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A B S T R A C T   

The potential of Multi-AdaBoost in spectral analysis is substantial, particularly when combined with weak 
classifiers and trained to develop into a robust classifier. Given the variable quality of Baimudan tea sourced from 
diverse regions, the novel application of Raman spectroscopy in conjunction with the Multi-AdaBoost model to 
analyze the geographic origin of Baimudan tea was introduced. Initially, Raman spectra of Baimudan tea from 
four distinct origins in Fujian province were gathered, namely Fuan (FA), Fuding (FD), Zhenghe (ZH), and Songxi 
(SX). Decision Tree (DT) and Support Vector Machine (SVM) models were employed as fitting classifiers to 
construct the Multi-AdaBoost-DT and Multi-AdaBoost-SVM models. The results demonstrated that the Multi- 
AdaBoost-DT model exhibited significantly improved recognition rates for FA, FD, ZH, and SX origin 
compared to the DT model, with the average recognition rate increasing from 86.46% to 91.67%. In contrast, the 
recognition rates for FA and SX origin in the Multi-AdaBoost-SVM model remained unchanged, attributed to the 
model having reached a local optimum. The recognition rates of FD origin increased from 91.67% to 95.83%, a 
significant improvement, while those of ZH origin escalated from 83.33% to 87.50%. The average recognition 
rate increased from 92.71% to 94.79%. Additionally, Multi-AdaBoost-SVM and Multi-AdaBoost-DT enhanced the 
sensitivity and specificity of the discrimination outcomes. These results corroborated the effectiveness of the 
proposed Multi-AdaBoost-SVM model in identifying the geographical origin of Baimudan tea. Moreover, the 
Multi-AdaBoost model demonstrates potential in elevating the discrimination accuracy of weak classifiers, which 
bodes well for its application in food authentication and quality control.   

1. Introduction 

Tea has been a part of many cultures around the world for centuries, 
and its popularity continues to grow because of the health benefits, 
variety of flavors and cultural significance. It is believed that white tea 
was originated hundreds or even thousands of years ago in the Fujian 
province of China (Feng et al., 2022). Baimudan tea, also known as 
white Peony, constitutes a popular variety of white tea in China. The 
altitude, climate, and soil conditions of a region can greatly affect the 
growth and development of Baimudan tea plants, as well as the chemical 
composition of the tea leaves (Shuai et al., 2022; Wang et al., 2022). 
Therefore, there are obvious differences in the quality of Baimudan tea 

from different regions. Given that the quality of Baimudan tea varies 
across different regions, it is imperative to determine its specific prov
enance. This is particularly important for consumers who are willing to 
pay a premium for Baimudan tea, as they often seek an authentic and 
genuine experience (Qu et al., 2020). Furthermore, the presence of un
scrupulous merchants who sell substandard tea to maximize profits is 
not only illegal but also unethical. Therefore,it is important to be able to 
identify the origin of Baimudan tea. 

The fundamental properties of tea sourced from various regions 
might exhibit similarities, yet subtle distinctions can be discerned by 
experienced tea connoisseurs. In addition, some analytical instruments 
can be used, for example, liquid chromatography (Fraser et al., 2013), 
gas chromatography mass spectrometry (Zhu et al., 2021), mineral 
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element analysis (Liu et al., 2021; Mayjurek et al., 2020), infrared 
spectroscopy (Esteki et al., 2022; Liu et al., 2022), X-ray fluorescence 
spectrometry (Lim, Carey, Paul N. Williams and Koidis, 2021), induc
tively coupled plasma mass spectrometry (Liu et al., 2020) and the rest. 

Precise determination of the origin of tea can be achieved through 
the use of analytical instruments, which offer greater accuracy 
compared to relying solely on visual or sensory characteristics. How
ever, this method is relatively expensive and time-consuming, making it 
more suitable for researchers and specialty tea companies rather than 
individual consumers. Consequently, the development of a rapid and 
straightforward method for individual consumers to identify the origin 
of Baimudan tea is of significant importance. 

Raman Spectra are capable of detecting and identifying molecular 
vibration information, boasting the advantages of rapidity, non- 
destructiveness, and sensitivity. Chemometrics can be employed to 
analyze and interpret the complex data generated by Raman spectros
copy, while Raman spectroscopy itself can provide valuable information 
concerning the molecular structure and chemical composition of the 
sample. This combination of techniques can be used to identify and 
quantify compounds in complex mixtures, for example, rice origin (Sha 
et al., 2021; Wang et al., 2021), pesticide and veterinary drug residue 
(Girmatsion et al., 2021; Lin et al., 2021), egg freshness (Liu et al., 2020; 
Sasikan Katemala, Molee, Thumanu and Yongsawatdigul, 2021), meat 
preservation (Yang et al., 2020; Robert et al., 2020), illegal additives in 
food (Karunathilaka et al., 2018) and other fields. So far, the identifi
cation of origin of Baimudan tea based on Raman spectroscopy has not 
been reported. 

In this study, we developed an approach to realize rapid, nonde
structive, precise identification of the origin of Baimudan tea by Raman 
spectroscopy. At the same time, deep learning method was introduced to 
identify the origin of Baimudan tea more effectively and accurately. 
Deep learning, as a tool of chemometrics, has the potential to signifi
cantly improve the generalization ability of analytical models. And 
AdaBoost algorithm is one of the typical ensemble learning algorithms. 
As a chemometric tool, deep learning has the potential to significantly 
enhance the generalization capability of analytical models. The Ada
Boost algorithm, a prominent ensemble learning algorithm, was 
employed in this study. While traditional AdaBoost is commonly used 
for binary classification applications, Multi-AdaBoost was extended to 
address complex multi-classification problems, rendering it more suit
able for such scenarios. Furthermore, Multi-AdaBoost holds great po
tential for application in spectral analysis (Li and Rong, 2022). 

In other words, Raman spectroscopy combined with Multi-AdaBoost 
algorithm was used to identify Baimudan tea from different geograph
ical origin. Initially, Raman spectra were collected from four areas in 

Fujian province, namely Fuding, Fuan, Zhenghe, and Songxi. Principal 
Component Analysis (PCA) was utilized to extract relevant features. 
Subsequently, classification models, including K-Nearest Neighbor 
(KNN), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), 
and Decision Tree (DT), were constructed. Ultimately, employing the 
Multi-AdaBoost ensemble learning algorithm, the classifier model with 
superior discriminatory capabilities was further optimized. By using 
Raman spectroscopy combined with Multi-AdaBoost, it would be 
possible to accurately identify the geographical origin of Baimudan tea. 
This could be particularly useful in fields such as agriculture and food 
science, where accurate identification of crops and ingredients is crucial. 

2. Materials and methods 

2.1. Samples 

The samples of Baimudan tea (white tea) were collected from four 
producing areas in Fujian province, namely Fuan (FA), Fuding (FD), 
Zhenghe (ZH) and Songxi (SX). The picking standard for Baimudan tea 
dictated that the top bud and two adjacent leaves were to be harvested 
from the tender shoot of the tea plant during the initial harvest in the 
spring of 2022, with the length of the top bud and two leaves being 
approximately equal. Furthermore, the "three white" criteria had to be 
met, which required that the buds and two leaves be covered with white 
fluff. A total of twenty samples were collected from each region, all of 
which were locally sourced tea greens from various towns. Table 1 of the 
supplementary material detailed the sampling locations of the various 
samples. The authentication of all samples was conducted by Professor 
Su Feng (a senior tea evaluator at the Fujian Provincial Planting Tech
nology Extension Station). Fig. 1(a) shows the comparison of Baimudan 
tea from these four different producing areas. Subsequently, the samples 
were dried in an oven at 60 ◦C to eliminate moisture before being stored 
in a dryer. After cooling, the samples were mechanically ground into a 
powder, filtered through a 60-mesh sieve, and finally stored in the dryer. 

2.2. Collection of Raman Spectra 

The appropriate quantity of tea powder was meticulously placed in 
the center of a spotlessly clean slide, and compressed using a cover slip. 
Raman spectra were subsequently acquired using an Xplora PLUS 
Raman spectrometer equipped with a CCD detector (HORIBA, France), 
as illustrated in Fig. 1 (b). The spectrometer parameters were set as 
follows: the numerical aperture of the 50× objective was 0.55NA, the 
laser wavelength was 785 nm (10% laser power, 3.6 mW), the objective 
lens was 50 times, the grating was 1200 gr/nm, the wavelength range 
spanned 100-3700 cm− 1, the spectral resolution was 1.3 cm− 1, and each 
Raman spectrum was scanned for a duration of 8 s. The environmental 
conditions during the collection of spectra were maintained at 23 ◦C 
with a relative humidity of 45%. Each sample was tested four times, with 
the sampling locations for each test being randomly selected. 

Abbreviations 

WordsAbrr 
PCA Principal Component Analysis 
KNN K-Nearest Neighbor 
SVM Support Vector Machine 
MLP Multi-Layer Perceptron 
DT Decision Tree 
FA Fuan 
FD Fuding 
ZH Zhenghe 
SX Songxi 
SAMME Stagewise Additive Modeling 
TP True Positive 
FP False Positive 
TN True Negative 
FN False Negative  

Table 1 
Tentative assignment of the Raman bands in Spectra of Baimudan tea.  

Bands of different 
origins 

Assignments Compound in Baimudan tea( 
Yang and Wu, 2008) 

732s, 1110v δ(CH2), γ(benzene-ring), 
γ(C–H),γ(OH) 

Catechin, tea polyphenols 

606w, 805m, 
1176sh 

ν(C–N), γ(Amide I− ), γs 
(C–O–C), ν(NH3

+) 
protein 

1648br γas (COO− ), δas (NH3
+) Theanine 

1960s ν(CH), ν(C––O) Insaturated fatty acid, organic 
acid 

Assignments: γ: Stretching; δ: Deformation; s: Symmetric; as: asymmetric. 
Intensities: w: Weak; m: Medium; s: Strong; v: Very; sh: Shoulder; br: Broad. 
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2.3. Data processing 

2.3.1. Division of spectral data 
A total of 320 spectra were collected from four origins, with each 

origin contributing 80 spectra. Subsequently, the spectral data were 
apportioned into a calibration set and a prediction set in a ratio of 7:3. 
The calibration set encompassed 56 samples per species, while the 
prediction set included 24 samples per species. Firstly, the every spectral 
was labeled with a serial number. Then, the program could generate a 
serial of random number representing calibration set within [0,320] 
according to random seed. Later, calibration set could be selected ac
cording to random number and the remaining data was marked as 
prediction set. In other words, 224 spectra of the calibration set were 
used to train the parameters of the model, and 96 spectra of the pre
diction set were used to verify the predicted effect of the model. The 
spectral data were processed by Scikit-learn machine learning library in 
python and the pictures were plotted by Origin 9.0. 

2.3.2. Construction of traditional model 
The construction of classifier models, including KNN, MLP, DT, and 

SVM, was based on the calibration set and prediction set. The MLP 
model, specifically, is a type of feed-forward neural network consisting 
of an input layer, a hidden layer, and an output layer. It processes input 
characteristics and output results through weighting and nonlinear op
erations, utilizing the back-propagation method for network training. 
This enables the network to effectively handle linear non-fractional data 
and achieve accurate classification (Mrugalski et al., 2008). DT model is 
a predictive scheme based on a tree structure, which may be binary or 
non-binary in nature. It establishes a mapping relationship between 
object values and attribute values, typically consisting of a root node, 
multiple internal nodes, and several leaf nodes, among others. The 
middle node represents the decision outcome in DT, while each internal 
node signifies a judgment on an attribute. Each branch corresponds to 
the output of a judgment result, and the sample set within each node is 
subsequently partitioned into child nodes (Leo. Breiman, Friedman, 
Olshen and Stone, 1984).The KNN model segments the feature vector 
space based on the training dataset, determines the distance between the 
new sample and each category by comparing their feature sets, and 
predicts the category through majority voting and other methods 
(Workman and Weyer, 2007). The SVM model, a supervised binary 
classification approach, fundamentally involves identifying a separation 
hyperplane that accurately categorizes diverse sample data, while 
maximizing the distance from the point nearest to the hyperplane to 
differentiate between categories (Zhu and Dai, 2005). 

The parameter optimization during operation of KNN and SVM were 
discussed below. Numerical test results show that exhaustive search has 
good performance on small data set. Grid search algorithm is used to 
process SVM and KNN hyper parameter. K-fold Cross validation is also 
taken into account in hyper parameter optimization, with k = 5. Actu
ally, grid search is greedy algorithm to adjust every hyper parameter to 

best performance and it is a perfect fit on small data set scenarios. 

2.3.3. Construction of multi-AdaBoost-DT and multi-AdaBoost-SVM model 
A weak classifier refers to a model that performs slightly better than 

random chance. In contrast to strong or powerful classifiers, weak 
classifiers have limited predictive capacity based on the available data. 
In order to further improve the discrimination and generalization ability 
of the classifiers, the Multi-AdaBoost multi-classifier model proposed by 
Zhu in 2009 was used for analysis (Zhu et al., 2009). The concept is to 
selectively discard a portion of the examples from the original dataset 
and solve the optimization problem using a reduced training set. This 
approach remains effective as long as the overall training error rate stays 
below 50%. By integrating weakened classifiers directly into 
Multi-Adaboost, through augmenting weights assigned to misclassified 
samples while diminishing weights assigned to correctly classified 
samples, we are able to improve the misclassification rate. Finally, a 
series of weak classifiers are trained and combined into a powerful 
classifier in a serial manner. Differently, Multi-AdaBoost introduced the 
Stagewise Additive Modeling (SAMME) algorithm, which uses 
multi-class exponential loss functions to rapidly reduce errors to a low 
value. So, the model can adaptively implement multi-class Bayesian 
rules by fitting the additive model of multi-class problems. Fig. 2 shows 
the flow chart of Multi-AdaBoost classifier ensemble learning model. 

According to the principle of Multi-AdaBoost classifier ensemble 
learning model, the fitting classifiers can be DT, SVM, logistic regres
sion, and the rest. In this experiment, DT and SVM models are selected as 
fitting classifiers. Therefore, the algorithm flow of the constructed Multi- 
AdaBoost-DT and Multi-AdaBoost-SVM models were shown in Fig. 3. As 
can be seen from the figure, DT or SVM classifier model was trained 
using the divided calibration set, and the distribution of sample weight 
was adjusted according to the discriminant results of four categories by 
the classifier. The adjustment way was to improve the weight of wrongly 
discriminated samples and reduce the weight of correctly discriminated 
samples. 

2.3.4. Performance parameters of model 
The resulting models were evaluated by the recognition rates, which 

was defined as: 

recognition rate =
the number of samples correctly identified

by
model

the number of samples
×100%

(1)  

In order to compare the effect of Multi-AdaBoost model in detail, 
sensitivity and specificity were also used as supplementary parameters. 
And sensitivity and specificity were defined as: 

Sensitivity=
TP

TP + FN
×100% (2)  

Fig. 1. Materials and environmental instruments: (a) Comparison of Baimudan tea from different producing areas; (b) the Xplora PLUS Raman spectrometer used in 
the experiment. 
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specificity=
FP

FP + TN
×100% (3)  

where True Positive (TP) is the number of actually positive and pre
dicted to be positive, False Positive (FP) is the number of actually 
negative but predicted to be positive, True Negative (TN) is the number 

of actually negative and is predicted to be negative, False Negative (FN) 
is the number of actually positive but predicted to be negative. 

Fig. 2. Flow chart of Multi-AdaBoost classifier ensemble learning model.  

Fig. 3. The algorithm flow diagram of the Multi-AdaBoost-DT and Multi-AdaBoost-SVM model.  

Fig. 4. Raman Spectra of Baimudan tea: (a) all samples from four producing areas; (b) the average spectra of each producing areas.  

W. Pan et al.                                                                                                                                                                                                                                     
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3. Results and discussion 

3.1. Spectral analysis 

Fig. 4 shows the Raman spectra of Baimudan tea samples from 
different origins in the range of 100~2700 cm− 1. Table 1 shows the 
characteristic peaks of Raman spectral of Baimudan tea, and the 
different characteristic peaks respectively correspond to the substances 
in the Baimudan tea (Wang et al., 2021; Yang and Wu, 2008). Fig. 4(a) 
displays the average spectra of each producing areas. Notable differ
ences are observed among the average spectra, with variations in peak 
intensity in the Raman spectrum corresponding to the content of cate
chins, tea polyphenols, amino acids, proteins, unsaturated fatty acids, 
and organic acids. The results also showed that the nutrient content of 
Baimudan tea from different producing areas was different. However, as 
can be seen from Fig. 4(b), the Raman spectra of all samples from 
different origin exhibited a high degree of similarity, with similar peak 
positions and peak intensity. Beside, the overlapping and stacking 
problems between the Raman spectra of different samples were evident, 
thereby rendering it challenging to directly analyze the spectra for the 
purpose of distinguishing Baimudan tea from diverse origins. 

Therefore, PCA was employed to analyze the Raman spectra of Bai
mudan tea and two principal components were obtained, and the cu
mulative contribution rate of the principal components reached 99.37%. 
Fig. 5 shows the two-dimensional principal component analysis score 
map of Baimudan tea from different origins. It is distinct that some 
samples are overlapped and deviated, but on the whole, the four cate
gories are distributed in different areas, indicating that it is feasible to 
identify Baimudan tea from the four producing areas by Raman spec
troscopy combined with chemometrics. 

3.2. Analysis and comparison of traditional models 

Table 2 shows the identification results by KNN, SVM, MLP and DT 
models. As can be seen from the table, the recognition rates of FA by of 
four models was 95.83%, 100%, 95.83% and 91.67%, respectively, and 
the recognition rates of SVM model was the highest. The recognition 
rates of FD were 100%, 91.67%, 79.17% and 83.33% respectively, and 
the recognition rates of KNN model was the highest. The identification 
accuracy of ZH were 79.17%, 83.33%, 75.00% and 83.33%, respec
tively, and the accuracy of SVM model was the highest. The recognition 
rates of SX were 95.83%, 95.83%, 87.50%, 87.50%, respectively. 

Based on the identification results, the FA samples exhibited the best 
identification outcomes, while the ZH samples displayed the worst 
performance. It was observed that the likelihood of misidentifying ZH as 
FD and SX samples was increased due to the minimal differences be
tween the spectra of ZH, FD, and SX origin samples. On the whole, the 
average of recognition rate of Baimudan tea from the four origins by 
KNN, SVM, MLP and DT models reached 92.71%, 92.71%, 84.37% and 
86.46%, respectively. The SVM model demonstrates the highest recog
nition rate, potentially due to its ability to select the optimal SVM base 
kernel function, which in turn enables the identification of the optimal 
penalty factor and kernel parameters to maximize the performance of 
the SVM model. Consequently, the SVM model exhibits an enhanced 
performance in the discrimination of Baimudan tea, even with a limited 
number of samples. 

3.3. Analysis and comparison of Multi-AdaBoost models 

When the dataset comprises a larger number of features, the KNN 
model necessitates significant computational resources, suffers from 
poor interpretability, and exhibits high dependence. In order to further 
optimize the discrimination effect of the model, DT model and SVM 
model with strong interpretation were used as fitting classifiers to 
construct Multi-AdaBoost-DT and Multi-AdaBoost-SVM models. And the 
results are shown in Table 3. Compared with DT model, the recognition 
rates of Multi-AdaBoost-DT model for FA, FD, ZH and SX was increased 
from 91.67% to 95.83%, 83.33%–87.5%, 83.33%–91.67%, 87.50%– 
91.67%, respectively. The average of recognition rate increased from 
86.46% to 91.67%. Compared with the SVM model, the recognition 
rates of the Multi-AdaBoost-SVM model for FA and SX remained un
changed, possibly because the recognition rates of Multi-Adaboost-SVM 
model had reached the best. However, the recognition rates of FD origin 
increased from 91.67% to 95.83%, the recognition rates of ZH origin 
increased from 83.33% to 87.50%. Consequently, the average of 
recognition rate increased from 92.71% to 94.79%. 

Fig. 6 displays the distribution of the predicted values generated by 
SVM, DT, Multi-AdaBoost-DT and Multi-AdaBoost-SVM. Samples 
labeled 1–24 was FA origin, samples labeled 25–48 was FD origin, 
samples labeled 49–72 was ZH origin, samples labeled 73–96 was SX 
origin. The true value of FA, FD, ZH and SX were assigned 0, 1, 2 and 3, 
respectively. Based on Fig. 6(b), the following results were obtained: (1) 
for FA origin, no samples was misjudged; (2) for FD origin, one sample 
was misjudged, incorrectly identified as FA; (3) for ZH origin, three 
samples were misjudged: two were misclassified as FD origin, and one as 

Fig. 5. The score plot from the principal component analysis of Baimudan tea.  

Table 2 
The results of Baimudan tea from different origins by different discriminant 
analysis models.  

Model 
Origins 

FA FD ZH SX Average 
Recognition Rate 

KNN 95.83% 100.00% 79.17% 95.83% 92.71% 
SVM 100.00% 91.67% 83.33% 95.83% 92.71% 
MLP 95.83% 79.17% 75.00% 87.50% 84.38% 
DT 91.67% 83.33% 83.33% 87.50% 86.46%  

Table 3 
The recognition rate of Multi-AdaBoost model.  

Model 
Origins 

FA FD ZH SX Average 
Recognition Rate 

SVM 100.00% 91.67% 83.33% 95.83% 92.71% 
DT 91.67% 83.33% 83.33% 87.50% 86.46% 
Multi- 

AdaBoost- 
DT 

95.83% 87.50% 91.67% 91.67% 91.67% 

Multi- 
AdaBoost- 
SVM 

100.00% 95.83% 87.50% 95.83% 94.79%  
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SX, (4) for SX origin, one sample was misjudged, identified as ZH. 
Similarly, the discriminant results of other models can be obtained. 
Compared with the other four models, the Multi-AdaBoost-SVM model 
demonstrated the least number of misjudged samples. 

Table 4 shows the sensitivity and specificity of Multi-AdaBoost 
model. The details of the methodology were provided in the supple
mentary materials. It was evident that both sensitivity and specificity 
were increased by Multi-AdaBoost approach. Notably, the Multi- 
AdaBoost-SVM model demonstrates the highest sensitivity and speci
ficity. In summary, Tables 3 and 4 demonstrated the effectiveness of the 
Multi-AdaBoost-SVM model in identifying Baimudan tea. Furthermore, 
the constructed Multi-AdaBoost-DT and Multi-AdaBoost-SVM models 
are robust classifier systems that can significantly enhance the classifi
cation accuracy of samples. 

4. Conclusion 

In this study, we successfully developed a rapid, nondestructive, and 
precise method for identifying the origin of Baimudan tea. The proposed 
Multi-AdaBoost-SVM model has demonstrated exceptional accuracy and 
outperformed other learning algorithms. The average recognition rate 
achieved 94.79%. The ZH samples exhibited a sensitivity of 90.91% and 
specificity of 98.61%, while the other three samples all displayed sen
sitivities and specificities above 95%. Furthermore, when compared to 
the DT model and SVM model, both the recognition rate and sensitivity/ 
specificity of the Multi-Adaboost-SVM and Multi-Adaboost-DT models 
were significantly improved. The results confirmed that the Multi- 
AdaBoost classifier model can effectively train weak classifiers into a 
strong classifier, showcasing great potential in the field of food 
authentication and quality control. 
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