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It is now evident that thymocytes originate from a subpopulation of bone marrow 
precursor cells that migrate into the thymus (I, 2). Most of the thymic lymphocytes 
reside in the cortex, which contains a subcapsular band of large lymphoid cells and 
a major population of smaller, immunoincompetent midcortical and juxtamedullary 
thymocytes, whereas the remaining 5--10% of the thymic cells are immunocompetent 
medullary thymocytes (3, 4). Pulse-label experiments have shown that the cortical 
and medullary thymocytes are derived from the large subcapsular thymocytes (5, 6). 
In the postnatal thymus only small numbers of these large cells are found, but they do 
compose a large proportion of the fetal thymocyte population (7, 8). In the mouse, 
the large subcapsular thymocytes, unlike the cortical cells, lack specific T cell antigens 
such as 8, TL, and G1x, which are expressed after 2-5 d of in vitro incubation (7, 9, 
10). Accordingly, this subset of thymocytes is regarded as thymic precursor cells and 
has been designated prothymocytes (11). 

In man, one of the most reliable markers for recognizing thymic-derived lympho- 
cytes is their spontaneous ability to bind sheep erythrocytes and form E rosettes (12, 
13). Whereas most postnatal thymocytes form E rosettes (14), varying proportions of 
fetal thymocytes lack this capacity, depending upon the age of the fetus (15, 16). 
Thus, it is assumed that these nonrosetting cells represent the preceding differentiation 
stage of the thymocytes. The purpose of the present study was to characterize 
membrane properties, in vitro differentiation patterns, glucocorticoid sensitivity, and 
uhrastructural features of human prothymocytes isolated from human fetal thymic 
tissue. A lymphoid cell population, similar to the prothymocytes described in mice 
and rats, was obtained by depletion of the E-rosetting T cells from fetal thymic cell 
suspensions. 

The results obtained in this study show that prothymocytes also differ from 
thymocytes in relation to cell size, peanut agglutinin (PNA) 1 binding (17), expression 
of the natural-attachment (NA) phenomenon (18), and susceptibility to in vitro 
cytolysis by hydrocortisone (19). After an in vitro incubation, the prothymocytes 
express thymocyte-like characteristics. Furthermore, the data presented in this study 

* Deceased. 
I Abbreviations usedin thispaper: NA, natural attachment, PAS, periodic acid Schiff; PBL, peripheral blood 

lymphocytes; PNA, peanut agglutinin; SEM, scanning electron microscopy; SRBC, sheep erythrocytes. 
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suggest that  the rate of prothymocyte  proliferation is regulated by a feedback 

mechanism media ted  by the thymocytes themselves. 

M a t e r i a l s  a n d  M e t h o d s  

Thymic Cell Suspension 
Pieces of fetal human thymus were obtained in the course of routine pathological examinat ion 

from cases of induced abortion in the second trimester of pregnancy after administration of 
prostaglandin F2,, into the amniotic sac, and from cases of spontaneous abortions as a result of 
incompetence ofos internum. Postnatal thymic tissues were obtained from individuals undergo- 
ing open heart surgery. The thymuses were gently teased in sterile saline and pressed through 
a stainless-steel mesh. Dead cells were removed by gradient centrifugation with Ficoll-Hypaque. 
The cells were washed and resuspended in RPMI-1640 medium (Grand Island Biological Co., 
Grand Island, N.Y.) supplemented with 10% fetal calf serum. These suspensions contained <3% 
dead cells as indicated by the trypan blue exclusion test. With similar methods, mononuclear 
cells were isolated from fetal spleens and livers. 

Isolation of Prothymocytes 
The prothymocytes were functionally defined as thymic lymphocytes that lacked the ability 

to form E rosettes. Thus fetal thymocytes were allowed to form E rosettes according to the 
procedure described below. The mixture of cells and rosettes were layered on top of a Ficoll- 
Hypaque barrier and centrifuged at 400 g for 20 rain. The cells that failed to form E rosettes 
(prothymocytes) remained at the saline-barrier interphase. 98% of the Ficoll-Hypaque-sedi- 
mented cells were in rosette form (i.e., thymocytes). Rosetting sheep erythrocytes were lysed 
with 0.85% ammonium chloride. The isolated subsets of thymic cells were then washed and 
resuspended in RPMI-1640 medium supplemented with 10% fetal calf serum. It should be 
noted that in this study we do not discriminate between cortical and medullary thymocytes. 

Surface Markers 
The rosetting techniques have been described previously (20). Briefly, E rosettes were 

performed by mixing 0.25 ml of 1% washed sheep erythroeytes with an equal volume of 
lymphocytes (2-5 × 106 cells/ml). The mixture was spun at 200 g for 5 rain and incubated for 
1 h at room temperature (22-24°C). Thereafter the pellet was gently resuspended, and the 
percentage of rosette-forming cells was scored in a hemocytometer. 

EA and EAC' rosettes were used for the detection of surface Fc and complement receptors, 
respectively. Ox erythrocytes coated with subagglutinating titers of rabbit anti-ox erythrocyte 
IgG were used for the formation of EA rosettes, whereas ox erythrocytes coated with rabbit 
anti-ox IgM and complement were used for EAC' rosettes. The procedures for rosetting were 
similar to those performed for E rosettes. 

SURFACE IMMUNOGLOBULINS. Direct immunofluorescence tests were performed with fluores- 
cein-conjugated goat anti-human immunoglobulin (Behring-Werke AG, Marburg/Lahn, Fed- 
eral Republic of Germany). 1 X 106 cells in pellet were resuspended in 0.1 ml of diluted (1:10) 
anti-Ig solution and incubated for 30 min at 4°C. Thereafter the cells were washed three times 
in cold saline, and the proportion of fluorescent cells was determined in a Zeiss UV fluorescence 
microscope (Carl Zeiss, Inc., New York). 

PNA RECEPTORS. PNA is a lectin that binds specifically to cortical thymocytes (17), whereas 
PNA receptors on medullary thymocytes and circulating T lymphocytes are masked by sialic 
acid. The cells that bind PNA were identified by fluorescein-conjugated PNA (Miles-Yeda, 
Israel). The cells were resuspended in a solution of 250 ktg/ml PNA. The staining procedure 
was identical to that used in immunofluorescence technique. 

SURFACE T ANTIGEN. Lymphocyte suspensions in saline (106 cells/ml) were mixed with an 
equal volume of rabbit anti-T cell antiserum (Institut M6rieux, Lyon, France) and rabbit 
complement. The mixture was incubated at 37°C for 45 min, and the percentage of dead cells 
was assessed by viable staining with trypan blue. 

NA CAPACITY. The NA phenomenon has been described previously and reflects the ability 
of lymphocytes to attach to a variety of normal and malignant cells in a species restricted 
manner ( 18, 21). Cultured erythromyeloid K562 cells (22) were used as target cells. Lymphocytes 
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and K562 cells were adjusted to a concentration of 106 eelis/ml. 0.5 ml of lymphocytes was 
mixed with 0.1 ml of K562 cell suspension in Falcon 2058 tubes (Falcon Labware, Div. of 
Becton, Dickinson & Co., Oxnard, Calif.). The tubes were spun for 5 rain at 200 g and 
incubated at 37°C for 30 min. Thereafter the pellets were gently resuspended, and the number 
of lymphocytes attached to 100 K562 cells was scored in a hemocytometer. Lymphocytes were 
easily distinguished from the K562 target cells by their size (K562 cells are three times larger 
than thymic lymphocytes). 

In Vitro Cytolysis by Hydrocortisone 
This test has been described in earlier studies (19, 23) and has shown that glueocorticoids 

cause specific in vitro cytolysis of activated human T cells but do not affect resting peripheral 
blood lymphocytes (PBL) or postnatal thymocytes. Aliquots of 0.2-ml cell suspensions (106 
cells/ml) were incubated with varying concentrations of hydrocortisone succinate (Solu-Cortef, 
The Upjohn Co., Kalamazoo, Mich.), or eortisol (Ikapharm, Ramat-Gan, Israel), in flat-bottom 
microwells (Cooke Engineering Co., Alexandria, Va.) for 20 h at 37°C in a 5% CO2 humidified 
atmosphere. Because a proportion of the cells incubated with the glucocorticoids was completely 
lysed within 20 h of incubation, the number of permanently damaged cells was assessed by 
determining the concentration of the remaining viable cells (trypan blue exclusion test) in a 
hemocytometer. The percentage of cytolysis was calculated by the formula (a - b)/a × 100, 
where a is the concentration of viable cells in wells that contain medium without steroids, and 
b is the concentration of viable cells in wells that contain the drug. 

Long-Term Cultures 
The various lymphoid suspensions (106 cells/ml) were incubated in RPMI-1640 medium 

plus 10% fetal calf serum (100 U/ml  penicillin and 100 #g/ml streptomycin), at 37°C, in a 5% 
CO2 humidified atmosphere, for up to 7 d. Aliquots of these cultures were examined at 24-h 
intervals. The following parameters were studied: (a) proliferation rate as determined by the 
percentage of cells with mitotic figures, after staining with May Grunwald-Giemsa; (b) the 
proportion of cells that formed E rosettes; and (c) the capacity of NA to K562 cells. 

Morphological Studies 
C~rocHEMISTRY. Routine staining for the following enzymes was performed on the different 

thymic lymphoid populations: myeloperoxidase, acid phosphatase, fl-glucoronidase, and non- 
specific esterase with and without fluoride inhibition; Sudan black and periodic acid Schiff 
(PAS) stains were also performed. References for the above staining procedures may be found 
in an earlier publication (24). 

TRANSMISSION ELECTRON MICROSCOPY. Cell pellets (6-8 × 106 cells) were fixed with phos- 
phate-buffered 1.25% glutaraldehyde (pH 7.3, 4°C) for at least 1 h, rinsed with 0.2 i phosphate 
buffer, postfixed in osmium tetroxide for 1 h at 4°C, dehydrated through a graded series of 
ethanols, embedded in iow-viscosity epoxy resin embedding medium according to Spfirr (25), 
and sectioned with an MT-2 Porter-Blum microtome equipped wtih a diamond knife. Thin 
sections were mounted on uncoated copper grids, stained with uranyl acetate and lead citrate, 
and viewed with a Philips EM-300 electron microscope (Philips Electronic Instruments, Inc., 
i a h w a h ,  N. J.). 

SCANNING ELECTRON MICROSCOPY (SEM), Six million cells were mixed in suspension in 1% 
phosphate-buffered glutaraldehyde (pH 7.3, 310 mosmol) for at least 1 h, at room temperature 
and then collected onto glass coverslips covered by po!y-1-lysine as described by Sanders et al. 
(26). Coverslips with monolayers of cells were fixed for another hour at room temperature and 
then prepared for SEM by further dehydration in a graded series of ethanol and Freon 113 and 
critical point dried with Freon 113 as described in earlier studies (27). The specimens were then 
coated with a thin layer of gold-palladium and examined with a Jeol SM-35X scanning electron 
microscope, at an accelerating voltage of 35-39 KV. 

R e s u l t s  

Characteristics of the Human Prothymocyte. Pro thymocytes  were isolated from the fetal 
thymic  cell suspensions af ter  dep le t ion  of  the  E-roset t ing cells. T h e  p ro thymocy tes  
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were identified as precursors of thymocytes by their spontaneous expression of 
thymocyte charactensucs upon prolonged in vitro incubation (Fig. 4). Prothymocytes 
differed from fetal  or postnatal thymocytes in the following ways: Thymocytes  are 
small cells (5-7 lain) with a dense nuclear chromatin pattern, whereas prothymoeytes 
are larger cells (>7 gm) with a more delicate nuclear chromatin pattern and more 
ample basophilic cytoplasm containing organelles (Figs. I and 2; Table  I). Thymoeytes  
consistently show NA" capacity (19, 21) in that they readily adhere to K562 cells, 
whereas prothymocytes fail to interact with these target cells (Table I). Thymocytes  
have the ability to bind the lectin PNA via galactosyl residues of  certain surface 
glycoproteins (28). Fetal thymoeytes bind PNA to the same degree as postnatal 

Fio. 1. (a) A suspension of human fetal thymic cells that shows the difference in size and nuclear 
chromatin patterns. Large prothymocytes have more delicate chromatin and ample cytoplasm. × 
1,000. (b) A suspension of human prothymocytes that was enriched after depletion of the smaller E- 
rosetting thymocytes with FicolI-Hypaque gradient centrifugation, x 1,000. 
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FIG. 2. (a) A transmission electron micrograph of thymic cells that shows a larger prothymocyte 
alongside a smaller thymocyte. Note the difference in nuclear chromatin pattern and cytoplasmic 
features. × 3,600. (b) A scanning electron microscopic photograph that shows the thymic cells' size 
difference. The  upper cell is a prothymocyte, and the lower cell is a thymocyte. × 2,700. 

T A B L E  I 

Surface and Enzymatic Characteristics of Prothymocytes in Comparison with Thymocytes * 

Characteristic 

Fractionated fetal thymic ]ymphocytes 
Fetal thymic lympho- 

cytes (nonfractionated) Prothymocytes (non-E- Thymocytes (E-rosetting Postnatal thymocytes 

rosetting cells) ceils) 

Mean Range Mean Range Mean Range Mean Range 

E rosettes, % 67 
EA rosettes, % <1 
EAC rosettes, % < l  
Surface immuno- < l 

globulins, % 
Large cells (>7/xrn), 35 

% 

NA 90 
PNA receptors, % 81 
T antigen, % 78 
Acid phosphatase Positive 
Nonspecific est era.se Negative 
fl-glucoronidase Positive 
PAS Negative 
Sudan black Negative 

58-80 7 4-10 95 93-98 98 97-99 
2 I-4 <1 <1 
1.3 1-3 < l  <1 

<1 < l  <1 

14-55 83 69-92 3 2-4 <1 

80-97 4 3-4 132 120-140 192 
67-90 10 7-L5 >98 >95 
73-86 60 39-69 95 94-97 98 

Positive Positive Positive 
Negative Negative Negative 
Positive Positive Positive 
Negative Negative Negative 
Negative Negative Negative 

150-230 

97-100 

* The  data ale expressed as the mean and ¢azlge of the resuks obtained ol  at least three different thymic tissues. 

thymocytes ,  whereas most o f  the prothymocytes  seem to lack receptors for this lectin 
(Table  I). Both thymocytes  and prothymocytes  lacked surface i m m u n o g l o b u l i n s ,  
whereas the few EA rosettes found were formed by monocytes  wi th in  the thymic  
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suspensions and were detected by positive esterase and peroxidase staining (Table I). 
In contrast to thymocytes, only a proportion of prothymocytes exhibited the mem- 
brane T antigen, as demonstrated by the cytotoxicity assay (Table I); however, the 
focal paranuclear staining for acid phosphatase and ~-glucoronidase, usually exhibited 
by T cells and thymocytes, was also found in the prothymocytes. All types of thymic 
cells lacked positive staining for Sudan black myeloperoxidase and esterases (charac- 
teristic for myelo-monocyte cells) as expected, and the PAS staining was consistently 
negative (Table I). 

SEM studies revealed cells with relatively smooth undulating surfaces with a few 
microvilli on the surface of prothymocytes. Thymocytes showed a similar topography. 
SEM also illustrated size differences in these two subsets of cells (Fig. 2). Incubation 
of various thymic subsets (106 cells/ml) with [aH]thymidine (2 /xCi/ml) for 20 h 
showed that prothymocytes had highly active DNA synthesis when compared with 
the thymocytes (Table II). 

In Vitro Sensitivity of Fetal Lymphoid Subsets to Glucocorticoid-mediated Cytolysis. The 
viability of fetal thymocytes incubated in vitro with 1 mg/ml hydrocortisone succinate 
or with 10 -4 M cortisol remained unaffected, whereas prothymocytes were found to 
be highly sensitive to cytolysis by these drugs (Fig. 3). Cytolysis of prothymocytes was 
also demonstrated with pharmacological concentrations of cortisol (10 -5 M). Thus 
the partial sensitivity of the whole fetal thymic suspension seems to be a result of the 
specific lysis of the prothymocyte subset. The fetal spleen lymphocyte suspension, 
composed mainly of B cells (>1% E rosettes), and the hemopoietic cells isolated from 
the fetal liver were unaffected by hydrocortisone (Fig. 3). 

Long-Term Culture of Prothymocytes. The incubation of prothymocytes (0.5 × 106 
cells/ml) in RPMI-1640 plus 10% fetal calf serum resulted in the spontaneous 
expression of cortical thymocyte characteristics. Within 72 h 40% of the prothymocytes 
formed E rosettes with sheep erythrocytes (SRBC) and expressed NA capacity (Fig. 
4B). These two characteristics reached optimal levels of expression by the 5th d. 
When the whole fetal thymic cell suspension was incubated for 3 d the E-rosetting 
cells increased from 58-80 to >90% (not shown). 

In vitro incubation of the prothymocytes resulted in a striking proliferation of these 
cells, as indicated by the proportion of mitotic figures (Fig. 4 A). The peak proliferation 
was detected on the 3rd d of incubation when ~5% of the cells showed mitotic figures, 
and >80% of the entire population were large cells with b~ophilic cytoplasm. Upon 
further incubation, the mitotic rate decreased. By the 6th d, only a few mitoses were 

TABLE II 
Thymidine Incorporation of Various Thymic* Lymphoid Populations 

Cell population [aH]thymidine incorporation 

Fetal thymus 
Whole thymic suspension 
Prothymocytes 
Thymocytes 

Postnatal thymus 
Whole thymic suspension 

cpm 

41,950 4. 7,420 
103,970 4- 13,700 
36,640 4. 6,100 

27,600 3= 6,810 

* The results are the mean 4- SE of three different experiments. 
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FIG. 3. A representative experiment (similar results were obtained in three different experiments) 
that shows in vitro sensitivity of fetal lymphoid cells to glucocorticoid-induced cytolysis. A. 
Hydrocortisone succinate. B. Cortisol. Whole thymic cell suspension (r-I); prothymocytes (O); E- 
rosetting thymocytes (A); splenocytes (~7); and liver hematopoietic cells (~'). 

seen, and the majority of cells were small lymphocytes with dense nuclear chromatin. 
Additional incubation resulted in varying degrees of cell death. 

When the unseparated fetal thymic cell suspension was tested for spontaneous in 
vitro proliferation, very few mitotic figures were detected during the various stages of 
incubation despite the fact that prothymocytes comprised 20-30% of the entire 
population. The  E-rosetting thymocytes also failed to show any spontaneous prolif- 
eration after prolonged incubation in vitro (Fig. 4A) and died after 4 d of incubation. 
These findings suggested that the rate of prothymocyte proliferation may be regulated 
by the more-mature E-rosetting thymocytes. Accordingly, 0.5 × 106 prothymocytes/  
ml were incubated for 3 d with varying numbers of E-rosetting thymocytes, and the 
percentage of cells in mitosis was scored in each culture. As seen in Fig. 5, incubation 
of 0.1 × 106 thymocytes with 0.5 X 106 prothymocytes decreased the amount  of 
mitotic figures by -50%. Incubation of equal number  of thymocytes and prothymo- 
cytes (0.5 × 106 cells) resulted in a 90% reduction of mitotic figures. These results 
imply that the concentration of thymocytes present in the cell suspension regulate the 
rate of  prothymocyte proliferation. 
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Flo. 4. A representative experiment (similar results were obtained in three different experiments) 
that shows in vitro long-term culture of prothymocytes. A. Cell proliferation rate as indicated by the 
percentage of cells with mitotic figures. Whole thymic cell suspension (D); prothymocytes (O); and 
E-rosetting thymocytes (A). B. Expression of thymocyte characteristics by cultured prothymocytes. 
E rosettes (O); and NA (D). 
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CONCENTRATION OF ADDED THYMOCYTES 

Fso. 5. The effect of coincubation with thymocytes on the proliferation rate of prothymocytes. 
The cultures were incubated for 3 d before examining the proliferation rate. Mean + SE of three 
different experiments. 

Discussion 

In man, the formation of E rosettes was found to be a useful method for distinguish- 
ing between the stem cells recently migrated to the thymus (prothymocytes) and the 
more-mature,  differentiating thymocytes. Most of the current knowledge on prothy- 
mocytes has been obtained from experimental animals such as the mouse and the rat 
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(7, 9-11, 29). Up to the 14th d of gestation, most of the murine thymic lymphoid cells 
are large cells that lack the T membrane antigens such as TL, Thy-1, Ly-1,2,3, and 
GlX (7, 9). After in vitro incubation of these prothymocytes, thymic antigens are 
expressed within 4-6 d of culture (10, 11). The results of this study show that human 
prothymocytes are also able to differentiate in vitro into Cells expressing the SRBC 
receptor and NA capacity independently of the thymic environment. In vitro differ- 
entiation of non-E-rosetting fetal prothymoeytes, designated as "precursor cells," was 
first observed in 1975 by Gatien et al. (16), who separated these cells on the basis of 
their buoyant density on a bovine serum albumin gradient. 

The stimulus for the differentiation and maturation of the prothymocytes to 
thymocytes is presumed to originate from the thymic epithelial cells, and previous 
studies have shown that thymic epithelial products can induce differentiation of bone 
marrow stem cells into lymphocytes that bear recognizable T cell markers in mouse 
(30, 31) and in man (32, 33). Thus, it seems that the in vitro expression of thymocyte 
characteristics after prolonged culture of prothymocytes is a manifestation of the 
differentiation stimuli delivered to the prothymocyte in situ. 

Further similarities between prothymocytes of human and murine origin include 
the absence of Fc receptors and the lack of readily detectable cell-surface immuno- 
globulins (1 I). As in the mouse (34), there is also a difference in the PNA binding 
capacity of human prothymocytes and thymocytes. Studies on T cell differentiation 
during murine ontogeny have indicated that prothymocytes lack the ability to bind 
this lectin; but during fetal development, the cortical thymocytes acquire PNA 
binding ability. The results of this study also demonstrate that human prothymocytes 
lack PNA binding capacity as opposed to the strong binding displayed by small E- 
rosetting thymocytes. PNA interacts with galactosyl residues of a glycoprotein in the 
membrane of the cortical thymocytes (17, 27), and, through differentiation to med- 
ullary thymocytes and mature circulating T cell, a sialic acid group is attached to the 
galactosyl residue, thus preventing the interaction with PNA in these cells. Treatment 
of PBL with neuraminidase eliminates the sialic acid and restores the PNA binding 
capacity of the mature T cells. 

In this study, the NA phenomenon was expressed by thymocytes, but not by 
prothymocytes. Earlier studies (35) have shown that the circulating T lymphocytes do 
not express NA because of the high negative surface charge, attributed mainly to the 
presence of silaic acid. Once this negative electrical charge is reduced either by 
immunoactivation or by neuraminidase, the T cells express the NA ability and 
interact nonspecifically with normal and malignant cells in a species-restricted manner 
(18, 21). 

In view of the above findings, it is possible that the PNA receptor that coincides 
with the thymoeyte NA site serves as the base for the mounting of sialic acid in the 
course of T cell differentiation. This, in turn, would inhibit the expression of the NA 
capacity of the T cell until activation occurs. In activated T cells, the NA phenomenon 
seems to play an important role in the cellular immune response 06). 

Administration of hydrocortisone in vivo to either mouse or man results in the 
involution of the thymus and disappearance of the cortical thymocytes (6, 14). 
Microscopical examination of the thymus has revealed that murine cortical thymo- 
cytes die after such treatment (6). In vitro experiments have shown that incubation of 
rat or murine thymoeytes with hydrocortisone also resulted in cytolysis (37), whereas 
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human thymocytes are unaffected by the same treatment (19). The results of the 
present study suggest that the thymic involution after hydrocortisone administration 
in a glucocorticoid-resistant species such as man (37), may be a result of the selective 
elimination of the prothymocyte population. Subsequent depletion of the thymic 
cortex would then be a result of normal cell maturation or cell death. At present it is 
unclear why prothymocytes are sensitive to hydrocortisone while thymocytes are 
resistant. However, similar differences in glucocorticoid sensitivity have been detected 
in other stages of T cell maturation. Thus, circulating T lymphocytes are glucocorti- 
coid resistant but become sensitive to these hormones after immune activation (19, 
23). The possibility that these differences may be a result of variations in the 
cytoplasmic or nuclear level of steroid receptors or to the expression of certain genes 
is currently under study. 

The in vitro studies of the rate of DNA synthesis, as measured by [3H]thymidine 
incorporation, indicated that human prothymocytes display active DNA synthesis. 
Thymocytes, however, also synthesize substantial amounts of DNA, which suggests 
that cell proliferation is not terminated by the expression of T cell-surface markers. 
High rates of DNA synthesis by human prothymocytes have also been demonstrated 
previously by Parkman and Merler (8), who isolated cells from fetal thymuses with 
the buoyant density technique. In the present study long-term in vitro incubation of 
prothymocytes for >24 h resulted in marked proliferation that peaked on the 3rd d, 
and it seems that the suppression of prothymocyte proliferation after coincubation 
with thymocytes, may reflect a physiological regulatory mechanism in this system. 
Studies of murine bone marrow-derived prothymocytes have also shown that the 
production and proliferation of cells that precede intrathymic prothymocytes are 
controlled by the homeostatic regulation of the thymus (38). The possibility that such 
regulation involves thymocyte-secreted humoral factors is, at present, under study. 

S u m m a r y  

Thymic precursor cells (prothymocytes) comprise a large proportion of the fetal 
thymic cell population, but are less frequently encountered in the postnatal thymus, 
where they compose < 1% of the entire population. In the present study we attempted 
to characterize a number of properties of the prothymocytes obtained from human 
fetal thymic tissues after depletion of the E-rosetting thymocyes on a Ficoll-Hypaque 
gradient. The  prothymocytes are larger than the thymocytes and show a different 
nuclear chromatin pattern. This subset of cells lacks the E-rosetting and natural- 
attachment capacities and, unlike thymocytes, does not bind the lectin peanut 
agglutinin. Human prothymocytes are highly sensitive to the in vitro cytolytic effect 
of hydrocortisone, whereas the thymocytes are resistant. Long-term in vitro culture of 
prothymocytes resulted in the expression of thymocyte characteristics together with a 
burst of mitotic activity. Results of this study indicate that the rate of the prothy- 
mocyte proliferation is regulated by the small thymocytes present in the same 
suspension. 

Received for publication 19 May 1980. 
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