; Tapiero et al., 2002). Glutamine is an im-
portant fuel for lymphocytes and macrophages (Parry-Billings 
et al., 1990). Macrophages and neutrophils are involved in the 
early, non-specific host-defence responses and play an im-
portant role in the pathophysiology and/or protection against 
sepsis (Sawyer et al., 1989; Zimmerman and Ringer, 1992). 
Previous reports showed that during inflammatory states such 
as sepsis and injury, the consumption of glutamine by circulat-
ing and immune cells increases (Ashkanazi et al., 1980; Roth 
et al., 1982; Hammarqvist et al., 1989). Studies have revealed 

that supplemental glutamine augments the in vitro bactericid-
al activity of neutrophils in burned or postoperative patients 
(Ogle et al., 1994; Furukawa et al., 2000). Parry-Billings et 
al. (1990) (Parry-Billings et al., 1990) reported that depressed 
glutamine concentrations were associated with reduced 
phagocytosis by murine peritoneal macrophages. The study 
by Gianotti et al. (1995) (Gianotti et al., 1995) showed that oral 
glutamine supplementation decreases bacterial translocation 
in experimental gut-origin sepsis. Thus, AKG as glutamine ho-
mologue has immuno-enhancing properties, can maintain a 
gut barrier, increase immune cells and the activity of neutro-
phils and phagocytosis, reduce bacterial translocation in vivo 
(Le Boucher and Cynober, 1997; Danbolt, 2001; MacFie and 
McNaught, 2002; Salvalaggio and Campos, 2002).

AKG can modulate aging
A recent study (Chin et al., 2014) shows that AKG can ex-

tend the lifespan of adult Caenorhabditis elegans by inhibiting 
ATP synthase and TOR. They discovered that the tricarboxylic 
acid cycle intermediate AKG delays ageing and extends the 
lifespan of C. elegans by ~ 50% (Fig. 2A) with a concentra-
tion-dependent manner of 8 mM AKG producing the maximal 
lifespan extension in wild-type N2 worms (Fig. 2B). Chin et al 
(Chin et al., 2014) also demonstrated that AKG not only ex-
tends lifespan, but also delays age-related phenotypes, such 
as the decline in rapid, coordinated body movement. In this 
study, it reported that AKG has greater potential values in ag-
ing. Thus, we would like to generally describe the mechanism 
how AKG inhibits ATP synthase and TOR to extend the lifes-
pan in the organisms.

Mitochondrial ATP synthase is a significant ubiquitous en-
zyme in energy metabolism of virtually all living cells (Abraha-
ms et al., 1994; Boyer, 1997). It is a membrane-bound rotary 
motor enzyme that is a key energy carrier for cellular energy 
metabolism. Chin et al (Chin et al., 2014) provided evidence 
that the lifespan increase by AKG requires ATP synthase sub-
unit β and is dependent on target of rapamycin (TOR) down-
stream. They used a small-molecule target identification strat-
egy termed drug affinity responsive target stability (DARTS) 
(Lomenick et al., 2009), found the ATP synthase subunit β is 
a novel binding protein of AKG. They discovered AKG inhib-
its ATP synthase, leads to reduced ATP content, decreased 
oxygen consumption, and increased autophagy in both C. ele-
gans and mammalian cells, similar to ATP synthase 2 (ATP-2) 
knockdown. Together, the direct binding of ATP-2 by AKG, the 
related enzymatic inhibition, reduction in ATP levels and oxy-

Fig. 2. AKG extends the adult lifespan of C. elegans. (A) AKG extends the lifespan of adult worms. (B) Dose-response curve of the AKG ef-
fect on longevity.
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gen consumption, lifespan analysis, and other similarities to 
ATP-2 knockdown, they inferred AKG probably extends lifes-
pan primarily by targeting ATP-2. In addition, previous studies 
also has shown that complete loss of mitochondrial function is 
detrimental, but partial suppression of the electron transport 
chain has been demonstrated to extend C. elegans lifespan 
(Tsang et al., 2001; Dillin et al., 2002; Lee et al., 2003; Curran 
and Ruvkun, 2007). Thus, AKG can inhibit the ATP synthase, 
so to achieve the effect of prolonging life is completely pos-
sible.

Target of rapamycin (TOR), belongs to a conserved group of 
serine/threonine kinases from the phosphatidylinositol kinase-
related kinase (PIKK) family, regulates growth and metabolism 
in all eukaryotic cells. Previous researches have demonstrat-
ed that inhibition of TOR activity can delay the aging process, 
as evidenced by increased life span in yeast (Kaeberlein et al., 
2007), worms (Vellai et al., 2003; Hansen et al., 2007), flies 
(Kapahi et al., 2004; Luong et al., 2006), and mice (Selman et 
al., 2009) with mutations in TOR pathway components. AKG 
does not interact with TOR directly and mainly decreases TOR 
pathway activity through the inhibition of ATP synthase (Fig. 
3). AKG longevity partially depends on AMPK and FoxO (Ur-
ban et al., 2007). The AMP-activated protein kinase (AMPK) 
is an evolutionarily conserved cellular energy sensor with key 
roles in aging and lifespan (Hardie et al., 2012; Huang et al., 
2013). AMPK is activated when the AMP/ATP ratio is high and 
subsequently, activated AMPK inhibits TOR signaling by acti-
vating phosphorylation of the TOR suppressor TSC2, sequen-
tially adjusting the cell’s metabolic program to energy status 
(Toivonen et al., 2007). Fork head box ‘Other’ (FoxO) proteins, 
a subgroup of the Fork head transcription factor family, have 
an pivotal role in mediating the impacts of insulin and growth 
factors on diverse physiological functions, including cell prolif-
eration, apoptosis and metabolism (Brunet, 2004; Barthel et 
al., 2005; Gross et al., 2008; Wang et al., 2014; Webb and 
Brunet, 2014). Consistent with the implicate of TOR in AKG 
longevity, the FoxO, a transcription factor PHA-4, which is re-
quired to extend lifespan in response to reduced TOR signaling 
(Sheaffer et al., 2008), is likewise essential for AKG-induced 
longevity. In addition, autophagy, which is activated both by 
TOR inhibition (Wullschleger et al., 2006; Stanfel et al., 2009) 

and by dietary restriction (Meléndez et al., 2003), is signifi-
cantly increased in worms treated with AKG. Therefore, AKG 
treatment and TOR inactivation extend lifespan either through 
the same pathway (with AKG acting on or upstream of TOR), 
or through independent mechanisms or parallel pathways that 
converge on a downstream effector (Chin et al., 2014).

Furthermore, physiological increases in AKG levels have 
been shown in starved yeast and bacteria (Brauer et al., 
2006), in the liver of starved pigeons (Kaminsky et al., 1982), 
and in humans after physical exercise (Brugnara et al., 2012). 
The biochemical basis for this increase of AKG is explained 
by starvation based anaplerotic gluconeogenesis, which acti-
vates glutamate-linked transaminases in the liver to generate 
carbon derived from amino acid catabolism. Consistent with 
this idea, Chin et al (Chin et al., 2014) observed that AKG 
levels are elevated in starved C. elegans and AKG does not 
extend the lifespan of dietary-restricted animals. These find-
ings indicated a model in which AKG is a key metabolite me-
diating lifespan extension by starvation/dietary restriction (Fig. 
3). It demonstrated new molecular links between a common 
metabolite, a universal cellular energy generator and dietary 
restriction in the regulation of organismal lifespan, thus indi-
cated new strategies for the prevention and treatment of aging 
and age-related diseases.

THE APPLICATION OF AKG IN ANIMALS

AKG has been given to pigs (Kowalik et al., 2005; Ander-
sen et al., 2008), turkeys (Tatara et al., 2005a; Tatara et al., 
2005b), rats (Bieńko et al., 2002; Radzki et al., 2002) and 
sheep (Harrison et al., 2004; Tatara et al., 2007) with effects 
on the skeletal system and protein synthesis. Considering cur-
rent knowledge of AKG, its metabolites and functions, it can 
be concluded that improved bone quality may be induced by 
higher glutamate synthesis and its utilization as signaling mol-
ecule in bone metabolism regulation (Stoll et al., 1991; Chenu, 
2002a; Chenu, 2002b; Taylor, 2002). The other mechanism 
that may be involved in bone metabolism regulation by AKG 
is increased collagen formation as the result of higher pro-
line synthesis and its following conversion to hydroxyproline, 
which was previously introduced (Kristensen et al., 2002).

In studies on animals, AKG administration has generated 
positive effects on skeletal development and homeostasis 
maintenance (Kowalik et al., 2005; Tatara et al., 2005a; Tatara 
et al., 2005b). In AKG-treated animals, significant increase of 
weight, length, bone mineral density, bone mineral content, 
cross-sectional area, second moment of inertia, mean rela-
tive wall thickness, cortical index, maximum elastic strength 
and ultimate strength of the bones was associated with im-
proved serum concentration of IGF-1 and serum BAP activity 
when compared to the control group (Śliwa, 2010). Results 
of long bone analysis in slaughter pigs treated during 21 and 
24 days of neonatal life with AKG has shown its positive ef-
fects on length, cortical bone mineral density, maximum elas-
tic strength, ultimate strength and Young’s modulus that was 
connected with elevated plasma estrogen level (Andersen et 
al., 2008). In studies on growing turkeys, 14-week long admin-
istration with AKG eliminated neurectomy-induced osteopenia 
of radius increasing its weight, volumetric bone mineral den-
sity, the cross-sectional area, second moment of inertia, mean 
relative wall thickness, maximum elastic strength and ultimate 

Fig. 3. Model of α-KG-mediated longevity.
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strength (Tatara et al., 2005a). These advantageous effects 
were combined with higher serum concentration of proline and 
leucine in comparison to the control group birds (Tatara et al., 
2005a). In other studies on sheep, two week long neonatal 
treatment with AKG improved the trabecular bone mineral 
density, cortical bone mineral density and maximum elastic 
strength of femur as well as increasing weight, length, corti-
cal bone mineral density, maximum elastic strength and the 
moments of maximum elastic strength and ultimate strength 
(Harrison et al., 2004; Tatara et al., 2007).

The similar influence of AKG administration on bone tissue 
was also observed in studies performed on humans (Tocaj et 
al., 2003; Fayh et al., 2007). It can facilitate muscle protein 
synthesis in post-operative patients (Wernerman et al., 1990), 
to improve amino acid metabolism in haemo-dialysed patients 
(Riedel et al., 1996), and to accelerate the transport of organic 
anions in the kidneys (Welborn et al., 1998), when AKG was 
given as a supplement. Use of AKG or calcium-AKG as dietary 
supplements has mainly been studied on hospitalized adult 
humans, who are well nourished and have a normal functional 
metabolism (Pierzynowski et al., 2007). In clinical studies on 
septic, traumatic or surgical patients, AKG has been found to 
display beneficial effects by improving the body weight gain, 
nitrogen balance. A recent study has shown the potential use-
fulness of AKG treatment in preserving bone mass as well as 
lowering bone turnover in post-menopausal women (Tocaj et 
al., 2003). Results suggest a link between enteral AKG and 
an increase in oestrogen levels. Some studies have also re-
ported that AKG is an efficient nutritional support in trauma 
situations, especially after burns (Wernerman et al., 1990; Le 
Boucher et al., 1997). Therefore, AKG can be an alternative 
for elderly patients after trauma and surgery and for people 
who execute intensive, but the short duration physical effort 
(Neu et al., 1996). It also is known that AKG has a beneficial 
effect on nitrogen metabolism (Wirén and Permert, 2002) and 
in reducing toxicity levels of ammonium ions as a protective 
agent for kidney function in the body (Stoll et al., 1991; Wel-
born et al., 1998; Velvizhi et al., 2002). In addition, Schlegel 
et al (Schlegel et al., 2000) observed that AKG supplementa-
tion can limit bacterial dissemination and metabolic changes 
after injury in rats and thus may be useful in protection of gut 
mucosa. Therefore, a number of studies have revealed the 
beneficial effects of AKG in human and animals. 

SUMMARY AND FUTURE OUTLOOK

On the whole, the physiological significance of AKG are 
multi-directional and not all metabolic pathways have been 
well established. The mechanisms of AKG action on the skel-
etal system is associated with glutamate receptor activation, 
bone collagen production via proline and possible anti-cata-
bolic and anabolic effects of 17b-oestradiol (Andersen et al., 
2008), and is probably multifactorial. In addition, the positive 
influence of AKG might be expected to improve chest func-
tion and internal organ protection of premature and low birth-
weight newborns (Tatara et al., 2007). The present findings 
may have important clinical implications, motivating for the 
testing of AKG in prevention and therapy of metabolic bone 
disorders in human and animals. Therefore, further studies 
are needed to understand the function of AKG, clarify of the 
mechanism of AKG and explore the potential application in 

human society or other fields.
In the aspect of aging, some exciting discoveries indicated 

that TORC1 is involved in a large number of human diseases, 
including diabetes, obesity, heart disease, and cancer (Inoki 
and Guan, 2006; Katewa and Kapahi, 2011). Aging is a com-
mon risk factor for these diseases, and it has been revealed 
that the mechanism of the link between cellular senescence, 
diseases and organismal aging is via TOR (Kapahi and Zid, 
2004; Blagosklonny, 2006). Therefore, inhibition of TOR func-
tion by metabolism of AKG indicated that AKG may play an 
important role in tumor suppress.
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