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Replication of the eukaryotic genome is a highly regulated process and stringent control is
required to maintain genome integrity. In this review, we will discuss the many aspects of
the chromatin and nuclear environment that play key roles in the regulation of both
unperturbed and stressed replication. Firstly, the higher order organisation of the genome
into A and B compartments, topologically associated domains (TADs) and sub-nuclear
compartments has major implications in the control of replication timing. In addition, the
local chromatin environment defined by non-canonical histone variants, histone post-
translational modifications (PTMs) and enrichment of factors such as heterochromatin
protein 1 (HP1) plays multiple roles in normal S phase progression and during the repair of
replicative damage. Lastly, we will cover how the spatial organisation of stalled replication
forks facilitates the resolution of replication stress.
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1 INTRODUCTION

Faithful replication of the genome is important to allow successful inheritance of genetic material from
parental to daughter cells in all organisms. Eukaryotic DNA replication is preceded in G1 phase with the
licencing of pre-replicative complexes (pre-RC), containing head-to-head dimers of minichromosome
maintenance (MCM) helicase, to replicative origins throughout the genome in an origin recognition
complex (ORC)-dependent manner (Parker et al., 2017). After the G1 to S phase transition, these pre-
RCs are activated in a process called origin firing, which is highly dependent on Dbf4-dependent kinase
(DDK) cyclin-dependent kinase (CDK) activity (Boos and Ferreira, 2019). Origin firing does not happen
simultaneously across the genome; instead, different regions are replicated at different stages throughout
S phase and this process is coordinated by various factors such as the local chromatin environment and
sub-nuclear localisation. Control of origin firing is vital to ensure coordinated replication of the entire
genome (Boos and Ferreira, 2019). Upon origin firing, Cdc45, and GINS are recruited to MCM to form
the active CMG helicase which unwinds DNA into single stranded DNA (ssDNA) in a bidirectional
manner, forming two replication forks (Burgers and Kunkel, 2017). Replication then occurs from these
forks and DNA in synthesised in a semi-conservative manner. Due to the unidirectionality of the CMG
helicase and replicative polymerases, the leading strand is synthesised continuously by polymerase
epsilon (Polε) and the lagging strand is synthesised in discontinuous Okazaki fragments by polymerases
alpha (Polα) and delta (Polδ) (Burgers and Kunkel, 2017).

Throughout S phase, replication forks may be challenged by various sources of replication stress that
stall DNA synthesis through a variety of mechanisms. Some endogenous sources include challenging
secondary DNA structures within repetitive sequences, barriers to replisomemovement such as torsional
stress or DNA-protein crosslinks (DPCs) and collisions with the transcription machinery (Zeman and
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Cimprich, 2014). Importantly, the high levels of endogenous
replication stress observed in cancer cells are exploited to develop
novel anti-tumour drugs (Ubhi and Brown, 2019). In addition,
several exogenous agents can be used experimentally to induce
replication stress; for example, hydroxyurea (HU) stalls
replication by depleting the cellular supply of
deoxyribonucleotides (Bianchi et al., 1986). In the event of
replication stress, the cell coordinates a variety of pathways to
maintain genome stability and ensure the completion of replication.

These processes occur in a highly organised genome. The
genome is spatially arranged in a hierarchical manner from
nuclear compartments and chromosome territories (CTs) to
topologically associated domains (TADs) and nucleosomes with a
range of chromatin states (Gibcus and Dekker, 2013). Genome-wide
chromosome conformation capture methods (such as Hi-C) are
important tools to delineate how different regions of chromatin
interact with each other, allowing the identification of TADs: loops
of chromatin with borders that restrict the activity of regulatory
elements between different TADs (Dixon et al., 2012; Li et al., 2018).
In addition, genomic regions are identified according to their
transcriptional status as either A or B compartments. A
compartments are transcriptionally active, open and gene-rich
whereas B compartments are transcriptionally silent, compact
and gene-poor (Gibcus and Dekker, 2013). At the smaller scale,
genetic material is packaged into units called nucleosomes
comprised of DNA wrapped around a histone octamer of two
H2A-H2B dimers and two histone H3-H4 dimers which are
connected by H1-bound linker DNA (Luger et al., 2012). The
local chromatin environment defined by composition of these
nucleosomes, histone post-translational modifications (PTMs)
and enrichment of non-histone proteins can affect the levels of
transcription and chromatin compaction. In this sense, chromatin is
categorised into relaxed, transcriptionally active euchromatin and
compact, transcriptionally inactive heterochromatin. For example,
histone marks enriched within active chromatin include methylated
H3K4 and acetylated H3K9 and inactive marks include
trimethylated H3K9 and H3K27 (Kouzarides, 2007). Regions of
chromatin can also be localised within specific sub-nuclear
compartments; for example, the nuclear/nucleolar periphery,
nuclear pores, within nucleoli and in the nuclear interior.

Other than transcriptional regulation, genome organisation has
major regulatory roles in the repair of DNA damage and in faithful
DNA replication. In this Review, we will outline how the
organisation of the genome, ranging from higher order spatial
arrangement to the local chromatin environment, impacts the
complex process of replication and the response to replication stress.

2 HOW CHROMATIN AFFECTS
UNPERTURBED REPLICATION

2.1 Replication Timing
2.1.1 Higher Order Compartments and Nuclear
Location
The spatial positioning of specific genomic regions greatly
influences their replication timing (RT). This region-specific
replication timing program is established during early G1

phase during a period called the timing decision point (TDP),
coinciding with the restoration of genome organisation following
cell division (Dimitrova and Gilbert, 1999; Dileep et al., 2015).
Furthermore, TADs identified through mapping of the entire
genome in several cell types correlate with the basic units of
replication timing known as replication domains (RD); therefore,
the global organisation of the genome contributes to RT at a
greater level than the activation of individual replication origins
(Pope et al., 2014). Notably, early and late replicating regions
correlate with transcriptionally active A and silent B
compartments, respectively, and this correlation can be
followed even with resolution of nuclear sub-compartments
(Ryba et al., 2010; Yaffe et al., 2010; Rao et al., 2014). Histone
modifications enriched at specific nuclear compartments
involved in transcriptional activation/repression also
contribute to this control of replication timing (see below).
Higher order reorganisation of the genome during mouse stem
cell differentiation, which is coordinated with changes in
transcription and cell fate determination, is also associated
with changes in the RT program (Hiratani et al., 2008, 2010).
Recently it was shown that reorganisation of the TADs is
important in modulating origin firing efficiency (Li et al.,
2018). During G1 phase, TADs can be rearranged by
displacement of CTCF and chromatin decompaction mediated
by transcription, which results in the relocation of replication
origins to the TAD boundaries. At the spatial boundary of TADs,
origin firing is more efficient due to the presence of proliferating
cell nuclear antigen (PCNA) clusters that facilitate replication (Li
et al., 2021). This describes a mechanism by which transcription
plays a role in the regulation of replication initiation, a
phenomenon described in multiple studies (Blin et al., 2019;
Chen et al., 2019; Li et al., 2021).

In mammalian cells, the progression of S phase follows a
distinct pattern, where euchromatin is replicated in early S phase,
facultative heterochromatin at the nuclear/nucleolar periphery in
mid S phase and constitutive heterochromatin in late S phase
(Heinz et al., 2018) (Figure 1). Some heterochromatic regions of
the genome, known as lamina-associated domains (LADs) are
associated with the nuclear periphery and bind to the nuclear
envelope via lamin proteins. These regions are generally
replicated during mid-S phase, gene-poor and categorised
under the transcriptionally repressed B compartment. In
support of the nuclear periphery environment playing roles in
replication timing, artificial targeting of mouse chromocentres
containing constitutive heterochromatin to the nuclear periphery
advances their replication timing from late to mid-S phase (Heinz
et al., 2018). It has been hypothesised that the nuclear periphery
contains the replication factors required for origin firing during
mid S phase and therefore provides an environment where
artificially tethered chromatin is replicated during this time.
This advance in replication timing is not due to de novo
deposition of facultative heterochromatin marks following
artificial tethering, although constitutive histone marks are
progressively lost at these regions following subsequent
divisions (Heinz et al., 2018).

An important factor that connects genome organisation with
the replication timing program is RIF1, a protein mainly
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involved in maintaining the late replication status of specific
genomic regions (Hayano et al., 2012; Yamazaki et al., 2012;
Peace et al., 2014; Foti et al., 2016; Hafner et al., 2018; Gnan
et al., 2021). Specifically, RIF1 interacts with the nuclear lamina
and plays a key role in regulating the replication timing of the
LADs (Roux et al., 2012; Foti et al., 2016). Recruitment of RIF1
to RIF1 associated domains (RADs) leads to chromatin
reorganisation of these regions and delays the replication
timing through regulating origin firing (Yamazaki et al.,
2012; Davé et al., 2014; Hiraga et al., 2014; Hiraga et al.,
2017; Foti et al., 2016; Alver et al., 2017). This control of
replication origin firing by RIF1 is highly dependent on its
conserved interaction with protein phosphatase 1 (PP1) (Davé
et al., 2014; Hiraga et al., 2014; Hiraga et al., 2017; Mattarocci
et al., 2014; Alver et al., 2017; Gnan et al., 2021). Mechanistically,
recruitment of PP1 to replication origins by RIF1 reverses the
phosphorylation of the MCM complex by DDK, a modification
that is required for initiation of replication, and therefore
prevents premature replication at specific genomic loci (Davé
et al., 2014; Hiraga et al., 2014).

2.1.2 Link Between Histone Modifications and
Replication Timing
In both mouse and human cell types, there is a broad correlation
between early replicating regions with “active” chromatin marks
such as methylated H3K4, H3K36me3, H4K20me1 and
acetylated H3K9 but not “repressive” marks including di- and
trimethylated H3K9 and H3K27me3 (Hiratani et al., 2008;
Yokochi et al., 2009; Ryba et al., 2010; Picard et al., 2014)
(Figure 1). In one study in human cells, the strongest
correlation between later replication and repressive histone

marks was detected with H3K9me2, which is commonly
enriched at the nuclear periphery (Ryba et al., 2010).

In mouse embryonic stem cells (mESCs), the degree of DNA
methylation affects replication timing through affecting histone
modifications particularly at pericentric heterochromatin
(Jørgensen et al., 2007a; Takebayashi et al., 2021). Partial loss
of DNA methylation (Dnmt1 single knockout), as well as loss of
other repressive chromatin modifiers, results in earlier replication
of pericentric major satellite repeats (Jørgensen et al., 2007a).
Interestingly, complete abolishment (Dnmt1, Dnmt3a, and
Dnmt3b triple knockout) results in abnormal enrichment of
H3K27me3 at some loci of pericentric heterochromatin, where
it instead causes a delay in replication timing (Takebayashi et al.,
2021). However, this redistribution of H3K27me3 does not cause
RT changes in other regions of the genome and replication timing
at these loci appears to be more dependent on transcriptional
changes caused by loss of DNA methylation. In another study, it
was demonstrated that H3K27me3 enrichment broadly correlates
with mid-S phase replicating origins (Picard et al., 2014).

Monomethylation and dimethylation of lysine 20 of histone
H4 (H4K20me1 and me2) are found throughout the genome and
coincide with chromatin compaction and transcriptional
inactivation, whereas trimethylation (H4K20me3) is exclusively
enriched at pericentric heterochromatin and imprinting control
regions (Schotta et al., 2004; Karachentsev et al., 2005; Delaval
et al., 2007). The methyltransferase PR-Set7 deposits H4K20me1
at replication origins and facilitates loading of the pre-RC
complex during licencing. This activity is regulated by
ubiquitin-mediated degradation of PR-Set7 during S phase to
prevent re-replication (Tardat et al., 2010). In contrast, SET8-
dependent methylation of H4K20 has been implicated in

FIGURE 1 | The replication timing of the eukaryotic genome. Fluorescencemicroscopy images of U2OS cells labelled with 5-ethynyl-2′-deoxyuridine (EdU, red) and
DAPI (blue) and schematics showing the three distinguishable sub-phases of replication; early, mid and late. Below are descriptions of the chromatin replicated in each of
these sub-phases.
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repressing replication origin licencing through facilitating
chromatin compaction (Shoaib et al., 2018). H4K20me1 is
present in approximately half of origins and enriched in early-
and mid-replicating regions (Picard et al., 2014). The control of
the proportion of nucleosomes with each methylation state of
H4K20 is critical to regulate origin selection to ensure no re-
replication of DNA, allowing faithful replication of the genome
(Schotta et al., 2008; Beck et al., 2012). In addition, H4K20me2 is
enriched at replication origins, where it acts as a binding site for
ORC1, and H4K20me3 is vital for ensuring the late replication of
pericentric heterochromatin (Kuo et al., 2012; Brustel et al., 2017).

2.1.3 Modulation of Replication Timing by
Heterochromatin Protein 1
Heterochromatin protein 1 (HP1) is a non-histone protein that is
recruited to regions of heterochromatin through binding to
methylated H3K9 (Lachner et al., 2001). This factor is an
identifier of heterochromatin in several organisms and plays a
major role in maintaining the local chromatin environment of
heterochromatin. Therefore, the different isoforms of HP1
(HP1α, β and γ in humans) play varying roles in regulating
processes including transcription, chromatin compaction
(Eissenberg et al., 1990; Kwon and Workman, 2011), cell
differentiation (Mattout et al., 2015; Casale et al., 2019) and
DNA repair (Dinant and Luijsterburg, 2009; Bártová et al., 2017).
In Drosophila, HP1 has contrasting roles in replication timing
depending on nuclear localisation and H3K9 methylation status.
HP1 has been implicated in promoting the early replication
timing of some regions with low H3K9me2 enrichment and in
mediating later replication of regions with greater H3K9
methylation, such as pericentric heterochromatin (Schwaiger
et al., 2010) (Figure 1). Additionally, HP1 is sufficient to
induce the late replicating characteristic normally seen in
heterochromatic regions when artificially tethered to earlier
replicating loci (Pokholkova et al., 2015). Interestingly, HP1
interacts with ORC, a complex that promotes origin firing,
and this association is important in HP1α localisation and
heterochromatin formation (Pak et al., 1997; Prasanth et al.,
2010).

However, mouse HP1 was shown to be dispensable for the
maintenance of late replication within pericentric
heterochromatin, with the methylation status of H3K9 being
more important in establishing the RT of these regions (Wu et al.,
2006). Therefore, it is still unclear whether the roles of HP1 in
controlling the late replication of pericentric heterochromatin is
conserved across organisms or whether H3K9 methylation, a
repressive mark which recruits HP1, is more important.

2.2 Restoration of Chromatin Following
Replication
2.2.1 Formation of Nucleosomes Behind the Fork
During replication, histones must be dissociated from the DNA to
allow progression of the replication fork and it is important that
they are accurately restored on the parental strand and duplicated
onto the daughter strand. Movement of the replisome destabilises
chromatin, leading to decondensation and increased mobility of

linker histone H1 (Gasser et al., 1996; Contreras et al., 2003;
Kuipers et al., 2011). Indeed, mobility of H1 regulated by its
phosphorylation is involved in controlling replication timing,
presumably by allowing chromatin relaxation (Contreras et al.,
2003; Alexandrow and Hamlin, 2005; Katsuno et al., 2009; Thiriet
and Hayes, 2009).

Histone deposition is not identical across the leading and
lagging strands of replication, and therefore strand-specific
mechanisms of chromatin restoration have been identified
which are dependent on several components of the replisome.
For example, MCM2 and polymerase α directly bind to parental
H3-H4 and recycle it onto the lagging strand, and Dpb3 and
Dpb4 (accessory subunits of polymerase ε) facilitate the
deposition of H3-H4 onto the leading strand (Gan et al., 2018;
Petryk et al., 2018; Yu et al., 2018; Li et al., 2020). It is important
that these strand-specific mechanisms of histone deposition are
highly regulated to allow symmetric inheritance of histones,
alongside their post-translational modifications, during
duplication of the genome.

As the replication fork progresses, parental histones are
recycled onto the nascent DNA and newly synthesised
histones are added in any gaps with the help of histone
chaperones (Alabert and Groth, 2012; Stewart-Morgan et al.,
2020). For example, chromatin assembly factor 1 (CAF-1) is an
important chaperone which interacts with the replication factor
PCNA to deposit histones as replication occurs and has roles in
maintaining heterochromatin and transcriptional regulation (Yu
et al., 2015). The anti-silencing function 1 (ASF1) chaperone
interacts with Mcm2-7 and deposits parental and new H3-H4
dimers directly behind the replication fork in a process that is
disrupted during replication stress (Groth et al., 2007;
Jasencakova et al., 2010). Another important histone
chaperone is called facilitates chromatin transcription (FACT),
which also interacts with the replication machinery and has roles
in both the eviction and deposition of histones during replication
(Formosa, 2012). In order to maintain the epigenomic features of
the parental DNA, specific histone variants must also be
deposited onto the nascent DNA using specialised histone
chaperones. This restoration of chromatin does not always
occur in a replication-dependent manner; for example,
centromere protein A (CENP-A, a H3 variant) deposition by
Holliday junction recognition protein (HJURP) at centromeres
and H3.3 deposition by death-associated protein 6 (DAXX) at
pericentric and telomeric heterochromatin occur after replication
in the following G1 phase (Ahmad and Henikoff, 2002; Jansen
et al., 2007; Foltz et al., 2009; Goldberg et al., 2010; Lewis et al.,
2010).

2.2.2 Maintenance of Histone Modifications
Following the deposition of nucleosomes onto nascent DNA, it is
important that histone PTMs from the parental chromatin are
inherited so that the newly synthesised chromatin maintains the
same transcriptional regulation, conformation, and replication
timing. Methylation and acetylation marks are maintained on
parental histones, but these are only present on half of the
chromatin following replication due to the incorporation of
new unmodified histones, so further processes are required to
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ensure full restoration of PTMs (Scharf et al., 2009; Xu et al.,
2012a; Alabert et al., 2015). If a residue is mono-/dimethylated
(e.g., H3K9me1/me2, H3K27me1/me2 and H4K20me1/me2),
this mark is diluted following replication and newly
incorporated histones obtain these PTMs de novo within one
cell cycle to become identical to the parental histones (Alabert
et al., 2015). On the other hand, trimethylation (e.g., H3K9me3
and H3K27me3) is established slowly and continuously,
independent of replication, across several cell divisions
(Alabert et al., 2015; Reverón-Gómez et al., 2018).
Consequently, oscillations in the levels of histone marks can
be observed throughout the cell cycle, and these are not equal at
all loci and for all types of histone modification. For example, the
H3K4me3 mark enriched at active promoters recovers much
quicker than repressive marks such as H3K9me3 and H3K27me3
(Alabert et al., 2015; Reverón-Gómez et al., 2018; Stewart-
Morgan, Petryk and Groth, 2020).

2.2.3 Roles of Heterochromatin Protein 1 in
Maintaining Heterochromatin
In mouse cells, the interaction of HP1 with the histone chaperone
CAF-1, particularly the large p150 subunit, is essential for S phase
progression (Quivy et al., 2008). Disruption of this interaction
impedes replication of pericentric heterochromatin in a manner
that is independent of the canonical histone deposition roles for
CAF-1. Intriguingly, p150 is essential for mouse embryo viability
during the period of development where HP1-enriched domains
are formed (the 8–16 cell stage), suggesting major importance for
the p150-HP1 interaction in preserving the survival of cells that
are rapidly proliferating and therefore undergoing frequent DNA
replication (Houlard et al., 2006).

Additionally, the p150-HP1 complex colocalises with the
histone methyltransferase SETDB1 to promote
monomethylation of non-nucleosomal histone H3.1 (Loyola
et al., 2009). This is important to allow formation of
H3K9me1 at newly incorporated histones immediately
following DNA replication, which then nucleates formation of
trimethylated H3K9 catalysed by Suv39H1/H2. Additionally, the
HP1-CAF-1-SETDB1 complex has roles in depositing HP1 at
sites of pericentric regions already enriched in H3K9me3.
Therefore, CAF-1 has numerous roles in preserving repressive
H3K9me3 and HP1 enrichment at pericentric heterochromatin
following replication (Loyola et al., 2009).

3 ROLE OF THE LOCAL CHROMATIN
ENVIRONMENT DURING REPLICATION
STRESS
Replication stress (RS) is defined as the slowing or blocking of
replication fork progression by a range of endogenous and
exogenous sources. Mild RS only results in the slowing of the
replication fork velocity and the activation of dormant origins in
order to complete replication (Técher et al., 2017). However, as
RS gets more severe, the cellular response becomes more intricate.
Prolonged RS may lead to uncoupling of the replisome, resulting
in production of stretches of replication protein A (RPA)-bound

ssDNA which activate the ataxia telangiectasia and Rad3-related
(ATR) kinase (Byun et al., 2005). Downstream effectors of ATR
such as checkpoint kinase 1 (CHK1) activate the intra-S phase
checkpoint which protects the genome from further instability by
inhibiting late origin firing and cell cycle progression and
promoting DNA repair pathways (Iyer and Rhind, 2017). In a
process called fork reversal, the stalled replication fork is
remodelled to form a four-way junction to provide protection
against excessive degradation (Neelsen and Lopes, 2015).
Although this fork reversal, in combination with the
recruitment of multiple factors including RAD51 and
FANCD2, prevents degradation by nucleases such as MRE11,
DNA2 andMUS81, some controlled resection is required to allow
rescue of replication (Bryant et al., 2009; Schlacher et al., 2012;
Thangavel et al., 2015; Lemaçon et al., 2017). Replication restart
following this remodelling of the fork requires the recruitment of
several HR proteins, importantly RAD51, which facilitate
homology-directed restart (Ait Saada et al., 2018). Therefore,
components of homologous recombination, a pathway
canonically associated with DSB repair, play various roles in
fork remodelling, protection and restart in the event of replication
stress. In this section, we will discuss how several aspects of the
local chromatin environment are involved in the regulation of
these pathways that play central roles in the resolution of
replication stress (Table 1).

3.1 Histone Variants
In humans, there are several variations of histones H2A, H2B, H3,
and H4 which have different sequences to their canonical histone
counterparts and may be localised to specific genomic regions to
influence the structure and function of the chromatin (Martire
and Banaszynski, 2020). Here, we will describe the importance of
some of these histone variants during replication and particularly
in the event of replication stress.

3.1.1 Histone H2AX
The histone H2A variant H2A.X has major implications in
genome stability: specifically, H2A.X phosphorylated at serine-
139 rapidly after DSB induction, creating a mark known as
γH2AX (Rogakou et al., 1998). γH2AX formation catalysed by
the ATR signalling cascade also occurs following replication
stalling before the collapse of forks in DSBs, although
inhibition of Chk1, a downstream factor of ATR, has been
shown to induce γH2AX formation (Ward and Chen, 2001;
Sirbu et al., 2011). This association of γH2AX presumably
facilitates recruitment of DNA repair proteins and studies in
yeast have revealed a role in repairing replicative damage in cells
without intra-S phase checkpoint activation (Redon et al., 2003).
Interestingly, γH2AX distribution following replication stress is
not equal across the genome and greater association is seen in
commonly fragile regions containing compact chromatin which
are depleted of transcription start sites and CpG islands (Lyu
et al., 2019). Therefore, this modification could be primarily
important to promote certain pathways involved in the
resolution of replicative damage in specific chromatin contexts,
or this enrichment could reflect persistent replication stress
particularly in fragile regions of the genome that are difficult
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to repair. In addition, ATR kinase activity and H2AX
phosphorylation also occur during unperturbed S phase to
facilitate the correctly timed transition into G2 phase (Saldivar
et al., 2018). Consequently, γH2AX not only has direct roles
during stressed replication but also is essential to maintain
genome integrity by preventing premature entry into mitosis
and under-replication of the genome.

3.1.2 Macro H2A
MacroH2A is a subfamily of histone H2A variants comprised of
three isoforms called macroH2A1.1, macroH2A1.2 (which are
splice variants from the same gene) and macroH2A2 (Rasmussen
et al., 1999; Costanzi and Pehrson, 2001). Structurally, these
proteins are composed of a H2A domain with an N-terminal
non-histone macro domain and are approximately three times
the size of other H2A variants (Pehrson and Fried, 1992). Some
functions of this histone variant have been linked to X
chromosome inactivation (Costanzi and Pehrson, 1998;
Mermoud et al., 1999; Rasmussen et al., 2000), transcriptional
regulation (Ouararhni et al., 2006; Gamble et al., 2010; Creppe
et al., 2012) and nucleosome organisation (Angelov et al., 2003;
Abbott et al., 2004; Chakravarthy and Luger, 2006; Muthurajan
et al., 2011; Chakravarthy et al., 2012). Additionally, macroH2A is
enriched at heterochromatin regions, particularly those marked
by H3K9me3, and has roles in higher genome organisation
(Douet et al., 2017; Kozlowski et al., 2018).

Alongside functions in homology-directed DSB repair (Xu
et al., 2012b; Khurana et al., 2014), macroH2A1.2 also has roles
during replication stress, where it is deposited onto chromatin by
the FACT histone chaperone (Kim et al., 2018). This activity is
particularly important at common fragile sites (CFS), regions that
are more prone to replication stress induced damage. MacroH2A
deposition is also assisted by the LSH chromatin remodeller and
promotes BRCA1 and RAD51 recruitment to stalled forks to
promote fork protection and facilitate repair (Kim et al., 2018; Xu
et al., 2021). Recently, it was shown that loss of this macroH2A
deposition is associated with an increase of H4K20me2 at stalled
forks which then favours 53BP1 recruitment to stalled forks
rather than BRCA1, causing a detrimental effect on fork
protection (Xu et al., 2021). MacroH2A1.1 and 1.2 are
enriched on the mammalian female inactive X (Xi)
chromosome, a highly condensed genomic region with
increased susceptibility to replication stress (Costanzi and
Pehrson, 1998; Koren and McCarroll, 2014). The
macroH2A1.2 variant is involved in supressing replication
stress at the Xi, whereas the splice variant macroH2A1.1
activates the alternative end joining DSB repair pathway,
leading to Xi anaphase defects in the absence of H2A1.2
(Sebastian et al., 2020). Overall, these studies suggest an
importance for macroH2A in facilitating the proper repair of
difficult-to-replicate genomic loci such as CFS’s and the inactive
X chromosome. The replication stress-dependent recruitment of
macroH2A to fragile sites is mainly transient but some remains
after resolution of replication stress and protects these difficult to
replicate regions from future replicative damage (Kim et al.,
2018). Since macroH2A has roles in repressing gene
expression, X inactivation and nucleosome organisation, it

would be important to see whether this continued enrichment
alters transcription and genome organisation at these sites.

3.1.3 H2A.Z
H2A.Z is a variant of histone H2A that is incorporated
throughout the cell cycle and has the ability to alter the
physical properties of the nucleosome and create specialised
chromatin structures (Fan et al., 2002, 2004). This histone
variant has conserved functions in the regulation of
transcription in euchromatic genes (Zhang et al., 2005; Hardy
et al., 2009). Nucleosomes associated with H2A.Z also enhance
replication origin firing efficiency through promoting H4K20
dimethylation and ORC1 recruitment (Long et al., 2020). In yeast,
incorporation of the H2A.Z homologue Htz1 by Swi2/Snf2-
related chromatin remodelling complex (SWR-C) is important
in maintaining genome stability following both DSBs (Kalocsay
et al., 2009; Horigome et al., 2014) and replication stress (Van
et al., 2015; Srivatsan et al., 2018). Specifically, Hitz1 has roles in
preventing the misincorporation of nucleotides during
replication and in promoting the repair of replicative damage
(Van et al., 2015; Srivatsan et al., 2018). Incorporation of Htz1
during replication stress has been hypothesised to prevent
collapse of forks into DSBs by two mechanisms: either it
stabilises the fork to prevent replisome dissociation, or it is
incorporated after replisome dissociation to prevent further
degradation of the fork by nucleases (Srivatsan et al., 2018).
Furthermore, the balance of H2A.Z on chromatin is vital: as
removal by the INO80 chromatin remodeller is also important in
maintaining replication fork stability and to allow HR to occur
(Papamichos-Chronakis et al., 2011; Lademann et al., 2017).

3.1.4 CENP-A at Centromeres
Despite being located between pericentromeric regions
expressing features of heterochromatin, mammalian
centromeres display active epigenetic marks (e.g., H3K4me2
and H3K36me2) combined with production of long non-
coding RNA transcripts (Sullivan and Karpen, 2004). In
human cells, centromeres are composed of tandem alpha
satellite repeats and enriched in CENP-A, a histone H3
variant specific for centromeres which has key roles in
formation of kinetochores to allow proper chromosome
segregation (Barra and Fachinetti, 2018). Because of their
involvement in chromosome segregation, the maintenance of
centromere integrity during replication is vital to ensure proper
cell division.

Unlike many canonical histone variants, CENP-A is not
deposited onto newly replicated DNA during S-phase but is
instead incorporated in the following G1-phase by its
dedicated histone chaperone, HJURP (Jansen et al., 2007).
Contrary to this, CENP-A has recently been shown to possess
key roles in maintaining centromere integrity during DNA
replication (Giunta et al., 2021). CENP-A deposition prevents
the formation of centromeric R-loops formed as a consequence of
transcription-replication conflicts (TRCs) during late S phase,
thereby promoting fork progression. Centromeres depleted of
CENP-A display multiple replication-associated defects such as
error-prone mitotic DNA synthesis (MiDAS) and chromosomal
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translocations, breakages, and fragmentation. These
chromosomal aberrations are the result of recombination
between alpha satellite repeats in an R-loop dependent
manner rather than being due to defects in chromosomal
segregation during mitosis (Giunta et al., 2021). The
specialised function for CENP-A in removing R-loops is
important because some alpha-satellite RNA transcripts
remain associated with the centromere and could therefore
disrupt the progression of incoming replication forks
(McNulty et al., 2017).

3.2 Role of Linker Histone H1
In human cells, eviction of the linker histone H1 by the histone
chaperone SET results in sensitivity to DNA damage
(Mandemaker et al., 2020). Although depletion of SET does
not alter normal S phase progression, it does cause resistance
to the replication stress-inducing agent HU; suggesting
important roles for chromatin-bound H1 during perturbed
replication (Mandemaker et al., 2020). In agreement,
overexpression of SET causes slower S phase progression
upon treatment of HU (Kalousi et al., 2015). SET also
promotes retention of the heterochromatin factors KAP1
and HP1 on chromatin which causes chromatin compaction
and inhibition of HR repair of collapsed forks (Kalousi et al.,
2015). Potentially, loss of SET and subsequent H1 retention
and chromatin decompaction could allow for greater access of
DNA repair factors to replicative lesions, thereby promoting
proper repair and cell survival.

In addition, the linker histone dH1 in Drosophila has been
implicated in preventing the accumulation of R-loops, a
structure which can induce replication stress (Bayona-Feliu
et al., 2017). Upon depletion of dH1, transcriptional
repression is relieved within heterochromatin regions, leading
to the accumulation of R-loops. Interestingly, R-loop
accumulation was not seen upon depletion of HP1a,
suggesting that this effect is only seen upon loss of H1 and is
not a general effect of transcriptional derepression in
heterochromatin (Bayona-Feliu et al., 2017), although loss of
repression in repetitive regions has been associated with R-loop
prevention in C. elegans (Zeller et al., 2016). Notably, in mouse
cells depleted of histone H1, fork stalling as a result of
transcription-replication conflicts has also been observed
(Almeida et al., 2018). H1 loss leads to chromatin
decompaction which causes acceleration of both transcription
initiation and replication leading to pathogenic accumulation of
R-loops and collisions between the transcription and replication
machineries (Almeida et al., 2018).

The linker histone H1 has been shown to have roles in both
preventing the onset of replication stress and in facilitating
the repair of replicative damage. Currently, it is unclear how
H1 elicits these effects: whether it is due to its roles in
organising nucleosome particles into stable higher order
structures and maintaining proper spacing between
nucleosomes or in the formation of heterochromatin and
maintaining transcriptional repression (Happel and
Doenecke, 2009).

3.3 Histone Modifications and Replication
Stress
3.3.1 Histone Ubiquitination
Ubiquitination of histone H2AK13 and K15 adjacent to DNA
lesions plays a central role in the DNA damage response, where
these marks facilitate the recruitment of several DNA repair
factors (Smeenk and Mailand, 2016). During unchallenged S
phase, H2A ubiquitination by RNF168 and activation of the
DNA damage response (DDR) is required for normal
replication progression and to prevent fork stalling (Schmid
et al., 2018). In addition, RNF168 plays a role in preventing
accumulation of reversed forks through restarting stalled
replication, particularly at difficult to replicate repetitive
regions of the genome (Schmid et al., 2018). Formation of
γH2AX by ATR and ATM kinases occurs upstream of H2A
ubiquitination and is involved in coordinating this DDR
activation during S phase (Schmid et al., 2018; Nakamura
et al., 2021). Interestingly, ATM inhibition increases activation
of the histone ubiquitin response upon fork breakage by
camptothecin. This is possibly because ATM is involved in a
negative feedback loop alongside PLK1 where end resection at
single-ended DBSs deactivates the histone ubiquitination
pathway (Nakamura et al., 2021).

Monoubiquitinated histone H2B is a dynamic histone mark
first associated with transcription and repair (Kao, 2004; Fleming
et al., 2008) also possessing other roles in controlling chromatin
compaction during DSB repair (Moyal et al., 2011; Nakamura
et al., 2011). In yeast, the ubiquitin ligase responsible for H2B
monoubiquitination, Bre1, is maintained on replicating DNA and
is further enriched at stressed replication forks (Trujillo and
Osley, 2012; Lin et al., 2014; Hung et al., 2017). During
replication, H2B ubiquitination plays a role in regulating
nucleosome assembly onto replicating DNA, which facilitates
normal fork progression and replisome stability during
replication stalling by HU (Trujillo and Osley, 2012). In
contrast, H2Bub has also been shown to restrict fork
progression upon HU-induced stress through coordinating
chromatin assembly and activation of the Rad53-dependent
intra-S checkpoint (Lin et al., 2014). Intriguingly, other roles
for H2Bub during replication stress are linked to its involvement
in regulating DNA damage tolerance (DDT) pathways (Northam
and Trujillo, 2016; Hung et al., 2017). This mark promotes
polymerase eta (Polη)-dependent translesion synthesis (TLS)
and suppresses the more mutagenic polymerase zeta (Polζ)-
dependent pathway following fork stalling by HU and UV
treatment (Northam and Trujillo, 2016). In another study,
monoubiquitinated H2B was shown to promote
recombination-dependent lesion bypass following treatment
with alkylating agents, specifically by altering the chromatin
dynamics and allowing RAD51 recruitment (Hung et al.,
2017). This mark then facilitates repair of these bypassed
lesions post-replication, possibly by promoting activation of
the G2/M checkpoint. Therefore, this histone modification has
cell cycle-specific roles for maintaining genome replication
following replicative damage checkpoint (Hung et al., 2017).
Whilst these studies have elucidated the importance of H2B
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monoubiquitination and chromatin dynamics during replication
stress, it remains unclear how this modification has seemingly
contradictory roles in both stalling of replication through
checkpoint activation and coordinating DDT pathways to
allow DNA synthesis beyond lesions and subsequent post-
replicative repair.

3.3.2 Histone H3 Modifications
Methylation of H3K4 has been implicated to have contrasting
roles in the protection of stalled replication forks in mammalian
cells depending on which methyltransferase deposits this mark
(Ray Chaudhuri et al., 2016; Higgs et al., 2018). In mouse cells,
MLL3/4 is responsible for depositing H3K4me1 and H3K4me3 at
stressed forks, where it promotes fork degradation by MRE11 in
BRCA-deficient mouse cells with existing defects in fork
protection (Ray Chaudhuri et al., 2016). Therefore, loss of
H3K4 methylation by MLL3/4 rescues fork protection in
BRCA-deficient cells, leading to chemoresistance (Ray
Chaudhuri et al., 2016). In contrast, monomethylation of
H3K4 at stressed forks by human SETD1A promotes RAD51-
dependent replication fork protection from degradation by
DNA2 and CHD4 (Higgs et al., 2018). This fork protection is
mediated through chaperoning of histone H3.1 by the Fanconi
anaemia factor FANCD2 (Higgs et al., 2018), a factor involved in
interstrand crosslink repair, RAD51-mediated replication fork
protection and the replication of fragile sites (Schlacher et al.,
2012; Sato et al., 2012; Madireddy et al., 2016; Higgs et al., 2018).
It is interesting that methylation of H3K4 by different
methyltransferases leads to opposite effects on fork protection
and this could mean that these enzymes are either active at
different times during the replication stress response, are
recruited differentially to certain genomic loci or are
responsible for methylation within a specific local chromatin
context (e.g., presence of H2BUb) (Wu et al., 2008; Higgs et al.,
2018). Additionally, H3K4me is commonly found in active
regions, so it would be important to investigate whether these
mechanisms are mostly important at these regions or whether the
mark is added de novo throughout the genome in response to
replication stress. Notably, fork protection upon loss of MLL3/4
was observed only in BRCA-deficient cells whereas fork
degradation by SETD1A loss was observed in BRCA-WT cells
(Ray Chaudhuri et al., 2016; Higgs et al., 2018). Therefore, the
promotion of fork degradation by MLL3/4 mediated methylation
of H3K4 may specifically occur when HR-mediated fork
protection is lost.

In yeast, H3K4 methylation plays a role in slowing down fork
progression through highly transcribed regions to prevent
transcription-replication conflicts, thereby ensuring faithful
replication (Chong et al., 2020). Indeed, transcriptionally
active genes are commonly decorated with H3K4me3 (Santos-
Rosa et al., 2002; Guenther et al., 2007). Another histone H3
modification with roles in preventing TRCs is methylated H3K9
(Zeller et al., 2016), a mark commonly enriched at
heterochromatin that plays a role in HP1 recruitment and
transcriptional repression (Bannister et al., 2001; Lachner
et al., 2001; Nakayama, 2001). In C. elegans, H3K9me2/me3
function to repress genes in repetitive elements, thereby

suppressing R-loop formation and preventing replication stress
(Zeller et al., 2016).

Trimethylated H327 is also amark of transcriptionally inactive
chromatin and is deposited by enhancer of zeste homologue 2
(EZH2), a component of the polycomb repressive complex 2
(PRC2), during both G1 and S phases (Hansen et al., 2008; Morey
and Helin, 2010). Alongside its important roles in transcription
and cell identity (Wiles and Selker, 2017), H3K27me3 also plays a
role during replication stress (Rondinelli et al., 2017). Methylated
H3K27 is involved in the recruitment of MUS81 to stalled forks,
an endonuclease which creates DSBs to facilitate HR-mediated
fork restart (Hanada et al., 2007; Rondinelli et al., 2017). Whilst
activation of this pathway is required for replication restart in
BRCA2-deficient cells, excessive fork degradation by MUS81 can
be toxic. Therefore, in a similar manner to with the MLL3/4/
H3K4me/MRE11 axis (Ray Chaudhuri et al., 2016), loss of EZH2
and subsequent fork protection from MUS81 endonuclease
activity leads to chemoresistance in BRCA-deficient cells
(Rondinelli et al., 2017). These roles of epigenetic
modifications in protecting the replication fork, thereby
allowing cancer cells to become resistant to therapies, have
major clinical implications. For example, expression levels of
EZH2 could be used as a biomarker to predict resistance to drugs
such as poly (ADP-ribose) polymerase (PARP) inhibitors and
allow more stratified treatment for BRCA-deficient cancers
(Rondinelli et al., 2017).

3.3.3 Histone H4 Modifications
In addition to its roles in replication timing, the methyltransferase
PR-Set7 responsible for H4K20 methylation has roles in
facilitating S phase progression and during replication stress,
where it interacts with the key replication factor PCNA
(Jørgensen et al., 2007b). In addition, depletion of this factor
affects the number and velocity of replication forks and causes
activation of p53 and Chk1 dependent checkpoints. Loss of
H4K20 methylation in this manner increases the frequency of
replicative DNA breaks which then recruit repair factors such as
RPA, RAD51 and 53BP1 (Jørgensen et al., 2007b; Tardat et al.,
2007). Importantly, unmethylated H4K20 which marks newly
incorporated histones plays a role in regulating the post-
replicative repair of DNA lesions obtained during S phase
(Saredi et al., 2016). H4K20me0 provides a binding site for
TONSL-MMS22L in G2/M phases, and this complex then
promotes HR repair (Duro et al., 2010; Saredi et al., 2016).
Overall, these studies show roles for H4K20 methylation status
in the regulation of replication fork progression and, in addition,
the repair of replicative lesions after S phase completion.

Histone acetyltransferase 1 (HAT1) catalyses the acetylation of
histone H4 at lysine 5 and lysine 12 and this activity is important
in the processing of newly deposited histones during replication
(Nagarajan et al., 2013). Depletion of HAT1 results in replication
stalling and sensitivity of cells to replication stress induced by HU
(Nagarajan et al., 2013; Agudelo Garcia et al., 2020). The
importance of HAT1 in maintaining genome stability during
replication stress is due to its roles in protecting stalled forks from
degradation by MRE11 (Agudelo Garcia et al., 2020). In contrast,
acetylation of H4K8 by p300/CBP-associated factor (PCAF)
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promotes nucleolytic degradation of stalled forks in BRCA-
deficient cells, suggesting differential roles for histone
acetylation on replication fork protection depending on which
residue is modified and by which acetyltransferase (Kim et al.,
2020). Acetylation of H4K8 by PCAF provides a binding site for
MRE11 and EXO1 nucleases, and this activity is suppressed by
ATR-mediated phosphorylation of PCAF to maintain tight
control of stalled fork degradation. In BRCA2-deficient
tumours where fork protection is compromised, low levels of
PCAF activity is associated with resistance to PARP inhibition
through restoring fork protection (Kim et al., 2020).

3.4 HP1 During Replication Stress
In a more recent study, HP1β has been shown to have some
important roles during normal replication progression and in the
presence replication stress in mammalian cells. Knockout of HP1
in mouse embryonic fibroblasts (MEFs) led to reduced cell
growth and fork speeds in combination with enhanced
formation of DNA damage foci (Charaka et al., 2020). Upon
depletion of deoxyribonucleotides, both mouse and human
(Hela) cells depleted of HP1 displayed increased fork stalling
and defective fork restart. In support for key roles of HP1 during
replication stress, depletion also sensitises human andmouse cells
to HU and cisplatin, resulting in increased levels of chromosomal
aberrations (Charaka et al., 2020). It is currently unknown exactly
how HP1 plays a role in the cellular response to replication stress,
however it could share some similarities with its roles in DSB
repair. For example, HP1 depletion leads to reduced recruitment
of BRCA1 to DSBs, so perhaps the importance of HP1 in the
resolution of replication stress is dependent on an ability to
recruit BRCA1, which then promotes RAD51-dependent fork
protection (Schlacher et al., 2012; Lee et al., 2013). On the other
hand, HP1 retention on heterochromatin has been implicated in
preventing homology-directed repair of heterochromatic DSBs
and mobilisation of HP1β plays a role in the activation of DDR
signalling (Ayoub et al., 2008; Kalousi et al., 2015). Currently, it is
unclear which specific pathways HP1 plays a role in to resolve
replication stress and whether it is strictly important for RS in
heterochromatin or whether it has global roles.

4 MOVEMENT OF STRESSED
REPLICATION FORKS

The mobility of DNA lesions, namely DSBs, has been well
documented and has been shown to be vital for proper repair
in specific circumstances. In mammalian cells for example, whilst
heterochromatic DSBs are positionally stable in G1 and are
repaired by non-homologous end joining (NHEJ), they are
relocated to the periphery of heterochromatin domains during
S and G2 phases to allow recruitment of HR factors (Tsouroula
et al., 2016). The mobility of DSBs is a conserved response that
allows formation of the RAD51 filament and repair of DSBs,
especially within heterochromatin, and SUMOylation is an
important post translational modification which controls this
process (Oza et al., 2009; Ryba et al., 2010). Therefore, certain
nuclear compartments provide a protective environment for

DNA repair, and this is also important in the event of
replication stress. In this section we will discuss how some
stressed forks do not remain positionally stable and are
relocated to specific nuclear compartments in a similar
manner to DSBs.

4.1 The Nuclear Pore Complex and
Replication Stress
4.1.1 Importance in Repetitive vs. Non-repetitive
Sequences
During S phase in yeast, replication stress prone expanded CAG
repeats relocate to the nuclear periphery where they interact with
components of the nuclear pore complex (NPC) to prevent
chromosomal breakages (Su et al., 2015). For this movement to
occur, the repair proteins RPA, Rad59 and Rad52 are SUMOylated
by Mms21 SUMO E3 ligase which permits their interaction with
the SUMO interacting motif (SIM) of Slx5 (Whalen et al., 2020).
SUMOylation of the ssDNA-binding protein RPA inhibits Rad51
binding at the stalled fork and this inhibition is lost when collapsed
forks associate with NPCs, possibly by degradation of SUMOylated
proteins promoted by the SUMO-targeted ubiquitin ligase
(STUbL) Slx5/8 (Su et al., 2015; Whalen et al., 2020). Therefore,
homology-directed fork restart is suppressed until movement of
these repetitive sequences to the nuclear pore. Intriguingly, in a
study where replication stress was induced at a unique sequence in
yeast, RAD51 binding and activity were able to occur before
anchoring to the NPC (Kramarz et al., 2020). Here,
SUMOylation by Pli1 was shown to promote fork mobility, and
anchoring of the fork to the NPC caused removal of the SUMO
chains and allowed recombination-dependent restart.
Alternatively, recombination-dependent restart could still even
occur without NPC anchoring when SUMOylation by Pli1 was
selectively inhibited (Kramarz et al., 2020).

Overall, these studies suggest that different mechanisms of
replication stress resolution occur depending on the nature of the
DNA sequence (Figure 2). In repetitive sequences (i.e., expanded
CAG repeats), RAD51 binding is limited until tethering to the NPC,
which is essential to allow replication restart and prevention of DSBs
(Su et al., 2015; Whalen et al., 2020). Conversely, within non-
repetitive sequences, RAD51 activity occurs at stalled forks before
relocation to the NPC, and restart can occur with or without NPC
tethering (Kramarz et al., 2020). Therefore, mobility of stalled forks
and tethering to the NPC may only be necessary for repetitive
sequences, which are likely to undergo detrimental recombination
events if in close proximity to other repetitive sequences. The
involvement of SUMO is similar in both repetitive and unique
sequences, where it promotesmobility of stalled forks but is removed
upon tethering to the NPC for replication restart to occur (Su et al.,
2015; Kramarz et al., 2020; Whalen et al., 2020).

4.1.2 Anchoring of Stressed Telomeres to the Nuclear
Pore Complex
Telomeres in yeast and human cells are relocated to the nuclear
pore complex in response to genomic stress (Khadaroo et al.,
2009; Churikov et al., 2016; Pinzaru et al., 2020). In budding yeast,
this relocalisation of eroded telomeres is SUMO- and STUbL-
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dependent and promotes type II recombination [the mechanism
of alternative lengthening of telomeres (ALT) in yeast] (Churikov
et al., 2016). In human cancers, replication stress at telomeres can
be arise due to dysfunction of the telomere protection factor
POT1 (Pinzaru et al., 2016; Pinzaru et al., 2020). This type of
replicative stress causes increased MiDaS at telomeres and
relocation of a small fraction of them to nuclear pore. This
movement is promoted by polymerisation of nuclear actin and
is required to maintain telomere integrity in POT1-deficient cells.
Indeed, disruption of the nuclear pore complex in cells
harbouring a DNA binding deficient POT1 mutant exacerbates
telomere repeat instability and detrimental telomeric
recombination events (Pinzaru et al., 2020).

4.1.3 Processing of R-Loops at the Nuclear Pore
Complex
Several studies have implicated roles for the NPC in the
resolution of transcription-replication conflicts. It has been

hypothesised that transcribed genes are transiently localised to
the nuclear pores to aid in nuclear export of transcription
products in a process called gene gating (Blobel, 1985). In
yeast, localisation of transcribed genes to the NPC is
important in preventing pathological R-loop formation,
suggesting that gene gating and the subsequent nuclear
transport of nascent RNA is important in preventing TRCs
(García-Benítez et al., 2017). The human NPC component Tpr
has also been implicated in the processing of DNA-RNA hybrids
(Kosar et al., 2021). Interestingly, activation of the ATR-
dependent checkpoint during replication stress releases
transcribed genes from the nuclear pore to facilitate fork
restart (Bermejo et al., 2011). These results suggest that
proximity to the nuclear pore is important in preventing
R-loop-dependent replication stress within transcribed genes,
but upon exposure to other sources of replication stress, these
genes are released from the NPC possibly to allow R-loop
formation which consequently promotes DDR signalling and

FIGURE 2 | Summary of the pathways involved in stressed fork mobility. Left: fork stalling induced by expanded CAG repeats leads to SUMOylation of repair
proteins such as RPA by Mms21, which block RAD51 binding. Tethering of the fork to the nuclear pore complex (NPC) by Slx5/8 binding releases this inhibition and
allows fork restart. Centre: Replication fork stalling within unique sequences results in loading of RAD51 in the nucleoplasm followed by SUMOylation events by Pli1,
which allow NPC tethering and fork restart. Alternatively, fork restart can also occur in the absence of SUMOylation and NPC tethering. Right: ATR and mTOR
signalling during replication stress leads to polymerisation of nuclear actin. Stalled forks then move along the actin filaments to the nuclear periphery, where fork restart
can occur.
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fork restart (García-Benítez et al., 2017). In addition,
topoisomerases have been shown to suppress RNA-DNA
hybrid formation during replication through modulating gene
topology (Tuduri et al., 2009; Achar et al., 2020). Specifically,
Top2 maintains negative supercoiling at gene boundaries, which
facilitates normal transcription and suppresses hybrid formation
specifically during S phase (Achar et al., 2020).

4.2 Mobility of Stressed Replication Forks
by Nuclear Actin
Whilst it remains unclear whether stressed fork mobility is caused
by passive diffusion or involves an active mechanism, recent
studies have shown that the contractile fibre actin has roles during
replication stress, suggesting fork movement is an active process.
Transient polymerisation of actin, forming filamentous actin (F)-
actin, occurs in the nucleus and is involved in the relocation of
DSBs, particularly within heterochromatin, to facilitate HR repair
(Belin et al., 2015; Caridi et al., 2018; Schrank et al., 2018). During
unperturbed replication, nuclear actin polymerisation is
important to allow recruitment of replication factors and S
phase progression (Parisis et al., 2017). Additionally, upon

replication stress, F-actin formation at stressed replication foci
reversibly increases in an ATR and mTOR signalling-dependent
manner (Lamm et al., 2020). Stalled forks then move along the
F-actin, facilitated by myosin motor proteins, to localise with the
nuclear periphery. This localisation allows replication restart, and
therefore resolution of replication stress before collapse into a
single ended DSB, which distinguishes this pathway from the
movement of DSBs to allowHR (Schrank et al., 2018; Lamm et al.,
2020) (Figure 2). In addition, the nuclear volume increases as a
result of F-actin formation, possibly due to chromatin
decompaction, and this response is not seen during DSB
repair (Lamm et al., 2020). The movement of stalled forks to
the nuclear lamina may allow direct interactions with the nuclear
envelope and be important in the recruitment of repair factors;
indeed, the laminA/C proteins has been implicated in promoting
the recruitment of RPA, RAD51 and FANCD2 (Singh et al.,
2013). On the other hand, DSBs located at the nuclear periphery
within LADs suppress HR by inhibiting the recruitment of
RAD51 (Lemaître et al., 2014). In the future, it will be
therefore important to understand the roles of the nuclear
lamina in the regulation of homologous-directed repair of
DSBs and stalled replication forks.

TABLE 1 | The roles of histone variants and modifications in replication stress.

Histone variant/
modification

Chaperone/
enzyme

Functions in replication
stress

Reference(s)

H2A.X — Phosphorylation at serine-139 (γH2AX) by ATM/ATR is an early
marker of damage and involved in repairing replicative lesions in
checkpoint-blind yeast

Ward and Chen (2001), Redon et al. (2003), Sirbu et al.
(2011), Lyu et al. (2019), Saldivar et al. (2018)

γH2AX maintains normal S/G2 phase transition during
unperturbed replication

macroH2A FACT Promotes HR factor recruitment to stressed forks and persists at
fragile sites after replication stress resolution to protect from future
replication stress

Kim et al. (2018)

LSH Promotes HR factor recruitment to stressed forks Xu et al. (2021)
Depletion causes increased H4K20me2, which supresses fork
protection

— Protects the inactive X chromosome from replication stress Sebastian et al. (2020)
H2A.Z (Htz1) SWR-C Prevents misincorporation on dNTPs and collapse of stalled

replication forks
Van et al. (2015), Srivatsan et al. (2018)

CENP-A HJURP Suppresses formation of centromeric R-loops to prevent TRCs Giunta et al. (2021)
H2A K13/K15 Ub RNF168 Facilitates normal S phase progression and promotes fork restart Schmid et al. (2018); Nakamura et al. (2021)
H2B K123Ub Bre1 (yeast) Stabilises nucleosomes on newly replicated DNA an facilitates fork

progression
Trujillo and Osley (2012), Lin et al. (2014), Northam and
Trujillo (2016), Hung et al. (2017)

Activates the intra-S phase checkpoint
Maintains error-free DNA damage tolerance

H3K4me1/me3 MLL3/4 Promotes MRE11-depedendent fork degradation in BRCA-
deficient cells

Ray Chaudhuri et al. (2016)

SETD1A Promotes RAD51-mediated fork protection through H3.1
chaperoning

Higgs et al. (2018)

Set1 (yeast) Prevents TRCs in active regions Chong et al. (2020)
H3K9me2/me3 Met-2, set-25 (C.

elegans)
Represses genes in repetitive regions to prevent R-loop formation Zeller et al. (2016)

H3K27me3 EZH2 Recruits MUS81 to facilitate fork restart Rondinelli et al. (2017)
H4K20me1/me3 PR-Set7 Prevents replication stress by controlling fork number and velocity Jørgensen et al. (2007a), Tardat et al. (2007), Saredi

et al. (2016)H4K20me0 on new histones provides binding site for TONSL-
MMS22L to facilitate post-replicative repair

H4 K5/K12 ac HAT1 Prevents replication stress and protects stressed forks from
MRE11-dependent degradation

Nagarajan et al. (2013), Agudelo Garcia et al. (2020)

H4K8ac PCAF Promotes MRE11- and EXO1-dependent degradation of stalled
forks in BRCA2-deficient cells

Kim et al. (2020)
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5 CONCLUSION AND FUTURE
PERSPECTIVES

The organisation of the genome plays roles in facilitating
progression of DNA replication on multiple levels. At the
higher levels of genome organisation, arrangement of genetic
material into higher order structures and localisation within
specific compartments play a major role in controlling the
replication timing program. In addition, the composition of
the nucleosome as defined by histone variants and PTMs, and
the enrichment of non-histone proteins all modulate replication
timing (Figure 1). In many cases, this replication timing is
strongly linked to transcription where active regions correlate
with early replication and inactive regions with late. The
importance of this link between transcription and replication
timing and whether there is any causality between these two
processes are still unclear. Possibly, the compacted state of
repressed chromatin may act as a barrier to early replication,
localisation of inactive/active regions at specific loci may impact
origin firing or it may be favourable to duplicate replication stress
prone sequences (e.g., gene-poor repetitive regions) later in
S phase.

In addition, the chromatin environment plays important roles
in the resolution of replication stress. Particularly, the presence of
histone variants and modifications at stressed loci play major
roles in promoting or repressing specific repair pathways
(Table 1). However, the question remains whether these
variants/marks are deposited de novo at all genomic regions
during replication stress and remain at these loci after the
resolution of replication stress to protect against future
challenges or whether they are present only at specific regions
that are more difficult to repair.

The SUMO-directed movement of stressed replication forks to
facilitate recombination-dependent repair shares some striking
similarities with the mobility of DSBs to the nuclear periphery.
This mobility of stalled forks is primarily important within
repetitive regions such as expanded CAG repeats and
telomeres, and the mobility of DSBs occurs when breaks are
situated in heterochromatin (Figure 2). The movement of these
specific regions to the nuclear periphery could be important for at
least two reasons: movement may prevent detrimental

recombination events between repeats and/or the environment
of the nuclear periphery may provide a protective environment
for the repair of these difficult sequences. Indeed, association of
stressed forks with components of the nuclear pore complex is
vital for repair of replicative lesions. Future studies linking the
roles of nuclear actin and movement of stressed forks to the NPC
would be beneficial to understand how these fork movements are
regulated and propagated.

Tumours are highly prone to replication stress due to their
uncontrolled proliferation and deregulated cellular signalling,
and this feature is already being targeted in several therapies
in clinic (Ubhi and Brown, 2019). Consequently, some of the
features of the chromatin could be exploited to provide novel
targeted therapies for cancer. Histone marks that regulate the
protection of stalled forks form nucleolytic degradation such
as methylated H3K4 and H3K27 and acetylated H4K8 have
major implications in the treatment of cancers, specifically
those harbouring BRCA1/2 mutations. Therefore, measuring
the expression of the enzymes that deposit/remove these
marks and the enrichment of the marks themselves could
provide biomarkers that could be used in the future to predict
resistance of tumours to certain therapies and allow greater
stratification of treatment. In addition, drugs that target
specific enzymes and modify the epigenome and sensitise
cells to other therapies. For example, histone deacetylase
(HDAC) inhibitors are already used in the clinic and
combination of these with other anti-cancer drugs are
being explored (Suraweera et al., 2018). Finally, the
movement of stalled forks by nuclear actin is mediated
through ATR and mTOR signalling, so these pathways
provide attractive targets for anti-cancer drugs. Indeed,
polymerisation of nuclear actin facilitates survival of cancer
cells (Lamm et al., 2020). In summary, future studies
elucidating the role of chromatin during replication stress
are important in discovering new and more stratified cancer
treatments.
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