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Abstract

Coronary artery disease (CAD), including acute myocardial infarction (AMI) is the complica-

tion of atherosclerosis. Recently, genome-wide association studies have identified a large

number of CAD-related genetic variants. However, only 10% of CAD cases could be

explained. Low frequent and rare genetic variants have been recently proposed to be main

causes for CAD. SIRT2 is a member of sirtuin family, NAD(+)-dependent class III deacety-

lases. SIRT2 is involved in genomic stability, metabolism, inflammation, oxidative stress

and autophagy, as well as in platelet function. Thus, we hypothesized that genetic variants

in SIRT2 gene may contribute to AMI. In this study, SIRT2 gene promoter was analyzed in

large cohorts of AMI patients (n = 375) and ethnic-matched controls (n = 377). Three novel

heterozygous DSVs (g.38900888_91delTAAA, g.38900270A>G and g.38899853C>T)

were identified in three AMI patients, but in none of controls. These DSVs significantly

altered the transcriptional activity of the SIRT2 gene promoter (P<0.05) in both HEK-293

and H9c2 cells. Five novel heterozygous DSVS (g.38900562C>T, g.38900413A>C,

g.38900030G>A, g.38899925A>C and g.38899852C>T) were only found in controls, which

did not significantly affected SIRT2 gene promoter activity (P>0.05). In addition, four novel

heterozygous DSVs and five SNPs were found in both AMI patients and control with similar

frequencies (P>0.05), two SNPs of which were examined and did not affect SIRT2 gene pro-

moter activity (P>0.05). Taken together, the DSVs identified in AMI patients may change

SIRT2 level by affecting the transcriptional activity of SIRT2 gene promoter, contributing to

the AMI development as a rare risk factor.
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Introduction

Coronary artery disease (CAD) is a common complex disease, including acute myocardial

infarction (AMI). The main cause for CAD is atherosclerosis, an inflammatory and metabolic

disease. The known risk factors for atherosclerosis and CAD include aging, hypertension,

smoking, obesity and diabetes, hyperlipidemia and inflammation. Though genome-wide asso-

ciation studies have identified a great number of genetic loci associated to CAD, these genetic

loci collectively explain<10% of CAD cases [1–3]. To date, genetic causes and underlying

molecular mechanisms for CAD remain largely unclear. It has been proposed that low fre-

quency and rare genetic variants with large effects account for the missing heritability for

human common diseases, including cardiovascular disease [4]. Emerging data suggest that

epigenetic factors also contribute to the development of cardiovascular disease [5].

Sirtuins are NAD(+)-dependent class III deacetylases involved in the regulation of cell bio-

logical processes, including cellular stress, differentiation, genomic stability, inflammation and

metabolism. Human studies and animal experiments have implicated sirtuins in age-related

diseases, such as cancer, diabetes, cardiovascular and neurodegenerative diseases [6–8]. In

mammals, there are seven sirtuins (SIRT1-7) with diversity in subcellular localization, enzyme

activity and function. SIRT2 is localized in both the cytoplasm and nucleus. SIRT2 preferen-

tially deacetylates tubulin and histone H4 and has been involved in multiple cell processes

including growth, differentiation, and energy metabolism [9–11]. During the cell cycle, SIRT2

controls mitotic exit, regulates checkpoint pathways and replication stress response, and main-

tains genome stability [12–15]. In maintaining metabolic homeostasis, SIRT2 has different

functions in adipogenesis, fatty acid oxidation, gluconeogenesis, insulin sensitivity and lipid

synthesis [16]. SIRT2 is also required in inflammatory process and in response to oxidative

stress [17–19]. Recent study indicates that SIRT2 maintains mitochondrial biology and facili-

tates cell survival by regulating autophagy and mitophagy [20,21]. In human cells, SIRT2

knockdown increases basal autophagy and prevents postslippage death by prolonging chronic

mitotic arrest [22,23]. In addition, SIRT2 is expressed in enucleate platelets and plays a central

role in platelet function [24,25]. Dysregulated SIRT2 activity has been associated with aging,

cancer, metabolic disorders and neurodegeneration [16,26–28].

Accumulating evidence suggest that sirtuins provide protective effects in cardiovascular dis-

eases, mainly SIRT1, SIRT3 and SIRT6 [28,29]. The roles of SIRT2 in the cardiovascular sys-

tem have recently been studied and reported. In cardiosurgical patients undergoing remote

ischemic preconditioning, SIRT2 gene is down-regulated in the cardiac tissue [30]. In human

umbilical vein endothelial cells under oxidative stress, SIRT2 regulates the expression of genes

involved in cytoskeletal organization, cell contraction and migration, and cell viability [31]. In

H9c2 cells and rat cardiomyocytes, short-term calorie restriction activates SIRT2 gene expres-

sion [32]. In model animals, SIRT2 regulates microtubule stabilization in diabetic cardiomyop-

athy [33]. Knockdown or inhibition of SIRT2 enhances biological stress-tolerance in H9c2

cells [34]. SIRT2 gene expression in aorta is significantly reduced in aging mice [35]. In addi-

tion, SIRT2 mediates hypertension-induced vascular remodeling [36]. Collectively, these data

suggest that SIRT2 plays important roles in the cardiovascular system and may contribute to

cardiovascular diseases.

Dysregulated gene expression have been implicated in many human diseases [37]. In previ-

ous studies, we have genetically and functionally investigated the members of sirtuin family in

AMI patients, including SIRT1, SIRT3 and SIRT6. A number of functional DNA sequence var-

iants (DSVs) within their promoters have been identified and linked to AMI [38–40]. Since

SIRT2 has diverse functions in genomic stability, inflammation, metabolism and autophagy,

as well as in cardiovascular system, we speculated that SIRT2 may contribute to the CAD
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development. In this study, the promoter region of the SIRT2 gene were studied in large

cohorts of AMI patients and healthy controls.

Materials and methods

AMI patients and healthy controls

All AMI patients (n = 375, male 281, female 94, age range from 31 to 85 years, median age

61.00 years) were recruited from April, 2012 to July, 2014, from Cardiac Care Unit, Division

of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University,

Jining, Shandong, China. All AMI patients were diagnosed based on clinical symptoms, elec-

trocardiograph changes (ST-segment elevation or depression), typical rise of biochemical

markers of myocardial necrosis (troponin or creatine kinase-MB), or coronary angioplasty.

Ethnic-matched healthy controls (n = 377, male 193, female 184, age range from 21 to 84

years, median age 51.00 years) were recruited from the same hospital during the same period.

The controls with familial history of CAD were excluded from this study. This study was

carried out according to the principles of the Declaration of Helsinki and was approved by

the Human Ethic Committee of Affiliated Hospital of Jining Medical University. Written

informed consents were obtained from all participants.

Direct DNA sequencing

Leukocytes were isolated from vein blood and genomic DNAs were extracted. SIRT2 gene pro-

moter region (1446bp, from -1292 bp to +154bp to the transcription start site) was directly

sequenced. Two overlapped DNA fragments, 764bp (-1292bp~-521bp) and 678bp (-598bp ~

+154bp), were generated by PCR. PCR primers were designed based on genomic sequence of

the human SIRT2 gene (NCBI, NC_000019.10) (Table 1). PCR products were bi-directionally

sequenced with Applied Biosystems 3500XL genetic analyzer. The DNA sequences were then

aligned and compared with the wild type SIRT2 gene promoter.

Functional analysis with dual-luciferase reporter assay

Wild type and variant SIRT2 gene promoters were subcloned into luciferase reporter vector

(pGL3-basic) to construct expression vectors. After transfected into cultured cells, dual-lucifer-

ase activities were examined. Briefly, DNA fragments of wild type and variant SIRT2 gene pro-

moters (1446bp, from -1292bp to +154bp to the transcription start site) were generated by

PCR and inserted into the KpnI and Hind III sites of pGL3-basic to generate expression vec-

tors. The PCR primers with KpnI or HindIII sites were shown in Table 1. Designated

Table 1. PCR primers for the SIRT2 gene promoter.

Primers Sequences Location Position Products

Sequencing

SIRT2-F1 50-GGCATACAGCAGTAAACACAAC-30 38901154 -1292 772bp

SIRT2-R1 50-CTAGCTATGATCCTAACCCAAG-3' 38900383 -521

SIRT2-F2 50-ACAATGTGGATTCCAGGAGC-3' 38900460 -598 752bp

SIRT2-R2 50-TTTGGTACAACACCCAGAGC-3' 38899709 +154

Functioning

SIRT2-F 50-(KpnI)-GGCATACAGCAGTAAACACAAC-30 38901154 -1292 1446bp

SIRT2-R 50-(HindIII)-TTTGGTACAACACCCAGAGC-30 38899709 +154

PCR primers are designed based on the genomic DNA sequence of the SIRT2 gene (NC_000019.10). The transcription start site (TSS) is at the position of

38899862 (+1).

https://doi.org/10.1371/journal.pone.0176245.t001
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expression vectors were transiently transfected into human embryonic kidney cells (HEK-293)

or rat cardiomyocyte line cells (H9c2). Forty-eight hours post-transfection, the cells were col-

lected and luciferases activities were measured using dual-luciferase reporter assay system on a

Promega Glomax 20/20 luminometer. Vector pRL-TK expressing renilla luciferase was used as

an internal control for transfection. Empty vector pGL3-basic was used as a negative control.

The transcriptional activities of the SIRT2 gene promoters were represented as ratios of lucif-

erase activities over renilla luciferase activities. Transcriptional acitivity of the wild type SIRT2

gene promoter was designed as 100%. All the experiments were repeated three times indepen-

dently, in triplicate.

Statistical analysis

The quantitative data, including reporter gene expression levels, were represented as mean ±
SEM and compared by a standard Student’s t-test. The frequencies of hypertension, smoking,

type 2 diabetes and DSVs in AMI patients and controls were analyzed and compared with

Chi-square test (SPSS v13.0). P<0.05 was considered statistically significant.

Results

The DSVs identified in AMI patients and controls

In this study, the prevalence of hypertension was similar in both AMI (28.00%, 105/375) and

control groups (31.83%, 120/377) (P>0.05). The prevalence of type 2 diabetes in AMI group

(18.93%, 71/375) was significantly higher than that in control group (5.04%, 19/377) (P<0.01).

The prevalence of smoking in AMI group (43.60%, 201/375) was also significantly higher than

that in control group (7.16%, 27/377) (P<0.01).

A total of 17 DSVs, including 5 single-nucleotide polymorphisms (SNP), were identified in

this study. Locations and frequencies of the DSVs were depicted in Fig 1 and summarized in

Table 2. Two novel heterozygous DSVs (g.38900270A>G and g.38899853C>T) and one hetero-

zygous deletion DSV (g.38900888_91delTAAA), were identified in three AMI patients, but in

none of controls. Clinically, the DSV (g.38900270A>G) was found in a 64-year-old female

patient, who had type 2 diabetes, but had no hypertension. The DSV (g.38899853C>T) was

found in an 84-year-old female patient, who had no hypertension and type 2 diabetes. The DSV

(g.38900888_91delTAAA) was found in a 49-year-old male patient, who had no hypertension and

type 2 diabetes. All the three patients were non-smokers. The levels of biochemical parameters in

the blood, including triglyceride, total cholesterol, high density lipoprotein cholesterol and high

density lipoprotein cholesterol, were all within normal physiological ranges in these patients.

Fig 1. Locations of the DSVs in the SIRT2 gene promoter in AMI patients and controls. The numbers represents the genomic

DNA sequences of the human SIRT2 gene (Genebank accession number NC_000019.10). The transcription start site is at the

position of 38899862 in the first exon.

https://doi.org/10.1371/journal.pone.0176245.g001
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The DNA sequencing chromatograms of these novel DSVs were shown in Fig 2. Five novel

heterozygous DSVS (g.38900562C>T, g.38900413A>C, g.38900030G>A, g.38899925A>C

and g.38899852C>T) were only found in healthy controls, DNA sequencing chromatograms

of which were shown in Fig 3. In addition, three novel heterozygous DSVs (g.38900748T>A,

g.38899903T>C and g.38899781C>G), one deletion DSV (g.38901027_30delTAAA) and

five SNPs [g.38901007delT (rs10713585), g.38900907A>G (rs4803006), g.38900291C>G

(rs2053071), g.38900145C>T (rs116900177) and g.38899968A>C (rs112492606)] were found

in both AMI patients and controls with similar frequencies (P>0.05) (Fig 4).

Putative binding sites for transcription factors affected by DSVs

To determine whether DSVS affect putative biding sites for transcription factors, the SIRT2

gene promoter was analyzed with JASPAR program (http://jaspar.genereg.net/). The DSVs

identified in AMI patients may abolish, create or modify the putative binding sites for tran-

scription factors. The DSV g.38900888_91delTAAA may abolish binding sites for forkhead

box (FOX) transcription factors, including FOXD2, FOXL1, FOXO4, FOXO6, FOXP2 and

FOXP3. The DSV g.38900270A>G may abolish GS homeo Box Protein 1 (GSX1), homeo

Box factor B3 (HOXB3), HOX-related factor PDX1, NK-related homeodomain factors (BSX,

NKX6-1, NKX6-2 and NOTO), orthodenticle homeobox factor 2 (OTX2) and PU domain fac-

tor POU6F2. The DSV g.38899853C>T may abolish heat shock factor 4 (HSF4), THAP-

related zinc finger factor THAP1 and myeloid zinc finger gene 1 (MZF1).

Table 2. DSVs within the SIRT2 gene promoters in AMI patients and controls.

DSVs Genotypes Location1 Controls AMI P

g.38901027_30delTAAA TAAA/- -1168bp 1 1 1.000

g.38901007delT (rs10713585) T/T -1145bp 0 2 0.258

T/- 21 15

-/- 356 358

g.38900907A>G (rs4803006) AA -1045bp 376 373 0.624

GG 1 2

g.38900888_91delTAAA TAAA/- -1029bp 0 1 -

g.38900748T>A TA -878bp 3 3 1.000

g.38900562C>T CT -700bp 1 0 -

g.38900413A>C AC -551bp 1 0 -

g.38900291C>G (rs2053071) CC -429bp 72 78 0.353

CG 178 189

GG 127 108

g.38900270A>G AG -348bp 0 1 -

g.38900145C>T (rs116900177) CT -283bp 18 19 0.868

g.38900030G>A GA -168bp 1 0 -

g.38899968A>G (rs112492606) AG -106bp 1 1 1.000

g.38899925A>C AC -63bp 1 0 -

g.38899903T>C TC -41bp 1 1 1.000

g.38899853C>T CT +10bp 0 1 -

g.38899852C>T CT +11bp 1 0 -

g.38899781C>G CG +82bp 1 2 0.624

1, DSVs are located upstream (-) to the transcription start site of SIRT2 gene at 38899862 of NC_000019.10.

https://doi.org/10.1371/journal.pone.0176245.t002
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Functional analysis of the DSVs by dual-luciferase reporter assay

Wild type and variant SIRT2 gene promoters were cloned into luciferase reporter vector

(pGL3-basic) to generate expression vectors, including empty pGL3-basic (negative control),

pGL3-WT (wild type SIRT2 gene promoter), pGL3-38900907G, pGL3-38900888_91del, pGL3-

38900562T, pGL3-38900413C, pGL3-38900291G, pGL3-38900270G, pGL3-38900030A, pGL3-

38899925C, pGL3-38899903C, pGL3-38899853T, pGL3-38899852T and pGL3-38899781G.

After transfected into cultured cell lines, human embryonic-kidney cells (HEK-293) and rat car-

diomyocyte cells (H9c2), the cells were collected and dual-luciferase activities were assayed and

relative transcriptional activities of the SIRT2 gene promoters were calculated. Transcriptional

activity of the wild type SIRT2 gene promoter was set as 100%.

In HEK-293 cells, the DSVs (g.38900888_91delTAAA and g.38900270A>G) that were iden-

tified only in AMI patients significantly decreased activity of the SIRT2 gene promoter (90.73%

± 3.28%, P<0.05 and 91.60% ± 1.86%, P<0.01, respectively). The DSV (g.38899853C>T) only

identified in an AMI patient significantly increased activity of the SIRT2 gene promoter

(107.90% ± 1.27%, P<0.01). The DSVs (g.38900562C>T, g.38900413A>C, g.38900030G>A,

g.38899925A>C and g.38899852C>T) that were found only in controls did not significantly

alter activity of the SIRT2 gene promoter (P>0.05). As expected, the SNPs [g.38900907A>G

(rs4803006) and g.38900291C>G (rs2053071)] and the DSVs (g.38899903T>C and

g.38899781C>G) that were found in both AMI patients and controls did not also alter activity

of the SIRT2 gene promoter (P>0.05) (Fig 5).

To further investigate the tissue specificity of the DSVs in cardiomyocytes, we examined

the transcriptional activity of the variant DSVs found in AMI patients (g.38900888_91del-

TAAA, g.38900270A>G and g.38899853C>T) in H9c2 cells. The SNPs [g.38900907A>G

Fig 2. Sequencing chromatograms of the novel DSVs in AMI patients. Sequence orientations of the DSVs

are marked. For DSVs g.38900270A>G and g.38899853C>T, top panels show wild type and bottom panels

heterozygous DNA sequences, which are marked with arrows. For the deletion DSV g.38900888_91delTAAA, top

panel shows wild type, middle panel heterozygous and bottom panel cloning DNA sequence. The deletion is

underlined and labeled.

https://doi.org/10.1371/journal.pone.0176245.g002
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(rs4803006) and g.38900291C>G (rs2053071)] found in both AMI patients and controls were

also tested as internal controls. Consistent to the above transfection results in HEK-293 cells,

the DSVs (g.38900888_91delTAAA and g.38900270A>G) significantly decreased the activity

of the SIRT2 gene promoter (93.23% ± 1.11%, P<0.01 and 85.66% ± 2.43%, P<0.01, respec-

tively) and the DSV (g.38899853C>T) significantly increased the activity of the SIRT2 gene

promoter (111.30% ± 2.67%, P<0.01). Similarly, the SNPs [g.38900907A>G (rs4803006) and

g.38900291C>G (rs2053071)] did not significantly alter the activity of the SIRT2 gene pro-

moter (P>0.05) (Fig 6). Taken together, the DSVs identified in AMI patients altered the activ-

ity of the SIRT2 gene promoter in both HEK-293 cells and H9c2 cells, suggesting their non-

tissue specific effects.

Discussion

Genetic variants in SIRT2 gene have been associated with human traits and diseases. The

SIRT2 gene SNP (rs45592833G/T), which is located in the 3’-untranslated regions (3’UTR), is

Fig 3. Sequencing chromatograms of the novel DSVs only identified in controls. For all the novel

heterozygous DSVs (g.38900562C>T, g.38900413A>C, g.38900030G>A, g.38899925A>C and

g.38899852C>T), top panels show wild type and bottom panels heterozygous DNA sequences, which are

marked with arrows.

https://doi.org/10.1371/journal.pone.0176245.g003
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significantly associated with human longevity [41]. SIRT2 gene SNPs, rs2241703 in the 3’

untranslated region and rs11879029 in an intron, have been reported to be associated with

height in a Japanese population [42]. The intronic SNP (rs10410544) in the SIRT2 gene signifi-

cantly increases risk of Alzheimer’s disease [43]. In this study, three novel heterozygous DSVs

(g.38900888_91delTAAA, g.38900270A>G and g.38899853C>T) were identified in three

AMI patients, but in none of controls. These DSVs significantly altered the transcriptional

activity of the SIRT2 gene promoter (P<0.05) in both HEK-293 and H9c2 cells. Therefore,

these SIRT2 gene promoter DSVs may change SIRT2 levels, contributing to the AMI develop-

ment as a risk factor.

The human SIRT2 gene has been localized to chromosome 19q13.1, which has 16 exons

and spans a region of 20,960 bp. SIRT2 gene is widely expressed in fetal and adult tissues with

higher expression in heart, brain, and skeletal muscle, and lower expression in placenta and

Fig 4. Sequencing chromatograms of the DSVs in both AMI patients and controls. The nine DSVs

include one novel deletion DSV, five SNPs and three novel heterozygous DSVs. For deletion DSV

(g.38901027_30delTAAA) and deletion SNP [g.38901007delT (rs10713585)], top panel shows wild type,

middle panel heterozygous and bottom panel cloning DNA sequence. The deletions are underlined and

labeled. For SNP [g.38900291C>G (rs2053071)], top panel shows wild type, middle panel heterozygous and

bottom panel homozygous DNA sequence. For SNP g.38900907A>G (rs4803006), top panel shows wild type

and bottom panel homozygous DNA sequence. For other novel heterozygous DSVs (g.38900748T>A,

g.38899903T>C and g.38899781C>G), and SNPs [g.38900145C>T (rs116900177) and g.38899968A>G

(rs112492606)], top panels show wild type and bottom panels heterozygous DNA sequences, which are

marked with arrows.

https://doi.org/10.1371/journal.pone.0176245.g004

Fig 5. Relative activities of wild type and variant SIRT2 gene promoters in HEK-293 cells. Wild type and variant

SIRT2 gene promoters were cloned into reporter gene vector pGL3 and transfected into HEK-293 cells. The transfected

cells were collected and dual-luciferase activities were assayed. Empty vector pGL3-basic is used as a negative control.

Transcriptional acitivity of the wild type SIRT2gene promoter was designed as 100%. Relative activities of SIRT2 gene

promoters were calculated. Lanes 1, pGL3-basic; 2, pGL3-WT; 3, pGL3-38900907G; 4, pGL3-38900888_91del; 5, pGL3-

38900562T; 6, pGL3-38900413C; 7, pGL3-38900291G; 8, pGL3-38900270G; 9, pGL3-38900030A; 10, pGL3-

38899925C; 11, pGL3-38899903C; 12, pGL3-38899853T; 13, pGL3-38899852T; 14, pGL3-38899781G. WT, wild type. *,

P<0.05; **, P<0.01.

https://doi.org/10.1371/journal.pone.0176245.g005
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lung [44,45]. The SIRT2 gene promoter is a TATA- and CCAAT-box less promoter, containing

a 670bp CpG island and a number of NF-κB and GATA transcription factor binding sites [46].

In human cells, SIRT2 gene is directly regulated by P53 [47]. In addition, SIRT2 gene is a direct

target of microRNA-7 [48]. In this study, three functioning DSVs in SIRT2 gene promoter were

identified. Further investigation to find transcription factors binding to these DSVs will pro-

vided a piece of new information for characterizing the human SIRT2 gene promoter.

Altered expression of SIRT2 gene has been observed in aging process and human diseases.

SIRT2 level in human peripheral blood mononuclear cells decreases with aging process [49].

SIRT2 gene expression in human mononuclear cells is upregulated by caloric restriction [50].

Low levels of SIRT2 are detected in visceral adipose tissue from human obese subjects [51]. In

human endothelial cells, SIRT2 gene is downregulated with increasing passage, further con-

firming the above SIRT2 level changes in vivo [52]. SIRT2 levels have been associated with the

pathogenesis of Parkinson’s disease [48,53]. In diverse types of cancers, SIRT2 gene expression

is downregulated or upregulated [54–57]. In this study, genetic variants in SIRT2 gene pro-

moter may change SIRT2 levels in AMI patients. Therefore, the human SIRT2 gene expression

may be manipulated with genetic approaches or pharmatheutical agents for the therapeutic

purposes.

SIRT2 deacetylates and interacts with proteins functioning in different cellular processes,

including tubulin, histones and transcription factors. In the regulation of cell cycle and geno-

mic stability, SIRT2 is the deacetylase for alpha-tubulin in controlling microtubule stability,

CDH1 and CDC20 in regulating APC activity, histone H3K56 in response to DNA damage,

H4K16 in modulating H4K20 methylation levels, ankyrin repeat and LEM domain-containing

protein 2 (ANKLE2) in nuclear envelope reassembly, CDK9 activity in response to replication

stress and the core mitotic checkpoint protein BubR1 [9,10,14,58–63]. SIRT2 is colocalized

and interacts with group IVA cytosolic phospholipase A2 (cPLA2α), promoting G2-to-M tran-

sition [64]. In contrast, SIRT2 is post-transcriptionally regulated by cyclin-dependent kinases,

which functions in cell cycle progression and cytoskeletal dynamics [65]. Genomic stability is

one of hallmarks of aging and has been associated with age-associated diseases [66].

Fig 6. Relative activities of wild type and variant SIRT2 gene promoters in H9c2 cells. Expression

constructs for wild type and variant SIRT2 gene promoters were transfected into H9c2 cells and dual-

luciferase activities were measured. Transcriptional acitivity of the wild type SIRT2 gene promoter was

designed as 100%. Relative activities of SIRT2 gene promoters were calculated. Lanes 1, pGL3-basic; 2,

pGL3-WT; 3, pGL3-38900907A>G; 4, pGL3-38900888_91del; 5, pGL3-38900270G; 6, pGL3-38899853T; 7,

pGL3-38900291G. **, P<0.01.

https://doi.org/10.1371/journal.pone.0176245.g006
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SIRT2 has been involved in cell growth, cell death and development by interacting with a

broad range of transcription factors, coregulators and signaling molecules. In human cells,

SIRT2 deacetylates P300 and P53 proteins, and interacts with homeobox transcription factor

HOXA10 [67–69]. In response to oxidative stress, SIRT2 deacetylates FOXO3a and increases

its target gene expression to promote cell death [70]. SIRT2 negatively regulates adipocyte dif-

ferentiation primarily by deacetylation of FOXO1, a mediator of autophagy [71,72]. FOXO1

is crucial for sustaining cardiomyocyte metabolism and cell survival. Down-regulation of

FOXO1 in endothelial tissue could prevent against atherosclerotic plaques [73]. A window of

optimal autophagic activity is critical to the maintenance of cardiovascular homeostasis and

function [74]. The hyperacetylation of alpha-tubulin, a main substrate of SIRT2, promotes

autophagy in cardiomyocytes [75]. SIRT2 colocalizes and interacts with histone deacetylase

(HDAC6), another tubulin deacetylase [10]. HDAC6 is involved in protein trafficking and

degradation, cell shape and migration, and regulates cardiac contraction and protein aggrega-

tion [76]. In human cells, SIRT2 is responsible for the acetylation of p70 ribosomal S6 kinase

(S6K1), a major substrate of the mammalian target of rapamycin (mTOR) kinase [77]. SIRT2

regulates platelet function by the acetylation and inhibition of Akt kinase, which is implicated

in the control of cellular growth, angiogenesis, apoptosis, autophagy, and aging [78].

SIRT2 has been shown to regulate glucose homeostasis, lipid metabolism and inflamma-

tion. SIRT2 regulates glucose metabolism by deacetylating M2 isoform of pyruvate kinase

(PKM2), glucose-6-phosphate dehydrogenase (G6PD) in the pentose phosphate pathway, glu-

cokinase regulatory protein (GKRP), glycolytic enzyme phosphoglycerate mutase (PGAM)

and lactate dehydrogenase A (LDH-A) [19,79–82]. SIRT2 deacetylates and destabilizes ATP

citrate lyase (ACLY) in lipid synthesis by regulating production of acetyl coenzyme A [83]. In

model animals, SIRT2 regulates sterol biosynthesis by influencing nuclear trafficking of sterol

response element binding protein 2 (SREBP-2) [84]. Hif1a is associated with dietary obesity by

restricting fatty acid oxidation through repression of SIRT2 [85]. SIRT2 cytoplasmic functions

are also involved in intracellular trafficking pathways to maintain cellular homeostasis [86]. In

experimental animals, SIRT2 modulates inflammatory response and regulates microvascular

inflammation through deacetylation NF-κB p65 [87,88]. SIRT2-mediated H3K18 deacetyla-

tion also plays a critical role in bacterial infection [89]. Inflammation is also involved in the ini-

tiation and progression of atherosclerosis and its complications, particularly plaque rupture

and acute AMI [90].

The protective or detrimental effects of SIRT2 depend on the cell types and stimulations

under oxidative stress [19,91]. The opposite effects of SIRT1 and SIRT2 have been reported,

suggesting that alterations of SIRT1:SIRT2 expression ratio may be involved in human diseases

[53,92]. Increased or decreased SIRT2 levels may contribute to human diseases by disrupting

the genomic stability, lipid metabolism, inflammation, autophagy and other signaling path-

ways. In this study, the genetic variants in SIRT2 gene promoter may downregulate or upregu-

late SIRT2 gene expression and change SIRT2 levels, contributing to AMI development as a

rare risk factor. Precise molecular mechanisms by which the genetic variants in SIRT2 gene

promoter affect its gene expression are being carried out in our laboratory.

Conclusions

In the present study, the SIRT2 gene promoter was genetically and functionally analyzed in

AMI patients and healthy controls. The novel DSVs identified in AMI patients significantly

altered the transcriptional activity of the SIRT2 gene promoter in cultured cardiomyocytes.

Therefore, the SIRT2 gene promoter DSVs may alter transcriptional activity of SIRT2 gene

promoter and change SIRT2 level, contributing to AMI development as a rare risk factor. The
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molecular mechanisms by which the DSVs influence SIRT2 gene expression are being

explored in our laboratory. Our findings may provide a genetic basis for translational and ther-

apeutic studies for AMI patients.
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