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Abstract: Using nanoparticle-based RNA interference (RNAi), we have previously shown that silenc-
ing the host autophagic protein, Beclin1, in HIV-infected human microglia and astrocytes restricts
HIV replication and its viral-associated inflammatory responses. Here, we confirmed the efficacy
of Beclin1 small interfering RNA (siBeclin1) as an adjunctive antiviral and anti-inflammatory ther-
apy in myeloid human microglia and primary human astrocytes infected with HIV, both with and
without exposure to combined antiretroviral (cART) drugs. To specifically target human microglia
and human astrocytes, we used a nanoparticle (NP) comprised of linear cationic polyethylenimine
(PEI) conjugated with mannose (Man) and encapsulated with siBeclin1. The target specificity of the
PEI-Man NP was confirmed in vitro using human neuronal and glial cells transfected with the NP
encapsulated with fluorescein isothiocyanate (FITC). PEI-Man-siBeclin1 NPs were intranasally deliv-
ered to healthy C57BL/6 mice in order to report the biodistribution of siBeclin1 in different areas of
the brain, measured using stem-loop RT-PCR. Postmortem brains recovered at 1–48 h post-treatment
with the PEI-Man-siRNA NP showed no significant changes in the secretion of the chemokines
regulated on activation, normal T cell expressed and secreted (RANTES) and monocyte chemotactic
protein-1 (MCP-1) and showed significant decreases in the secretion of the cytokines interleukin 6
(IL-6) and tumor necrosis factor alpha (TNF-α) when compared to phosphate-buffered saline (PBS)-
treated brains. Nissl staining showed minimal differences between the neuronal structures when
compared to PBS-treated brains, which correlated with no adverse behavioral affects. To confirm
the brain and peripheral organ distribution of PEI-siBeclin1 in living mice, we used the In vivo
Imaging System (IVIS) and demonstrated a significant brain accumulation of siBeclin1 through
intranasal administration.

Keywords: Beclin1; intranasal delivery; in vivo imaging system; polyethylenimine nanoparticle; HIV

1. Introduction

With the blood–brain barrier (BBB) being a major obstacle for the entry of a drug into
the brain, intranasal drug delivery has emerged as a reliable method to bypass the BBB
and treat neurological diseases. The composition of the BBB, together with the presence
of efflux pumps and enzymes, obstruct the entry of many drugs, including combination
antiretroviral therapy (cART), into the brains of HIV-infected individuals [1,2]. In addi-
tion, cART is not completely effective in controlling HIV replication in brain reservoirs
(including microglia and, to a lesser degree, astrocytes) and does not directly target the
inflammatory cascades that are believed to be the primary cause of neuronal injury or
dysfunction related to HIV-associated neurological pathology [3–5]. Considering these
limitations, many alternative methods to developing anti-HIV drugs are under investi-
gation [1,6–9]. Intranasal delivery is an emerging approach to deliver drugs directly to
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the brain, bypassing the BBB, and unlike the parenteral route, intranasally administered
drugs avoid elimination by the liver, kidney filtration, gastrointestinal tract, and serum
degradation. To improve drug delivery to the brain while minimizing tissue damage,
methods to bypass the BBB via alternative administration routes—particularly noninvasive
intranasal delivery [10–12]—have shown positive results with biomolecules and as a poten-
tial option to deliver therapeutic agents to target cells in the brain. Direct contact with the
nasal epithelium allows the transport of molecules via olfactory- and trigeminal-associated
extracellular pathways to directly enter into the central nervous system (CNS) [13–15].
Intranasal transmission to the brain has shown great success in drug delivery in several
human clinical trials [16–18].

The use of nanotechnology for diagnostic and therapy has recently gained substantial
popularity. Metallic, organic, inorganic, and polymeric nanostructures have been widely
used to target different organs for drug delivery [19,20]. The linear cationic polymer
polyethylenimine (PEI) possesses nucleotide binding and condensing activity, together
with a high pH buffering capacity that is believed to protect DNA/RNA from degradation
and to enhance exit from the endosomal compartment [21–23]. Accordingly, PEI is effective
in gene delivery into a variety of cell types, even without the addition of cell-binding lig-
ands or endosomolytic agents. We have previously shown the in vitro efficacy of a cationic
linear PEI-Beclin1 siRNA nanoparticle (NP) in attenuating HIV replication and reduced
the secretion of viral-induced inflammatory molecules in glial cells (microglia and astro-
cytes) [24]. Beclin1 is an essential protein in regulating the autophagy pathway, a lysosomal
degradation pathway that engulfs and sequesters cytoplasmic proteins and other damaged
organelles using a unique membranous compartment of the autophagosome. The modu-
lation of autophagy is proposed as a therapeutic avenue for various diseases, including
cancer, diabetes mellitus, cardiovascular diseases, and neurodegeneration [25–29].

Here, we confirmed both an anti-inflammatory and an antiviral response of Beclin1
small interfering RNA (siBeclin1) as an autophagy-based therapy in HIV-infected human
microglia and human astrocytes and as an adjunctive therapy in combination with cART.
We also synthesized a siBeclin1-PEI NP conjugated with mannose (PEI-Man) particles
to specifically target mannose-expressing brain cells in vitro and in vivo via intranasal
delivery in C57BL/6 mice.

2. Materials and Methods
2.1. Cell Culture and HIV Infection

Commercially procured human microglia cell line (CRL-3304) from the American Type
Culture Collection (ATCC®, Manassas, VA, USA), primary human astrocytes (Cat#: 1800)
and primary human neurons (Cat#: 1520) from ScienCell Research Laboratories (Carlsbad,
CA, USA) were grown to ~75–80% confluency and cultured as per the manufacturer’s
protocols. Human microglia were infected with the HIVSF162 strain (1 ng/mL) for 7 days.
Cells were exposed to either 0.1% DMSO as the vehicle control or 10 µM of the antiviral
nucleoside reverse transcriptase inhibitor (NRTI) emtricitabine (FTC) or abacavir (ABC),
the protease inhibitors lopinavir (LPV) or atazanavir (ATV), or the integrase inhibitor
raltegravir (RGV), with or without siBeclin1 (4 µg). In separate experiments, human
microglia and human astrocytes were infected with the HIVSF162 strain (1 ng/mL) for
7 days, followed by exposure with a combination of emtricitabine (10 µM), ritonavir
(10 µM), and atazanavir (10 µM), hereafter named as cART-1, or lopinavir (10 µM), abacavir
(10 µM), and raltegravir (10 µM), hereafter named as cART-2. Combined ART were added
with or without Beclin1 siRNA (siBeclin1) (4 µg) (Cat#: sc-29797, Santa Cruz Biotechnology,
Santa Cruz, CA, USA). Antiretroviral drugs were provided by the NIH AIDS Reagent
Program and reconstituted in DMSO.

2.2. Transfection of siRNA into Microglia, Astrocytes, and Neurons

Human microglia, astrocytes, and neurons were transfected with Beclin1 siRNA (Cat#:
sc-29797) or fluorescein isothiocyanate (FITC) siRNA (Cat#: sc-36869) purchased from



Pharmaceutics 2021, 13, 223 3 of 17

Santa Cruz Biotechnology. The transfection reagent, a mannosylated PEI reagent, was
purchased from Polyplus-transfection (New York, NY, USA) and used according to the
manufacturer’s protocols.

2.3. Immunochemistry

Human microglia, astrocytes, and neurons were fixed in 4% paraformaldehyde, perme-
abilized with 0.1% Triton X-100, blocked in 10% milk/0.1% goat serum, and immunolabeled
with anti-Glial fibrillary acidic protein (GFAP) antibody (Cat#: ab5804, Millipore, Bedford,
MA, USA) at a 1:1000 dilution, anti-Ionized calcium-binding adaptor molecule 1 (Iba1)
(Cat#: sc32725, Santa Cruz Biotechnology) at a 1:100 dilution, anti-Microtubule-associated
protein 2 (MAP2) (Cat#: MAB378, Millipore, Bedford, MA, USA) at a 1:200 dilution, and
anti-Mannose receptor (Cat#: ab195192, Abcam, Cambridge, MA, USA) at a 1:100 dilu-
tion. Immunoreactivity was visualized with secondary antibodies from Molecular Probes
(Carlsbad, CA, USA). 4′,6-Diamidino-2-phenylindole (DAPI) staining was used to label cell
nuclei. Images were acquired using a Zeiss (Oberkochen, Germany) inverted fluorescence
microscope with a 560 Axiovision camera.

2.4. Time-Lapse Assessment of Neuronal Viability

Time-lapse digital images of human neurons were recorded using an inverted micro-
scope with an automated computer-controlled stage encoder and environmental chamber
(37 ◦C, 95% humidity, 5% CO2) (Zeiss) that allowed repeated tracking of individual neurons
per treatment over time. Neuronal death was considered to have occurred upon collapse
and fragmentation of the cell body.

2.5. Viability Assay

Viability of each brain cell type was assessed using a live/dead cell fluorescence assay,
which combined fluorescent reagents to yield two-color discriminations of the population
of live cells, indicated by green fluorescence, from the dead cell population, indicated
by red fluorescence (ScienCell Research Laboratories). Brain cells were imaged using an
inverted fluorescence microscope (Zeiss), and viable cells were manually quantified and
reported as a percent of viability.

2.6. Animals

C57BL/6 mice (stock # 000664) were procured from The Jackson Laboratory (Bar
Harbor, ME, USA) and bred in the animal facility at Florida International University,
Miami, Florida and in the animal facility at the University of North Carolina, Chapel Hill,
North Carolina. All animal experiments were carried out in accordance with the approved
IACUC protocol 18-007-CR02 issued by Florida International University and the IACUC
protocol #19-092.0-A issued by the University of North Carolina.

2.7. Intranasal Administration of siRNA-PEI Nanocomplex into C57BL/6 Mice

Beclin1 siRNA (siBeclin1) (Cat#: sc-29797, Santa Cruz Biotechnology) targets the
BECN1 gene involved in the autophagy pathway in murine cells. siRNA are gene si-
lencers that consist of pools of three-to-five target-specific 19–25 nucleotide sequences. Be-
clin1 siRNA or phosphate-buffered saline (PBS) were administered intranasally in healthy
adult C57BL/6 mice using the mannosylated PEI (PEI-Man) (Cat#: 203-10G, Polyplus-
transfection, New York, NY, USA) according to the manufacturer’s protocols and as pre-
viously described [24]. Animals (N = 12/group) received 20 µL of PBS, 20 µL of 8 µg/kg
(N/P = 8), 20 µL of 10 µg/kg (N/P = 8), or 20 µL of 20 µg/kg (N/P = 8) of PEI-Man-siBeclin1
via the intranasal route into each nostril. After the indicated time points, mice were sacri-
ficed, and brains recovered were frozen in liquid nitrogen. Half of the brain hemisphere
was used for histology and immunofluorescence analysis, and the other hemisphere was
minced and used for biochemical analysis.
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2.8. Reverse Transcription Polymerase Chain Reaction (RT-PCR)

siBeclin1 concentrations in the brain and lung tissues were measured by stem-loop
RT-PCR using a TaqMan™ MicroRNA Reverse Transcription Kit (Cat#: 4366596, Life
Technologies, Carlsbad, CA, USA) and customized primers for both the TaqMan® qPCR
assay and the specific stem-loop RT primer for the target siRNA sequence (Cat#: 4398987,
Life Technologies), according to the manufacturer’s protocols.

2.9. Nissl Staining

Postmortem brain tissues were cryopreserved in 4% paraformaldehyde and by serial
exposure to 10% and 20% sucrose, followed by embedding in Tissue Tek optimal cutting
temperature compound (Sakura Finetek, Torrance, CA, USA). Brain sections of 10-micron
thickness were stained with Cresyl violet acetate solution (Nissl). Briefly, sections were
rewarmed at room temperature for 30 min, then exposed to xylene and immersed in
100% ethanol, 95%, 75% ethanol, and distilled water and then stained with a Cresyl violet
solution for 20 min. Sections were washed in distilled water, immersed in 75% ethanol,
95%, and 100% ethanol. Tissues were then cleared by xylene and mounted using mounting
media for visualization. Representative images are shown at 20× and 40×magnification.

2.10. Enzyme-Linked Immunosorbent Assay (ELISA)

Brains recovered postmortem were minced in RIPA lysis buffer and used to measure
the levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, monocyte chemotactic
protein-1 (MCP-1), and regulated on activation, normal T cell expressed and secreted
(RANTES) by ELISA (R&D Systems, Minneapolis, MN, USA), according to the manufac-
turer’s instructions. The optical density (O.D.) was read at A450 on a Synergy HTX plate
reader (BioTek, Winooski, VT, USA).

2.11. Liposome Composition and In Vivo Imaging System (IVIS)

PEI-siBeclin1 complexes at a N/P ratio of 8 were generated using mannosylated
PEI (PEI-Man) (Polyplus-transfection) according to the manufacturer’s protocols and as
previously described [24]. The anionic liposome composed of L-α-phosphatidylserine/L-α-
phosphatidylcholine/cholesterol/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
(dibenzocyclooctyl), at molar ratios of 20/49/30/1, respectively, was commercially pro-
cured from CD Bioparticles (Shirley, NY, USA). To visualize the liposomes, their lipid
membranes were labeled with a hydrophobic dye, DIR (DiIC18(7); 1,1′-dioctadecyl-3,3,3′,3′-
tetramethylindotricarbocyanine iodide). Briefly, the anionic liposome with a size of 100 nm
in diameter was labeled with the hydrophobic fluorescent dye, DIR, in phosphate-buffered
saline at a pH of 7.4 and further encapsulated with and without the PEI-Man-siBeclin1. The
zeta potential was determined by dynamic light scattering using a Nano ZS90 Zetasizer
(Malvern Instruments, Malvern, UK), as previously described [30]. NPs were washed
using distilled water by centrifugation and used for in vitro and in vivo release. Lipid NPs
(3 × 1012 particles/mL) were injected into mice through intranasal administration (20 µL).
The biodistribution of NPs intranasally administered in C57BL/6 mice (N = 4) were imaged
by Xenogen IVIS Optical Imaging System (Spectral Instrument Imaging, Tucson, AZ, USA).
To establish background fluorescence levels, animals were imaged before the NP admin-
istration. At the endpoint (96 h), animals were sacrificed, and perfused brain and other
organs were removed, washed, post-fixed in 10% phosphate-buffered paraformaldehyde,
and evaluated by IVIS Aura software (Spectral Instrument Imaging, Tucson, AZ, USA).
The background fluorescent level (approximately 0.2–0.3 × 105 RFU) were subtracted from
the levels at each time point for each mouse and plotted versus time.

2.12. Statistical Analysis

Data were analyzed using analysis of variance (ANOVA) techniques followed by the
appropriate post hoc test for multiple comparisons when necessary (GraphPad Prism 7
software, La Jolla, CA, USA). A value of p < 0.05 was considered significant.
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3. Results
3.1. siBeclin1 Reduces Viral Production in HIV-Infected Human Microglia Co-Administered with
Antiretroviral Drugs and Attenuates Secreted Viral-Induced Inflammatory Molecules in Human
Microglia and Human Astrocytes

We determined the efficacy of siBeclin1 as an adjunctive therapy in combination
with antiretrovirals in vitro. The antiretrovirals were chosen based on their mechanism of
action on the viral life cycle and their ability to penetrate the blood–brain barrier [5,31].
Human microglia cells infected with the HIVSF162 strain (1 ng/mL) for seven days were
co-exposed with 10 µM of the antiviral nucleoside reverse transcriptase inhibitor (NRTI)
emtricitabine (FTC) or abacavir (ABC), the protease inhibitors lopinavir (LPV) or atazanavir
(ATV), or the integrase inhibitor raltegravir (RGV), with or without siBeclin1 (4 µg). Forty-
eight hours post-treatment, the viral titer was detected by HIV-1 p24 Gag protein ELISA
and presented as a fold change from the control (Figure 1A). Exposure with FTC and
ABC showed a 2.7- and a 3.4-fold reduction in the viral titer, respectively, while the
co-administration of siBeclin1 showed minimal interactions with either antiretroviral
(Figure 1A). Exposure with LPV and ATV caused a 1.3- and a 1.7-fold decrease in the viral
titer, respectively, while the co-administration of siBeclin1 with LPV caused a significant
decrease of 2.7-fold and the co-administration of siBeclin1 with ATV caused a significant
decrease of 5.4-fold when compared to antiretroviral alone (Figure 1A). Exposure with RGV
caused a 2.0-fold decrease in the viral titer, while the co-administration of siBeclin1 caused
a further decrease of 2.4-fold (Figure 1A). Since antiretrovirals are commonly prescribed
in combinations, we determined the response of siBeclin1 when co-administered with
emtricitabine, ritonavir, and atazanavir (cART-1) or lopinavir, abacavir, and raltegravir
(cART-2) in HIV-induced inflammatory cytokines and chemokines (Figure 1B). In human
microglia, the exposure to cART-1 significantly decreased the secretion of IL-6, while a co-
administration with siBeclin1 further diminished the IL-6 production by 1.7-fold. Similarly,
cART-2 exposure significantly decreased the secretion of MCP-1 and RANTES, whereas
the siBeclin1 co-administration further lessened the chemokines production by 1.8- and a
1.5-fold, respectively (Figure 1B). In HIV-infected human astrocytes, exposure to cART-1
and cART-2 significantly decreased RANTES secretions, whereas the administration of
siBeclin1 further reduced RANTES release by 1.4-fold when combined with cART-1 and
by 1.2-fold when combined with cART-2 (Figure 1B). This suggests that siBeclin1 interacts
better with antiretrovirals that are protease inhibitors and integrase inhibitors. Overall, the
data provided convincing evidence that siBeclin1 can attenuate viral-induced inflammatory
responses and further reduce viral production when co-administered with antiretroviral
drugs and, most importantly, with minimum cytotoxicity.

3.2. PEI-Man Targets Human Microglia and Human Astrocytes-Expressing Mannose Membrane
Receptors and Does Not Exert Toxicity to Human Neuronal Cells

Polyethyleneimines (PEIs) are positively charged polymers used to deliver siRNAs for
the induction of RNA interference (RNAi) and to mediate their endosomal release [32]. Since
myeloid (macrophages and microglia) and astrocytes express mannose receptors [33,34], we
used a mannose-bearing PEI as a homing ligand for the specific and selective recognition of
brain cells expressing the mannose receptor. Human microglia, human astrocytes, and hu-
man neuronal cell cultures were individually transfected with FITC-labeled control siRNA
using a mannose (Man)-conjugated PEI reagent. After 24- and 120-h post-transfection, cells
were fluorescently co-immunolabeled for the markers Iba1 for microglia (Figure 2A—left
panel), GFAP for astrocytes (Figure 2A—middle panel), MAP2 for neurons (Figure 2A—
right panel), and DAPI was used for the nucleus. Twenty-four hours post-treatment, green
labeling was detected in microglia and astrocytes, illustrating the target specificity of
PEI-Man-siFITC in glial cells but not in neurons (Figure 2A). Cells analyzed after 120 h
(bottom panel) were transfected twice (at time 0 and time 48 h) and showed green fluo-
rescence in glial cells but not in neurons (Figure 2A). The expression levels of mannose
receptors were further analyzed in human microglia (Figure 2B—top panel), human as-
trocytes (Figure 2B—middle panel), and human neurons (Figure 2B—bottom panel) by
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immunofluorescence, and the representative images showed detection of the mannose
receptors by microglia and astrocytes but not by neurons (Figure 2B), confirming that the
binding of PEI-Man-siFITC was specific to glial cells and not to neurons. The toxicity of
PEI-Man-siBeclin1 NP was analyzed in neuronal cells for up to 72 h, using a time-lapse
digital methodology (Figure 2C). Tracking individual neuronal cell death using time-lapse
imaging revealed no significant toxicity to neurons throughout the treatment period when
compared with the media (control) and siBeclin1 alone (Figure 2C). Additionally, the cell
viability of the microglia, astrocytes, and neurons were detected with fluorescence after
120-h exposure with siBeclin1 alone and PEI-Man-siBeclin1 (Figure 2D). Overall, this data
provided evidence that the PEI-Man reagent can be delivered specifically to glial cells with
minimal toxicity to the glial cells and neurons.
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Figure 2. Target specificity in glial cells expressing mannose receptors. Representative immunofluorescent images of human
microglia, human astrocytes, and human neurons transfected with polyethylenimine-mannose-small interfering fluorescein
isothiocyanate (PEI-Man-siFITC) (green) and immunolabeled with the antibody against ionized calcium-binding adaptor
molecule 1 (Iba1) (red, left panel), glial fibrillary acidic protein (GFAP) (red, middle panel), and microtubule-associated
protein 2 (MAP2) (red, right panel), respectively, after 24 h (top panel) and 120 h (bottom panel) of transfection. 4′,6-
Diamidino-2-phenylindole (DAPI) was used to label nuclear DNA (blue) (A). Representative immunofluorescent images of
human microglia (green, top panel), human astrocytes (green, middle panel), and human neurons (green, bottom panel)
immunolabeled with antibodies against Iba1, GFAP, and MAP2, respectively, and an antibody against the mannose receptor
(red, middle panel). 4′,6-Diamidino-2-phenylindole (DAPI) was used to label nuclear DNA (blue) (B). Images were acquired
using an inverted fluorescence microscope with a 560 Axiovision camera using 40× magnification (Zeiss). Individual
neurons were assessed for survival using time-lapse imaging at the indicated time points following the indicated treatments
over 72 h (C). Neuronal viability was confirmed using a live/dead cell fluorescence assay and manually quantified following
the indicated treatments at 24, 48, and 72 h. Viability was measured by fluorescence after 120 h post-treatments (D). Error
bars show the SEM for three independent experiments, with at least 50 cells per experiment.

3.3. Biodistribution of the PEI-Man-siBeclin1 Nanoparticle in C57BL/6 Mice Brains after
Intranasal Delivery

PEI-Man-siBeclin1 NPs and PBS (control) were delivered via the intranasal (I.N.)
route to the brains of adult C57BL/6 mice. After 4, 24, 48, 72, and 120 h post-treatment,
the kinetics of siBeclin1 were measured in the olfactory bulb (OB), and in different brain
regions (Figure 3 and Supplementary Figure S1), by stem-loop RT-PCR. The concentrations
of siBeclin1 were calculated based on a known siRNA standard curve. PEI-Man-siBeclin1
delivered at a concentration of 8 µg recovered about 2.15-nmol/g RNA at one hour and
3.20-nmol/g RNA at four hours post-delivery in the olfactory bulb and 1.15-nmol/g RNA at
four hours post-delivery in the midbrain (Supplementary Figure S1). siRNA concentrations
decreased at 24 h and were undetectable at 120 h post-delivery (Supplementary Figure S1).
PEI-Man-siBeclin1 delivered at a concentration of 10 µg recovered about 3.05-nmol/g
RNA at one hour and 3.40-nmol/g RNA at four hours post-delivery in the frontal brain
(Figure 3A). At 48 h, about 1.72-nmol/g siBeclin1 was detected, and the concentration of
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the siRNA subsequently decreased with time. In the midbrain, the levels of siBeclin1 varied
from 1.1 nmol/g at one hour to 0.40 nmol/g at 72 h post-delivery, while the detection
decreased by eight-fold at 120 h post-delivery as compared with the early time points
(Figure 3A). The maximal levels of siRNA detection were achieved after the PEI-Man-
siBeclin1 delivery at a concentration of 20 µg NPs (Figure 3B). siRNA at concentrations
of 3.42 nmol/g were detected at one hour and about 4.00 nmol/g were detected at four
hours post-delivery to the frontal brain. RNA at concentrations of 1.25 nmol/g were
detected at one hour and, of 1.44 nmol/g, were detected at four hours post-delivery in the
midbrain (Figure 3B). In the lungs (Supplementary Figure S2), approximately 0.8 nmol/g of
siBeclin1 was detected after one hour post-administration and approximately 0.18 nmol/g
at four hours post-administration (Supplementary Figure S2). The binding efficiency of PEI-
siBeclin1 was previously assessed by Raman spectroscopy [24], and the size, charge, and
polydispersity (PDI) of the PEI-Man-siBeclin1 was determined by dynamic light scattering
(DLS) using a Zeta Potential Analyzer (Malvern Instruments) (Supplementary Figure S2).
The particle size and zeta potential of Pei-Man-siBeclin1 was about 22 nm and 31 mV,
respectively. The PDI was less than 0.4. Since PEI does not contain a fluorochrome, the
polyplex was capped with gold (Au) particles, and the morphology, shape, and structure of
the PEI-Man-siBeclin1-Au NPs were analyzed by transmission electron microscopy (TEM)
using a Philips 201 (Supplementary Figure S2). Both PEI-Man-Au and PEI-Man-siBeclin1-
Au showed a spherical morphology with no apparent agglomeration and a particle size of
about 50 nm (Supplementary Figure S2). Taken together, the data quantitatively confirms
the biodistribution of siBeclin1 in the frontal and midbrain after 1, 4, 24, 48 h of intranasal
delivery, with a significant decrease in RNA detection at 72 and 120 h post-delivery.

3.4. PEI-Man-siBeclin1 Nanoparticle Delivered to the Brain Causes Minimal Toxicity and Reduces
the Secretion of Inflammatory Molecules

Brains recovered at necropsy were stained by the Nissl method to identify the neuronal
morphology and approximate any changes in the neuronal number within the brain area
of interest (prefrontal cortex) (Figure 4A,B and Supplementary Figure S3). After 30 min
and 48 h, no noticeable changes in the neuronal morphology and tissue integrity were
detected in postmortem brains exposed to PEI-Man-siBeclin1 at 8 µg, when compared
with PBS-administrated mice (Supplementary Figure S3). Homogenized brain tissues
recovered at 48 h post-treatment were used to measure the proinflammatory molecules
and showed no differences in MCP-1, RANTES, IL-6, and TNF-α secretion when compared
to the PBS-administrated mouse cohort (Supplementary Figure S3). A lack in the secretion
of inflammatory molecules, along with the absence in morphological changes, correlated
with a lack of adverse behavioral effects in the motor (Supplementary Figure S4). Likewise,
the prefrontal cortex from postmortem brains exposed to PEI-Man-siBeclin1 administered
at 10 µg (Figure 4A) and 20 µg (Figure 4B) concentrations showed a well-maintained neu-
ronal morphology with no evidence of neuron swelling or vacuolation at 4, 48, and 120 h
post-intranasal delivery. Furthermore, there were no apparent signs of gliosis or neuronal
loss in the tissues exposed to PEI-Man-siBeclin1 at 10 µg and 20 µg concentrations at 4, 48,
and 120 h post-delivery when compared to the tissues exposed to PBS (Figure 4A,B). We
also detected for gliosis by immunofluorescence staining using postmortem brain tissues at
24-h after intranasal delivery of PBS and PEI-Man-siBeclin1 at 20 µg. No visible difference
in fluorescence intensity was detected in tissues treated with PEI-Man-siBeclin1 versus
PBS (Supplementary Figure S5). The other half of the brain recovered at necropsy was
homogenized after 1, 4, 24, and 48 h post-treatment and showed no significant changes
in the secretion of the chemokines RANTES and MCP-1 in the frontal cortex and in the
midbrain after extended time points (Figure 4C,D). However, a significant decrease in both
IL-6 and TNF-α were detected in homogenates extracted from the frontal cortex and the
midbrain when compared to PBS-treated brains (Figure 4E,F). This finding is of great inter-
est, as these cytokines are heavily associated with the inflammatory effects of HIV—in fact,
elevated levels of IL-6 and TNF-α—and are often detected in HIV-encephalitic brains [35].
The cytokine and chemokine levels were also analyzed at later time points (data not
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shown); however, only time points that showed high detections of siRNA after intranasal
brain delivery were considered. The overall findings revealed no noticeable differences
between the neuronal structure tissue integrity, with significant changes in the secretion
of proinflammatory molecules in PEI-Man-siBeclin1 NPs administered intranasally when
compared to PBS-treated brains.
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Figure 3. Quantitative measurements of small interfering RNA (siRNA) after intranasal delivery to C57BL/6 mice. After
administration with PEI-Man-small interfering Beclin1 (siBeclin1) at 10 µg (A) and 20 µg (B), and at indicated time points,
postmortem brain regions were minced, and RNA was used to measure siBeclin1 concentrations by stem-loop RT-PCR.
The results are expressed in concentrations (nmol/g). Values were determined from the siBeclin1 standard curves and are
presented as the mean ± the SEM of three independent experiments. (p < 0.05; * vs. 1 h, # vs. 4 h, $ vs. 24 h, & vs. 48 h, and
@ vs. 72 h).

3.5. Biodistribution of DIR-Liposome-Nanoparticles in C57BL/6 Mice after Intranasal Delivery

The next study combined the properties of PEI-Man and lipid systems for siRNA
delivery. Liposomes act as transfection reagents, with some lipids showing increased
endocytosis and influencing endosomal escape [32]. Another advantage of the lipidation
of polyplexes is that it generally decreases their toxicity [36]. To further confirm the biodis-
tribution of siBeclin1, we used a fluorophore-labeled anionic liposome (LP) encapsulated
with PEI-Man-siBeclin1 NPs (LP-NPs) and detection by the In vivo Imaging System (IVIS)
(Figure 5). DIR-liposomes were injected into C57BL/6 mice intranasally alone (Figure 5A),
loaded with siRNA (Figure 5B), or loaded with a PEI-siRNA complex (Figure 5C) and im-
aged by IVIS up to 96 h. High levels of DIR-LP-NPs were recorded throughout the duration
of the experiment (up to 96 h), while the highest fluorescent detection was observed at four
hours in mouse brains after intranasal administration (Figure 5A–D). Mice were sacrificed
at the endpoint (96 h), perfused to eliminate the blood, and the main organs were imaged
by IVIS (Figure 5E,F). The quantification of the fluorescence levels at necropsy suggested
that the fluorescence signals of the DIR-LP-NPs decreased in a row: lungs > liver > kidney
∼= brain > spleen (Figure 5E). For each group of NPs, the greatest signal was detected in
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the lungs, although a considerable signal was also seen in the brain (Figure 5E). This data
confirms the biodistribution of the siBeclin1 NPs in mice after intranasal administration.
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Figure 4. Histological and biochemical analyses of postmortem brain regions after the intranasal delivery of PEI-Man-
siBeclin1 in C57BL/6 mice. Representative images of the Nissl staining of adult mice brains removed postmortem after
treatment with phosphate-buffered saline (PBS) (A,B, top panel) or PEI-Man-siBeclin1 at 10 µg (A) and 20 µg (B) at 4, 48,
and 120 h post-treatment. Corresponding tissues at 1, 4, 24, and 48 h were minced and used to detect RANTES, MCP-1,
tumor necrosis factor alpha (TNF-α), and IL-6 by ELISA (C,D). (A,B) Images were acquired using an inverted fluorescence
microscope with a 560 Axiovision camera using 20× and 40×magnification (Zeiss). (C,D) Values were determined from
the standard curves and are presented as the mean ± the SEM of three independent experiments (p < 0.05; * vs. PBS and #
vs. 10 µg).



Pharmaceutics 2021, 13, 223 11 of 17Pharmaceutics 2021, 13, x 12 of 18 
 

 

 
Figure 5. Live imaging analysis of DIR-labeled nanoparticles after intranasal administration in C57BL/6 mice. Liposomes 
labeled with a fluorescent hydrophobic dye, DIR, were injected into C57BL/6 mice intranasally alone (A), or loaded with 
siRNA (B), or loaded with the PEI-siRNA complex (C) (3 × 1012 particles/mL), and the brain accumulation of liposome-
siRNA formulations was imaged by the In Vivo Imaging System (IVIS) up to 96 h (D). Fluorescent accumulation was 
quantified in different organs recovered at necropsy (E,F). 

4. Discussion 
This present study explored the potential use of siBeclin1 as an autophagy-based ad-

junctive therapy for HIV in myeloid and astrocytic cells and confirmed the delivery of 
siBeclin1 NPs in the brain via the intranasal route. To this day, great efforts are still di-
rected in identifying a potential complementary therapy for the HIV disease and HIV-
mediated neurocognitive disorders. Despite the success of cART, several limitations re-
main to be addressed, including poor BBB penetrance, drug toxicity, and the inability to 
eliminate long-term chronic inflammation [5,37,38]. Autophagy is a catabolic pathway 
that engulfs and sequesters cytoplasmic proteins in double-membrane-bound autophago-
somes and are delivered to the lysosome for degradation [39]. Beclin1, in a complex with 
the class III phosphatidylinositol 3-kinase Vps34, is essential for the formation of the iso-
lation membrane of the autophagosome [40]. Modulation of the autophagy pathway has 
been considered as a therapeutic target for several diseases, including Alzheimer’s dis-
ease, cardiac diseases, and cancer [41–44]. However, the relation between autophagy and 
pathogens is extremely complex, and their interactions differ between cell types. In terms 
of HIV, modulating autophagy has been proposed as a potential alternative approach to 

Figure 5. Live imaging analysis of DIR-labeled nanoparticles after intranasal administration in C57BL/6 mice. Liposomes
labeled with a fluorescent hydrophobic dye, DIR, were injected into C57BL/6 mice intranasally alone (A), or loaded with
siRNA (B), or loaded with the PEI-siRNA complex (C) (3 × 1012 particles/mL), and the brain accumulation of liposome-
siRNA formulations was imaged by the In Vivo Imaging System (IVIS) up to 96 h (D). Fluorescent accumulation was
quantified in different organs recovered at necropsy (E,F).

4. Discussion

This present study explored the potential use of siBeclin1 as an autophagy-based
adjunctive therapy for HIV in myeloid and astrocytic cells and confirmed the delivery of
siBeclin1 NPs in the brain via the intranasal route. To this day, great efforts are still directed
in identifying a potential complementary therapy for the HIV disease and HIV-mediated
neurocognitive disorders. Despite the success of cART, several limitations remain to be
addressed, including poor BBB penetrance, drug toxicity, and the inability to eliminate
long-term chronic inflammation [5,37,38]. Autophagy is a catabolic pathway that engulfs
and sequesters cytoplasmic proteins in double-membrane-bound autophagosomes and
are delivered to the lysosome for degradation [39]. Beclin1, in a complex with the class
III phosphatidylinositol 3-kinase Vps34, is essential for the formation of the isolation
membrane of the autophagosome [40]. Modulation of the autophagy pathway has been
considered as a therapeutic target for several diseases, including Alzheimer’s disease,
cardiac diseases, and cancer [41–44]. However, the relation between autophagy and
pathogens is extremely complex, and their interactions differ between cell types. In terms
of HIV, modulating autophagy has been proposed as a potential alternative approach to
reduced HIV infection [45–49]. A study reported that several autophagy inducers extended
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the retention and sustained release of long-acting antiretroviral nanoformulations in HIV-
infected human monocyte-derived macrophages [50]. The authors suggested that the
sustained release is due to the formation of autophagosomes that enable the intracellular
retention of antiretroviral nanoformulations. On the other hand, we have shown that
reduced levels of Beclin1 in glial cells (both microglia and astrocytes) lessen HIV infection
and inflammatory molecules in vitro [51–53]. Thus, we propose the use of siBeclin1 as an
adjunctive therapy, in combination with cART, to reduce the HIV titer and to reduce the
secretion of HIV-induced inflammatory molecules. Here, we demonstrated that siBeclin1
can be used to increase the efficacy of antiretrovirals in decreasing viral infections and
that siBeclin1 can also be used to reduce the secretion of inflammatory cytokines such as,
MCP-1, IL-6, and RANTES in glial cells (Figure 1). Overall, the antiviral response of LPV,
ATV, and RGV was significantly enhanced when Beclin1 was inhibited, indicating that they
are Beclin1-dependent. Furthermore, ATV and RGV are protease inhibitors that inhibit
proteolytic cleavage by enzymes released by HIV, suggesting that Beclin1 might interact
with the protease molecule or the substrate-binding domain on the protease. The interaction
between Beclin1, the protease, and the integrase inhibitors was further illustrated in the
anti-inflammatory responses in combination with antiretrovirals. In general, silencing
Beclin1 had a greater response in reducing MCP-1 in human microglia when compared to
human astrocytes. While we do not know the exact reason, it could be related to the higher
concentrations of MCP-1 secreted in astrocytes, and, thus, higher concentrations of siRNA
might be needed. Secondly, cART-1 was very effective in reducing MCP-1 and RANTES in
HIV-infected human microglia, and further reduction with siBeclin1 was not detected. On
the other hand, cART-2 had a milder effect and did show further reduction with siBeclin1.
Cytokine production could reflect the amount of viral titer in the infected cell. In fact,
the protease inhibitor LPV showed a mild efficacy on the inhibition of viral replication
(Figure 1A), and cART-2 included LPV. The transcription factor NF-kB regulates the genes
for cytokines, and while we did not measure the activation of NF-kB in this study, we have
done so previously and showed a significant downregulation of NF-kB with siBeclin1 [53].

The introduction of RNAi-based therapeutics faced several difficulties, such as low sta-
bility, toxicity, and off-target effects [54–56]. However, improvements in design and delivery
approaches have advanced several RNAi-based therapeutics to clinical trials [57,58]. One
of the main challenges in the development of RNAi-based therapeutics is to maintain RNA
molecule stability during delivery in vivo. In this study, in order to protect siRNA from
degradation, the nucleotide was encapsulated with a mannosylated polyethyleneimine
polymer. We have previously shown a significant reduction in the expression levels of the
protein Beclin1 with minimum toxicity in murine brains administered with siBeclin1 [24].
Here, we showed the specificity of the PEI-Man-siBeclin1 NPs to target microglia and astro-
cytes without targeting neurons. This is very important, as HIV infects the glia and are the
main cell type secreting inflammatory molecules that can lead to neuronal injury and cell
death. Furthermore, neurons are postmitotic cells and heavily dependent on the autophagy
pathway for the clearance of protein aggregates, misfolded proteins, and dysfunctional
organelles [59]. Thus, prolonged compromised autophagy in neuronal cells can lead to
neurodegenerative diseases [60–62]. Since autophagy is an essential pathway for neuronal
homeostasis and survival, we have modified our previously reported nanoformulation,
which consisted of PEI-siBeclin1, with the addition of mannose molecules to specifically
target mannose receptor-expressing glial cells. The mannose receptor is a transmembrane
glycoprotein from the C-type lectin family that can be used as a potential surface target
for drug delivery using nanocarriers [63–65]. This receptor is expressed in a wide range of
cells, including macrophages, dendritic cells, and, as mentioned earlier, glial cells [66,67].
Interestingly, a study showed the direct involvement of the mannose receptor in an HIV
infection of astrocytes [68]. Here, following the transfection of PEI-Man-FITC, we were able
to detect the colocalization of FITC with the fluorescently immunolabeled cellular markers
GFAP in astrocytes and with Iba1 in the microglia but not with MAP2 in the neurons
(Figure 2). This suggests the specificity of our NP for mannose-expressing glial cells among
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brain cells. Accordingly, we confirmed the expression of the mannose receptor in the
astrocytes and microglia, while showing that the neurons lacked the receptor (Figure 2).
In addition, we showed that the presence of PEI-Man-siBeclin1 did not elicit neuronal
cell death in vitro (Figure 2). The ability to selectively target the microglia and astrocytes
is extremely useful for treating chronic inflammatory diseases. Reports have suggested
targeting astrocytes to improve the functional outcome following a stroke [69] and the
responses after a brain insult or injury [70,71]. Additionally, a study showed that microglia
were selectively labeled using quantum dots in primary cortical cultures and the brain due
to the mannose receptors present on the surface of the microglia [72]. However, there is
no sufficient evidence of using the approach of targeting glial cells to diminish HIV in the
brain. The characterization of PEI-Man-encapsulated siBeclin1 NPs showed a spherical
morphology of the NPs, with an average size of 50 nm and a positive zeta potential (Sup-
plementary Figure S2). After intranasal delivery, the highest concentrations of siBeclin1
were detected at 1, 4, 24, and 48 h in frontal brain tissues, while concentrations of the
siRNA were drastically reduced at 72 and 120 h (Figure 3). Interestingly, concentrations of
siBeclin1 were also detected in the midbrain sections at one and four hours post-delivery.
The live imaging analysis further confirmed the brain accumulation of NPs after 4, 24,
48, and 96 h post-administration (Figure 5). This time-frame coincided with the observed
downregulation of Beclin1 protein expression levels in the postmortem brain tissues of
mice intranasally administered with PEI-siBeclin1 previously reported by us [24]. Other
reports using the intranasal administration of siRNA as a treatment strategy to acutely
suppress the serotonin 5-HT1A autoreceptor to evoke marked antidepressant-like effects in
mice detected siRNA in the brain 48 h post-intranasal delivery [73]. Moreover, Renner et al.
also reported the distribution of fluorescently labeled siRNA to the olfactory bulbs of mice
via the olfactory nerve pathway as early as 30 min following intranasal administration [74].
Similarly, a study using a rat model of focal cerebral ischemia showed that intranasally
administered siRNA targeting high mobility group box 1 (HMGB1) can be delivered within
an hour and distributed widely in the brain. Gene knockdown persisted for 24 h, alleviat-
ing the neurological and behavioral deficits in the postischemic rat brain [75]. Coinciding
with these studies, here, we reported that PEI-Man-siBeclin1 NPs can be delivered to the
mouse brain via the intranasal route without noticeable evidence of the tissue toxicity
and no significant secretion of the inflammatory molecules (Figure 4). Furthermore, while
assessing the loss in motor function as an indicator of neuronal dysfunction, mice that
were intranasally administrated with PEI-Man-siBeclin1 showed no significant impairment
in motor coordination when compared to PBS-treated mice (Supplementary Figure S4),
further confirming the noninvasive and nontoxic properties of PEI-Man-siBeclin1 NPs.

In conclusion, we reported the potential use of targeting the autophagy protein Beclin1
as an effective adjunctive therapy in combination with antiretrovirals for the attenuation
of HIV infection and HIV-induced inflammatory molecules in HIV-infected glial cells
(in vitro). We also provided both qualitative and quantitative evidence of brain delivery,
along with myeloid target specificity, via a noninvasive intranasal delivery of PEI-Man-
siBeclin1 NPs. This potential therapeutic approach could selectively decrease autophagy
levels in microglia and astrocytes, with minimum alterations to neuronal autophagy in
the brain. Current studies are examining the efficacy of the NPs using an HIV-infected
mouse model.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-492
3/13/2/223/s1: Figure S1: Quantitative measurements of siRNA after intranasal delivery to C57BL/6
mice. Figure S2: Characterization of PEI-siBeclin1. Figure S3: Histological and biochemical analyses
of postmortem brain regions after the intranasal delivery of PEI-Man-siBeclin1 8 µg in C57BL/6 mice.
Figure S4: Behavioral assessment after PEI-Man-siBeclin1 8 µg intranasal delivery in mice. Figure S5:
Gliosis evaluation after intranasal administration in C57BL/6 mice.
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