
Research Article
Spike-Based Approximate Backpropagation Algorithm of
Brain-Inspired Deep SNN for Sonar Target Classification

YangLiu ,1,2,3MengTian,1,2,3RuijiaLiu,1,2,4KejingCao,1,2,3RuiyiWang,2,3,5YadiWang,1,2,3

Wei Zhao ,1,6 and Yi Zhou3,7

1Henan Province Engineering Research Center of Spatial Information Processing, Kaifeng 475004, China
2College of Computer and Information Engineering, Henan University, Kaifeng 475004, China
3Shenzhen Research Institute, Henan University, Shenzhen 518000, China
4College of Software, Henan University, Kaifeng 475004, China
5Henan Key Laboratory of Big Data Analysis and Processing, Kaifeng 475004, China
6Miami College, Henan University, Kaifeng 475004, China
7College of Artificial Intelligence, Henan University, Zhengzhou 450046, China

Correspondence should be addressed to Yang Liu; ly.sci.art@gmail.com and Wei Zhao; henuzhao@vip.henu.edu.cn

Received 1 December 2021; Revised 22 May 2022; Accepted 8 August 2022; Published 20 October 2022

Academic Editor: José Alfredo Hernández-Pérez

Copyright © 2022 Yang Liu et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of neuromorphic computing, more and more attention has been paid to a brain-inspired spiking neural
network (SNN) because of its ultralow energy consumption and high-performance spatiotemporal information processing. Due
to the discontinuity of the spiking neuronal activation function, it is still a difficult problem to train brain-inspired deep SNN
directly, so SNN has not yet shown performance comparable to that of an artificial neural network. For this reason, the spike-based
approximate backpropagation (SABP) algorithm and a general brain-inspired SNN framework are proposed in this paper. .e
combination of the two can be used for end-to-end direct training of brain-inspired deep SNN. Experiments show that compared
with other spike-based methods of directly training SNN, the classification accuracy of this method is close to the best results on
MNIST and CIFAR-10 datasets and achieves the best classification accuracy on sonar image target classification (SITC) of small
sample datasets. Further analysis shows that compared with artificial neural networks, our brain-inspired SNN has great ad-
vantages in computational complexity and energy consumption in sonar target classification.

1. Introduction

Neural computing is the main driving force of the current
development of artificial intelligence. In recent years, with
the development of various deep learning technologies
[1–5], artificial neural networks (ANNs) have been widely
applied in many fields and achieved remarkable results (such
as target detection, speech recognition, and character rec-
ognition). However, due to a large number of parameters,
the massive training samples, and the huge energy con-
sumption required by ANN training and deployment, ANN
is still difficult to be applied to edge smart devices (such as
smart watches, smart detectors, and other unmanned au-
tonomous systems). High energy consumption and high-

performance computing requirements have become the
main bottlenecks for the continued development of neural
networks for sonar target classification in unmanned un-
derwater vehicles.

.e brain-inspired spiking neural network (SNN) is
usually sparse, and the calculation is driven by events. .e
high multiplication calculation costs of ANN can be avoided
through discrete binary spike signals, showing ultralow
power consumption [6]. Coordinate neuromorphic hard-
ware [7–11] shows the prospect of realizing low-power
artificial intelligence, which is expected to break through the
current bottleneck of neural computing. .e spiking neuron
is inspired by biological neurons that efficiently process
discrete spatiotemporal spikes, and the main neuronal

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 1633946, 11 pages
https://doi.org/10.1155/2022/1633946

mailto:ly.sci.art@gmail.com
mailto:henuzhao@vip.henu.edu.cn
https://orcid.org/0000-0001-7018-646X
https://orcid.org/0000-0003-0477-5471
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1633946


models include the leaky integrate-and-fire (LIF) model [12],
the Izhikevich model [13], and the Hodgkin–Huxley model
[14]. LIF neurons greatly simplify the process of the action
potential of biological neurons. .e membrane potential
integrates the input current over time, and when the
membrane potential exceeds the threshold, the neuron will
fire a spike. At present, there have been several hardware
circuits [15] based on the LIF neuron model. Due to the
discontinuity and nondifferentiability of spiking neuronal
activation function, the traditional ANN backpropagation
(BP) training algorithm based on gradient descent cannot be
directly applied to brain-inspired SNN. .e training of the
brain-inspired SNN is still a great challenge. At present, the
main work can be divided into two categories: the ANN-
SNN conversion method and the brain-inspired SNN direct
training method.

In the ANN-SNN conversion method, ANN is trained
and then converted into SNN by a specific means to replace
the training of SNN. Sengupta et al. [16] achieved 91.55%
accuracy in the CIFAR-10 dataset with a loss of 0.15%
conversion accuracy. After ANN-SNN conversion, Rathi
et al. [17] fine-tuned the model for training and achieved
92.22% accuracy in the CIFAR-10 dataset and reduced the
inference time. Stockl and Maass proposed a method for few
spike conversion (FS-Conversion) [18], achieving 92.42%
accuracy on the CIFAR-10 dataset. Because the state-of-the-
art (SOTA) training methods of ANN are used, many
current ANN-SNN conversion methods obtain SNN SOTA
classification performance. However, the ANN-SNN con-
version method usually imposes constraints on the original
ANN, which will lead to a decline in performance. More-
over, most of the ANN-SNN conversion methods require
hundreds to thousands of time steps to complete one in-
ference, resulting in additional time delays and energy
consumption contrary to the goal.

Direct training methods for SNN mainly include un-
supervised learning and supervised learning. Unsuper-
vised learning generally only involves local signals of
synapses, such as the spike-timing-dependent plasticity
(STDP) algorithm. Diehl and Cook [19] achieved a clas-
sification accuracy of 95% on the MNISTdataset using the
STDP trained network. Kheradpisheh et al. [20] used
STDP and the support vector machine (SVM) to achieve a
classification accuracy of 98.4% on the MNISTdataset, but
the accuracy was still far behind that of ANN. In order to
narrow the gap, researchers put forward the spike-based
BP rule. Jin et al. proposed the HM2-BP (hybrid macro/
microlevel BP) [21] algorithm, and the error BP in SNNs
was deconstructed into two processes: the change of
postsynaptic potential caused by a single spike at the
microlevel and the loss function defined by frequency
coding at the macrolevel. Based on the approximate de-
rivative of the spiking neuronal activation function, Wu
et al. proposed a spatio-temporal backpropagation (STBP)
[22] algorithm combining the spatial domain with the time
domain in SNNs. Wu et al. also proposed a neural nor-
malization technique (NeuNorm) [23], which achieved
good results when combined with the STBP algorithm on
CIFAR-10 datasets. Lee et al. [24] processed the derivative

of LIF neurons as the approximate derivative of IF neurons
and calculated the corresponding leak correction com-
pensation. .e authors in [25] proposed an SNN training
algorithm that is capable of learning not only the synaptic
weights but also the membrane time constants of SNNs.
Literature [26] proposed a neuromorphic global-local
synergic learning model. Compared with the single
learning method, this method has much higher perfor-
mance in few-shot learning. In addition, the authors in
[27] proposed an SNN learning algorithm via proxy, which
requires shorter simulation time than the converted SNNs.
Previous SNN BP algorithms are more complex, but ANN
BP algorithms are simple and effective.

.e main contributions of our work are as follows: First,
we propose the spike-based approximate backpropagation
(SABP) algorithm for SNN training, whose approximate
derivative of the spike neuronal activation function is simple
and efficient. In addition, we have built general deep SNNs,
which can adopt the popular architectures such as VGG [2]
and ResNet [5] to build deep SNNs technologies and can also
use SNN-based dropout to increase its generalization ability
to alleviate the overfitting phenomenon in the learning
process. We will then demonstrate the effectiveness of our
work on MNIST, CIFAR-10, and sonar image target clas-
sification (SITC) datasets. To the best of our knowledge, the
classification accuracy of our method is close to the best
results on MNIST and CIFAR-10 datasets and achieves the
best classification accuracy on the SITC dataset. Finally, we
further analyze the advantages of this method compared
with ANN in terms of computational complexity and energy
consumption.

.e structure of the paper is as follows: In Section 2, we
will introduce our brain-inspired deep spiking neural net-
work architecture and spike-based approximate back-
propagation algorithm. In Section 3, the experiment is
described and the experimental results are analyzed to
demonstrate the effectiveness of the proposed method on
MNIST, CIFAR-10, and SITC datasets. In Section 4, we
discuss the relevant methods in recent years and compare
them with ours. Finally, the thesis is summarized in Section
5.

2. Materials and Methods

2.1.Brain-InspiredDeepSpikingNeuralNetworkArchitecture.
As shown in Figure 1, a deep SNN has been defined, in-
cluding the input layer, encoder, hidden layer, output layer,
and decoder. It is a feed-forward neural network, and the
weight of each layer of neuron synapse will be updated
according to the SNN BP algorithm described in Section 2.2.
In this section, the structure and function of the encoder, the
hidden layers, and the decoder will be mainly illustrated.

2.1.1. Encoder. As shown in Figure 2, in the encoder, the
input image is two-dimensional static image data, the pixel
image is encoded as a Poisson distributed spike train with a
certain time step, and the probability of spike generation is
proportional to the pixel intensity.

2 Computational Intelligence and Neuroscience



2.1.2. Hidden Layers. As shown in Figure 3, the hidden
layers are composed of convolution layers, pooling layers,
and fully connected (FC) layers. .e features of spikes are

extracted by the convolution layer and pooling layer, and
then the one-dimensional vectors are generated in the FC
layers and input to the decoder. .e hidden layers are

Encoder Decoder 0 1 2

Hidden LayersSpikes

Output Layer

Input Layer

LIF Neuron

Figure 1: Overall architecture of brain-inspired SNNs. .e encoder converts the input images into spikes, the hidden layers consist of LIF
neurons, which can be any network structure (such as LeNet, VGG, and ResNet), and the decoder converts the output spikes into the
corresponding classification results.

Encoder

21 159 253 159

238 252 252 252

253 252 239 233

253 252 202 84

Time
step 1 2 3 4 95 6 7 8 10

Poisson-
distributed

Figure 2: A simple example of the coding process. A 4× 4 pixel image block is selected from the image, and the last column of the image
block is transformed into the spike trains with a time step of 10, conforming to the Poisson distribution according to the pixel intensity.

Input spike

Convolution

LIF Neuron

Pooling

LIF Neuron 2 

Output spike

(a)

Input spike

3×3 Convolution 1

Pooling

Output spike

LIF Neuron 2 

LIF Neuron 1 

3×3 Convolution 2

(b)

Input spike

Addition

Shortcut

Output spike

3×3 Convolution 1

3×3 Convolution 2

LIF Neuron 1 

LIF Neuron 2 

(c)

Figure 3:.e basic architecture of the brain-inspired SNN blocks. (a) Spiking general structure. (b) Spiking VGG block. (c) Spiking ResNet
block.

Computational Intelligence and Neuroscience 3



composed of neurons based on the LIF model. .e leaking
and firing processes of synapses in the convolutional layer
and the pooling layer will be discussed in detail in Section
2.2.

2.1.3. Decoder. As shown in Figure 4, the decoder accu-
mulates the one-dimensional vector features extracted from
the output layer for final classification. .is accumulation is
the sum of the output spike of each time step multiplied by
the weight of the corresponding output layer..e number of
neurons in this layer is the same as the number of categories
to be classified.

2.2. Spike-Based Approximate Backpropagation Algorithm

2.2.1. Neuron Model. As shown in Figure 5, the leakyinte-
grate-–and-fire (LIF) neuron model greatly simplifies the
action potential process and retains the three key charac-
teristics (leaky, integrate, and fire) of the neuron membrane
potential, and its formula can be expressed as follows:

τm

dVmem

dt
� Vrest − Vmem + RmI(t), (1)

where τm is the time constant of membrane potential decays,
Vmem is the postneuron membrane potential, Vrest is the
resting potential, Rm is the impedance of the membrane, and
I(t) is the input current.

2.2.2. Spike Forward Propagation. In forward propagation
of spikes, the pixel value of the image is converted into a
Poisson distributed spike train and transmitted to the
network, and the input spike is multiplied by the synaptic

weight to generate an input current. .e input current
accumulates in the membrane potential of the postneuron.
When the membrane potential exceeds the firing threshold
of the neuron, the postneuron generates an output spike and
resets. If no spike is generated, the membrane potential
decays (the membrane potential of the pooling layer neuron
does not decay) exponentially over time. As shown in
Figure 6, the neurons in each layer of the hidden layer will
carry out this process in turn according to the input current
received by the previous layer. As time goes by, the weighted
sum of the spikes of the neurons can be formulated as
follows:

net
l+1
j (t) � 

nl

i�1

w
l
ij × x

l
i(t), (2)

where netl+1
j (t) represents the total current inflow of the

membrane potential accumulated in neurons j in the layer
l + 1 over time t, nl represents the total number of neurons in
the layer l, wl

ij(t) represents the weight of the connection
synapse from the neuron i in the layer l to the neuron j in the
layer l + 1, and xl

i(t) is the sum of the spike events of neurons
in the layer l over time t, which can be formulated as follows:

x
l
i(t) � 

t

k�1
f

l
i t − tk( , (3)

where fl
i(t − tk) represents the moment when the neuron in

the layer l generates a spike at the time tk, which can be
expressed as follows:

f
l
i t − tk(  �

1, if fire,

0, otherwise.
 (4)

Time
step 2 53 4

Pre-spikes

×

×

×

∑

1 2 53 4
Output 

0.7 0.5 0.4 0.6 0.5

Decoder

t = 1 

w11=0.2

w21=0.4

w12=0.1

w31=0.1 w32=0.6

w22=0.2 ∑ 0.9 0.8 0.2 0.3 0.8

Classification

MAX

0.54

0.60

Category 1 

Category 2 

Synapses

Figure 4: A simple example of the decoding process. In each time step, the value of the output layer is the result of multiplying the input
spike train of the preneuron by the synaptic weight of the output layer. In the decoder, the values of the output layer in all time steps are
accumulated and divided by the total time steps. Finally, the classification results are predicted by comparing the values of neurons in the
decoder.

Pre-spikes

LIF

w1

w3

w2

t1 t2

Vmem

Vth

time

t1 t2

Post-spikes

Figure 5: .e process of leaky, integrate, and fire characteristics of LIF neurons. After integrating the current of the preneuron, the
membrane potential of the postneuron begins to accumulate and decreases exponentially with time. Until the accumulation of the
membrane potential exceeds the firing threshold, the LIF neuron fires a spike backward and resets the membrane potential.

4 Computational Intelligence and Neuroscience



In time t, the sum of the spike trains generated by the
neuron j in the layer l + 1 can be formulated by al+1

j (t) as
follows:

a
l+1
j (t) � 

t

k�1
f

l+1
j t − tk( . (5)

It can be seen that the sum of the spike trains produced
by the neuron depends on the total amount of input current
received. .e neurons of the output layer will not generate
spikes; instead, the membrane potential of the output layer
will accumulate in the decoder at each time step, and the
membrane potential of the decoder will not decay with time.
At the last time step, the decoder will divide the accumulated
membrane potential by the total time steps T to calculate the
final result, which can be expressed as follows:

result �
Vmem

T
. (6)

2.2.3. Error Backpropagation and Weight Update. After the
forward propagation of a spike, the loss function is the
difference between the predicted output of the decoder and
the value of the label. At the decoder, the partial derivative of
the loss function is calculated and propagated back to each
previous layer using the chain rule, and the weight of each
layer is updated according to the corresponding partial
derivative obtained. .e loss function can be expressed as
follows:

L �
1
2



nl

j�1
predictionj − labelj 2, (7)

where L represents the final loss and n represents the total
number of neurons in the decoder. .e leak characteristic of
LIF neurons is taken as noise; then, the partial derivative of
the difference with respect to the weight parameter of the
hidden layer can be expressed by the following formula:

zL

zw
�

zL

za

za

znet

znet

zw
, (8)

where w represents the corresponding weight to be updated,
net represents the input current of the preneuron, and a

represents the output current of the neuron after activation.
Different from ANN, the activation function in SNN rep-
resents the relationship between the weighted summation of
the preneuronal input and the postneuronal output over
time. If the membrane potential does not exceed the
threshold, the neuron output is 0, and if the membrane
potential exceeds the threshold, the neuron output is 1.
Similar to the ReLU function, here, we only differentiate
positive values in the network. Since the activation function
of SNNs is discontinuous and nondifferentiable, it is nec-
essary to find an approximate derivative for za/znet. If the
membrane potential of the LIF neuron does not exceed the
firing threshold, no spike will be generated, and the de-
rivative of the neuron activation function is set to 0. If the
neuronal membrane potential exceeds the threshold, a spike
will be generated, and the membrane potential of the
postneuron at a given time instant t can be expressed by the
following formula:

Vmem(t) ≈ 
n

i�1
wixi(t)(  − Vth a(t), (9)

where n represents the number of preneurons, xi(t)

represents the sum of the spikes of the pre-neuron i over
time t, and a(t) represents the sum of the spikes after the
activation of the postneuron over time t. Since Vmem(t)

does not reach the firing threshold, Vmem(t) will be ig-
nored, and then, the derivative of the activation function
can be approximated as a linear function; it can be directly
estimated as 1/Vth [24], and the formula is deduced as
follows:

0 0 0 0 0 0

0.10 0.40 0.90

0.00

–0.30

–0.30

–0.30

–0.20

0

0.80 0.35

0.40 1.40 0.40

0.45

0.252.101.20–0.55

–0.15

–0.50 0.35

–0.49

0.15

0.94

1.85

1.04

–0.79 –0.14

1.29

0.75

1.40 0.89

0.59

1.64

1.64

1.65

–0.20

–0.250.50

0.80
0 0 0 0

0 0
0 0

0 0
1 0

0.25 0.25

0.25 0.25

0.25 0.75

1 0.75

0.25 0.50

000 0 0 0

0 0 1 0
0 1 1 0

0 0 0 1
0 0 1 1

1 1 1 0
0 1 0 0

0 0 0 0 0 0

t=0

t=1

Time
step

Input spikes
(padding=1)

Convolutional
Kernel

Convolution
(Stride=1)

Convolution
(Stride=1)

Leak
(1=0.99)

Reset
(if fire)

Reset
(if fire)

�reshold=1

�reshold=1

Pooling
(Stride=2)

Pooling
(Stride=2)

Membrane
Potential Generate spikes

pooling
Kernel

Membrane
Potential

�reshold=0.75

�reshold=0.75

Output
spikes

0 0 0 0 1 0
0 0 0 1 1 0
0 1 0 0 1 0
0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0
0 0 1 1 0 0
0 0 1 1 1 0
0 1 0 0 0 0

Figure 6: Illustration of a simplified operational example of the convolutional layer and the average pooling layer over two time steps. At
each time step, when the membrane potential exceeds the firing threshold of the neuron, the postneuron generates an output spike and
resets. If no spike is generated, the membrane potential will leak over time. In the average pooling layer, the membrane potential will not leak
over time.

Computational Intelligence and Neuroscience 5



a(t) ≈
1

Vth



n

i�1
wixi(t)( . (10)

According to formula (2), it can be obtained as follows:

a(t) ≈
1

Vth

net(t), (11)

za

znet
�

1
Vth

. (12)

.en, the partial derivative of the difference with respect
to the weight can be approximated as follows:

za

zw
�

1
Vth

zL

za

znet

zw
. (13)

For simplicity, Vth is set to 1 in this paper so that the
formula can be simplified as follows:

zL

zw
�

zL

za

znet

zw
. (14)

2.2.4. Dropout in the Spiking Neural Network. Dropout [3] is
a very popular regularization technology for training ANN.
In the training process, given a probability p that obeys the
Bernoulli distribution, some neurons are randomly dis-
connected by p to avoid the occurrence of overfitting
phenomenon.

In SNN, the use of dropout is slightly different from that
of ANN. In the training process of ANN, data are divided
into several batches, each iteration has only one forward
propagation, and a number of connections between neurons
and networks are disconnected randomly according to the
probability p. However, in SNN, there will be multiple
forward propagations in each iteration, which depends on
the time step set. .e error is back propagated, and the
network parameters are updated only at the last time step.
.erefore, the consistency of disconnection neurons in each
time step must be guaranteed in an iteration. In ANN, the
typical dropout probability p is set to 0.5. Since the acti-
vation of neurons is sparser in the forward propagation of
SNN, the set of probability p in SNN is generally smaller
than that of ANN. In our work, it is generally set to
somewhere between 0.1 and 0.25.

3. Experiments and Results

3.1. Dataset Description. In order to measure the effective-
ness of the SNN BP training algorithm in the brain-inspired
SNN model, MNIST, CIFAR-10, and SITC datasets are
selected for experiments. .e MNIST handwritten dataset is
composed of grayscale images with an image size of 28× 28.
.ere are 60,000 training samples and 10,000 test samples,
including 10 digital categories of 0–9. CIFAR-10 is com-
posed of color images with an image size of 32× 32. .ere
are 50,000 training samples and 10,000 test samples, in-
cluding 10 categories of animals and vehicles. SITC is a
small-sample sonar image dataset. .e SITC dataset is based
on 62 aircraft images and 385 shipwreck images publicly

provided by the SeabedObjects-KLSG [28] dataset, and 289
seabed images and 18 drowning images are collected and
combined into an experimental dataset for underwater
target classification. All target images are directly cropped
from the original sonar image. A total of 18 drowning
images, 62 aircraft images, 289 seabed images, and 385
shipwreck images are included.

Table 1 lists the detailed information about the experi-
ments’ datasets. .e training samples of the three datasets
are used for deep SNN training, and then, the trained SNN is
used to predict and classify the test samples of the dataset to
obtain classification accuracy. .ere is no intersection be-
tween training samples and test samples.

3.2. Experimental Setup. A custom simulation the SNN
framework is developed using the PyTorch deep learning
framework, which is available in Python 3.6.12 and PyTorch
1.1.0. For training, as described in Subsection 2.2.3, synaptic
weights are trained with a mini-batch approximate BP algo-
rithm in an end-to-end manner. A stochastic gradient descent
(SGD) optimization algorithm is used to optimize the training
parameters, and each experiment has 150 training epochs.

3.3. Network Topologies. As described in Section 2.1, the
hidden layer of SNN can contain the current popular network
architecture. .e appropriate SNN architecture is selected
according to the complexity of the experimental dataset. For
the convenience of comparison, a network architecture
similar to the LeNet5 model is used on the MNIST and SITC
datasets, which contain two sets of convolutional layer
pooling layers and two FC layers. For the CIFAR-10 dataset, a
deeper network architecture is chosen, with a structure similar
to ResNet11..e hidden layer is composed of residual blocks,
and there are 11 layers of trainable parameters. .e detailed
structure is shown in Table 2.

3.4. Encoding Scheme. For the MNIST dataset, the pixel
value of the grayscale image is scaled between 0 and 1 and
then transformed into a spike event stream with a certain
number of time steps conforming to the Poisson distribution
according to the pixel intensity. For the CIFA-10 dataset, we
first preprocessed the color image by horizontal flipping,
scaling the pixel value between −1 and 1 and then trans-
formed it into a spike event stream with a certain number of
time steps in line with the Poisson distribution according to
the pixel intensity. For the SITC dataset, the pixel value of
the gray image is scaled to between 0 and 1 and then
transformed into a spike event stream with a certain number
of time steps conforming to the Poisson distribution
according to the pixel intensity.

Table 1: Experiments datasets.

Dataset Image Train sets Test sets Category
MNIST 28× 28 gray 60000 10000 10
CIFAR-10 32× 32× 3 color 50000 10000 10
SITC Unfixed gray 529 225 4

6 Computational Intelligence and Neuroscience



In SNN, the spike event for each time step can only be 0
or 1, and the time steps provide additional time dimension
information; they can be considered as the actual precision
of neuronal activation. If the time steps are too less, SNNwill
not be able to get enough information for inference. If the
time steps are too long, the randomness of SNN will be
destroyed, and the additional inference time and energy
consumption will be generated. In our experiments, the time
steps of the relatively simple MNISTdataset are 50, the time
steps of themore complex CIFAR-10 dataset are 100, and the
time steps of the SITC dataset are 70.

3.5.ExperimentalResults. At present, MNISTand CIFAR-10
are mostly used to verify SNN inference ability. Tables 3–5,
respectively, list the classification results of SNN on MNIST,
CIFAR-10, and SITC datasets in recent years, and the results
of our algorithm SABP are bold in thetable.

As shown in Tables 3–5, the accuracy of the SABP al-
gorithm is 99.62%, 91.03%, and 91.11%, respectively. For

MNIST and CIFAR-10 datasets, the SABP algorithm is very
close to the highest accuracy of surrogate gradient [25]
(Tables 3 and 4). For the SITC dataset of the small sample,
after image enhancement by style transfer and weighted
random sampling, the classification accuracy is significantly
higher than that of surrogate gradient [25] (Table 5).

4. Discussion

We propose the general brain-inspired SNN framework and
the SABP algorithm. .e SABP algorithm derives the ap-
proximate derivative of an LIF neuron by the relationship
between the input current of the LIF neuron and the output
of the neuron after activation, and in this process, we treat
the leak characteristics of LIF neurons as noise. In the weight
update stage, we use the approximate derivative to realize the
error backpropagation. .e approximate derivative of the
SABP algorithm is very concise because we believe that an
SNN training algorithm must be concise and effective.

4.1. Comparison with Relevant Works. Unlike the HM2-BP
algorithm proposed by Jin et al. [21] and the STBP algorithm
by Wu et al. [22], our work is similar to that of the ap-
proximate derivative algorithm of IF neurons by Lee et al.
[24], which considers only the activation of spikes to nat-
urally train the deep brain-inspired SNN. In addition, in the
process of training, the method by Lee et al. in each neuron is
to save a complex leakage compensation value for error
backpropagation. However, our LIF neuron activation
function approximate derivative is very simple (active 1 and
inactive 0) and without additional storage required, which
saves the memory and improves the training speed.
.erefore, the work in this paper can advance the spike-
based BP algorithm for training deep SNN.

4.2. Calculation of Energy Consumption. Different from
ANN, which requires multiply-accumulate computation
(MAC) at each layer, the spikes of SNN are sparse and only

Table 2: LeNet5 and ResNet11 network architecture.

LeNet5 ResNet11
Layer Kernel Channel Stride Layer Kernel Channel Stride
Conv 1× 5× 5 20 1 Conv 3× 3× 3 64 1
Avgpool 2× 2 20 2 Avgpool 2× 2 20 2
Conv 20× 5× 5 50 1 Conv 64× 3× 3 128 1
Avgpool 2× 2 50 2 Conv 128× 3× 3 128 1

Shortcut 64×1× 1 128 1
Conv 128× 3× 3 256 1
Conv 256× 3× 3 256 2

Shortcut 128×1× 1 256 2
Conv 256× 3× 3 512 1
Conv 512× 3× 3 512 1

Shortcut 256×1× 1 512 1
Conv 512× 3× 3 512 1
Conv 512× 3× 3 512 2

Shortcut 512×1× 1 512 2
FC 200 FC 1024
Output 10 Output 10

Table 3: .e classification accuracy of SNN on the MNISTdataset.

Author Method Accuracy
(%)

Diehl and Cook [19] STDP 95.00
Kheradpisheh et al. [20] STDP 98.40
Hunsberger and Eliasmith
[29] Conversion 98.37

Diehl et al. [30] Conversion 99.10
Rueckauer et al. [31] Conversion 99.44
Lee et al. [32] Spike-based BP 99.31
Jin et al. [21] HM2-BP 99.49
Wu et al. [22] Spike-based BP 99.42

Lee et al. [33] STDP+ spike-based
BP 99.28

Lee et al. [24] Spike-based BP 99.59
Fang et al. [25] Surrogate gradient 99.72
Wu et al. [26] Spike-based HP 99.50
�is work SABP 99.62

Computational Intelligence and Neuroscience 7



have accumulate computation (AC) at each layer, which
enables SNN to reduce computational complexity and save
energy consumption. If both SNN and ANN use conven-
tional hardware, this advantage will be lost, and even the
computational complexity will be tens to hundreds of times
that of ANN. Fortunately, special hardware is available to
implement event-based operations, and SNN can take ad-
vantage of this mechanism to compare with ANN.

At present, although it is difficult for us to directly es-
timate the actual energy consumption of SNN and ANN, we
can still make a rough estimate of the synaptic operands of
each network layer to compare the computational com-
plexity of SNN and ANN. Suppose an SNN has l layers, each
layer has nl synaptic connections, the total time steps are Ts,
and the average activation rate of synapses is al, then the AC

operand of an SNN is lnl × al × Ts, and lnl × al is the
MAC operand of an ANN of the same structure..e number
of spike activations at each layer of LeNet5 and ResNet11 is
shown in Figures 7–9.

We use the calculation method described above, under
the LeNet5 architecture, the AC operands of SNN are about
7.4x of the MAC operand of ANN. Under the ResNet11
architecture, the AC operands of SNN are about 2.2x as
many as the MAC operands of ANN. However, according to
the work by Han et al. [35], the energy of MAC operation is
usually one order of magnitude higher than that of AC
operation. For example, in the 45 nm technology node, the
energy consumed by 32-bit floating-point MAC operation is
about 4.6PJ and that of AC operation is about 0.9PJ. .e
power consumption for 32-bit integer MAC operation is

Table 5: .e classification accuracy of SNN on the SITC dataset.

Author Method Accuracy (%)
Fang et al. [25] Surrogate gradient 86.67%
.is work SABP 91.11

Table 4: .e classification accuracy of SNN on the CIFAR-10 dataset.

Author Method Accuracy (%)
Hunsberger and Eliasmith [29] Conversion 82.95
Esser et al. [34] Conversion 89.32
Rueckauer et al. [31] Conversion 88.82
Sengupta et al. [16] Conversion 91.55
Rathi et al. [17] Conversion + STDB 92.22
Stöckl and Maass [18] FS-conversion 92.42
Wu et al. [23] Spike-based BP 90.53
Lee et al. [24] Spike-based BP 90.95
Fang et al. [25] Surrogate gradient 93.50%
Saeed Kheradpisheh and
Maryam [27] Proxy 93.11%

Wu et al. [26] Spike-based HP 91.08%
.is work SABP 91.03

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

Conv1 Conv2AvgP1

9.940

LeNet5 - MNIST (10000 SAMPLES)

A
ve

ra
ge

 S
pi

ke
s (

50
 ti

m
e-

ste
ps

)

9.188
7.946

3.290 2.998
2.078

AvgP2 Fc1 Fc2

Figure 7: .e average number of spike activations at each layer of LeNet5. On all test sets of MNISTsamples, when using 50 time steps, the
accuracy of this method is 99.62%, and the average number of spikes activated per layer under the LeNet5 network architecture is obtained.

8 Computational Intelligence and Neuroscience



about 3.2 PJ, and for AC operation, it is about 0.1 PJ. It has
been reported [36] that 32-bit floating-point computing can
be replaced by fixed-point computing using integer MAC
and AC units with almost no loss. According to the cal-
culation method mentioned above, for the MNIST dataset,
the calculation energy efficiency of SNN is about 4.32x that
of ANN, for the CIFAR-10 dataset, the computational en-
ergy efficiency of SNN is about 14.55x that of ANN, and for
the SITC dataset, the computational energy efficiency of
SNN is about 6.2x that of ANN. It is worth noting that the
average activation rate of neurons in each layer decreases
with the deepening of the SNN network, and the activated
neurons become more and more sparse. Although the actual
energy consumption of SNN and ANN is not completely
consistent with the synaptic operand and the actual energy
consumption may be affected by other factors, the

advantages of brain-inspired SNN in computational com-
plexity and energy consumption can still be observed.

5. Conclusion

Aiming at the problem that CNN is difficult to deploy on
edge smart devices due to high energy consumption, this
paper proposes a general brain-inspired SNN architecture
and a simple and effective SABP algorithm and constructs
different network architectures according to the character-
istics of different datasets. Experiments show that the
method has a good performance on brain-inspired deep
SNN. Energy consumption analysis proves the superiority of
SNN in energy consumption, which is more suitable for
deploying edge smart devices than CNN. So far, compared
with other SNN training methods, the accuracy of our

40 37.710

12.261
10.837

1.804 2.685 2.046 3.052 1.872 0.573 1.185 0.520 0.575

ResNet11 - CIFAR-10 (1000 SAMPLES)

A
ve

ra
ge

 S
pi

ke
s (

10
0 

tim
e-

ste
ps

)

35

25

15

5

0
Conv1 Conv2AvgP1 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9 FC1 FC2

30

20

10

Figure 8: .e average number of spike activations at each layer of ResNet11. When using 100 time steps, 1000 samples are randomly
selected from the test samples of the CIFAR-10 dataset, and the accuracy of this method is 92.00%; the average number of spikes activated
per layer under the ResNet11 network architecture is obtained.

12 LeNet5 - SITC (225 SAMPLES)

9.598

5.294

2.831
2.425

2.026

5.995

A
ve

ra
ge

 sp
ik

es
 (t

im
e s

te
p:

 7
0)

11

10

9

8

7

6

5

4

3

2

1

0
Conv1 Conv2 Fc1AvgP2AvgP1 Fc2

Figure 9: On all test sets of MNIST samples, when using 70 time steps, the accuracy of this method is 91.11%, and the average number of
spikes activated per layer under the LeNet5 network architecture is obtained.

Computational Intelligence and Neuroscience 9



experiment is very close to the highest accuracy on MNIST
and CIFAR-10 datasets, and the highest accuracy is achieved
on small-sample SITC datasets. When applied to suitable
neural mimicry hardware, our proposed approach can
significantly reduce computational complexity and energy
consumption for sonar target classification in unmanned
underwater vehicles.

In the future, we will strive to reduce the time step
required for SNN classification to reduce the delay and
deploy the algorithm on an unmanned underwater vehicle
equipped with neuromorphic hardware for further research.

Data Availability

.e datasets used to support the findings of this study are
available at MNIST DATASET (http://yann.lecun.com/
exdb/mnist/) CIFAR10 DATASET (https://tensorflow.
google.cn/datasets/catalog/cifar10).

Conflicts of Interest

.e authors declare that they have no conflicts of interests.

Acknowledgments

.is work was supported by the National Natural Science
Foundation of China (Nos. 62176087, 62176088, 62106066),
the Shenzhen Special Foundation of Central Government to
Guide Local Science and Technology Development (Nos.
2021Szvup032, 2021Szvup029), the Major Project of Science
and Technology of Henan Province (No. 201400210300), the
Postgraduate Education Reform and Quality Province Im-
provement Project of Henan Province (No. YJS2022JC33),
and the Education Reform Research and Practice Project of
Henan University (No. HDXJJG2020-109).

References

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet
classification with deep convolutional neural networks,”
Advances in Neural Information Processing Systems, vol. 25,
no. 2, pp. 1097–1105, 2012.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 2014, https://
arxiv.org/abs/1409.1556.

[3] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[4] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,”
2015, https://arxiv.org/abs/1502.03167.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 770–778,
June 2016.

[6] L. Deng, Y. Wu, X. Hu et al., “Rethinking the performance
comparison between SNNS and ANNS,” Neural Networks,
vol. 121, pp. 294–307, 2020.

[7] E. Painkras, L. A. Plana, J. Garside et al., “SpiNNaker: a 1-W
18-core system-on-chip for massively-parallel neural network

simulation,” IEEE Journal of Solid-State Circuits, vol. 48, no. 8,
pp. 1943–1953, 2013.

[8] B. V. Benjamin, P. Gao, E. Mcquinn et al., “Neurogrid: a
mixed-analog-digital multichip system for large-scale neural
simulations,” Proceedings of the IEEE, vol. 102, no. 5,
pp. 699–716, 2014.

[9] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “.e
SpiNNaker Project,” Proceedings of the IEEE, vol. 102, no. 5,
pp. 652–665, 2014.

[10] F. Akopyan, J. Sawada, A. Cassidy et al., “TrueNorth: design
and tool flow of a 65 mW 1 million neuron programmable
neurosynaptic chip,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 34, no. 10,
pp. 1537–1557, 2015.

[11] M. Davies, N. Srinivasa, T. H. Lin et al., “Loihi: a neuro-
morphic manycore processor with on-chip learning,” IEEE
Micro, vol. 38, no. 1, pp. 82–99, 2018.

[12] S. M. Bohte, J. N. Kok, and H. La Poutré, “Error-back-
propagation in temporally encoded networks of spiking
neurons,” Neurocomputing, vol. 48, no. 1-4, pp. 17–37, 2002.

[13] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE
Transactions on Neural Networks, vol. 14, no. 6, pp. 1569–
1572, 2003.

[14] A. L. Hodgkin and A. F. Huxley, “A quantitative description of
membrane current and its application to conduction and
excitation in nerve,”<e Journal of Physiology, vol. 117, no. 4,
pp. 500–544, 1952.

[15] V. Kornijcuk, H. Lim, J. Y. Seok et al., “Leaky integrate-and-
fire neuron circuit based on floating-gate integrator,” Fron-
tiers in Neuroscience, vol. 10, no. 212, p. 212, 2016.

[16] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going
deeper in spiking neural networks: VGG and residual ar-
chitectures,” Frontiers in Neuroscience, vol. 13, no. 95, p. 95,
2019.

[17] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling deep
spiking neural networks with hybrid conversion and spike
timing dependent backpropagation,” 2020, https://arxiv.org/
abs/2005.01807.

[18] C. Stockl and W. Maass, “Optimized spiking neurons can
classify images with high accuracy through temporal coding
with two spikes,” Nature Machine Intelligence, vol. 3, no. 3,
pp. 230–238, 2021.

[19] P. U. Diehl and M. Cook, “Unsupervised learning of digit
recognition using spike-timing-dependent plasticity,” Fron-
tiers in Computational Neuroscience, vol. 9, no. 99, 2015.

[20] S. R. Kheradpisheh, M. Ganjtabesh, and T. Masquelier, “Bio-
inspired unsupervised learning of visual features leads to
robust invariant object recognition,” Neurocomputing,
vol. 205, pp. 382–392, 2016.

[21] Y. Jin, P. Li, and W. Zhang, “Hybrid macro/micro level
backpropagation for training deep spiking neural networks,”
in Proceedings of the Advances in Neural Information Pro-
cessing Systems, pp. 7005–7015, January 2019.

[22] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal
backpropagation for training high-performance spiking
neural networks,” Frontiers in Neuroscience, vol. 12, no. 331,
p. 331, 2018.

[23] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct
training for spiking neural networks: faster, larger, better,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 1311–1318, 2018.

[24] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy,
“Enabling spike-based backpropagation for training deep

10 Computational Intelligence and Neuroscience

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://tensorflow.google.cn/datasets/catalog/cifar10
https://tensorflow.google.cn/datasets/catalog/cifar10
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/2005.01807
https://arxiv.org/abs/2005.01807


neural network architectures,” Frontiers in Neuroscience,
vol. 14, p. 119, 2020.

[25] W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and
Y. Tian, “Incorporating Learnable Membrane Time Constant
to Enhance Learning of Spiking Neural Networks,” in Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 2641–2651, May 2021.

[26] Y. Wu, R. Zhao, J. Zhu et al., “Brain-inspired global-local
learning incorporated with neuromorphic computing,” Na-
ture Communications, vol. 13, no. 1, p. 65, 2022.

[27] R. Saeed Kheradpisheh and M. T. Maryam, “Spiking neural
networks trained via proxy,” 2021, https://arxiv.org/abs/2109.
13208#:∼:text�We%20propose%20a%20new%
20learning,architectures%20and%20shared%20synaptic%
20weights.

[28] G. Huo, Z. Wu, and J. Li, “Underwater object classification in
sidescan sonar images using deep transfer learning and
semisynthetic training data,” IEEE Access, vol. 8, pp. 47407–
47418, 2020.

[29] E. Hunsberger and C. Eliasmith, “Spiking deep networks with
LIF neurons,” 2015, https://arxiv.org/abs/1510.08829.

[30] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and
E. Neftci, “Conversion of Artificial Recurrent Neural Net-
works to Spiking Neural Networks for Low-Power Neuro-
morphic Hardware,” in Proceedings of the IEEE International
Conference on Rebooting Computing (ICRC), pp. 1–8, Year.-
Bedford, MA, USA, July 2016.

[31] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu,
“Conversion of continuous-valued deep networks to efficient
event-driven networks for image classification,” Frontiers in
Neuroscience, vol. 11, p. 682, 2017.

[32] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking
neural networks using backpropagation,” Frontiers in Neu-
roscience, vol. 10, no. 508, p. 508, 2016.

[33] C. Lee, P. Panda, G. Srinivasan, and K. Roy, “Training deep
spiking convolutional neural networks with STDP-based
unsupervised pre-training followed by supervised fine-tun-
ing,” Frontiers in Neuroscience, vol. 12, p. 435, 2018.

[34] S. K. Esser, P. A. Merolla, J. V. Arthur et al., “Convolutional
networks for fast, energy-efficient neuromorphic computing,”
Proceedings of the National Academy of Sciences, vol. 113,
no. 41, p. 11441, 2016.

[35] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both
weights and connections for efficient neural network,” in
Proceedings of the Advances in Neural Information Processing
Systems (Montréal, QC), pp. 1135–1143, Cambridge, MA,
USA, December 2015.

[36] D. D. Lin, S. S. Talathi, and V. Sreekanth Annapureddy, “Fixed
point quantization of deep convolutional networks,” in
Proceedings of the International Conference on Machine
Learning, pp. 2849–2858, June 2016.

Computational Intelligence and Neuroscience 11

https://arxiv.org/abs/2109.13208#:~:text=We%20propose%20a%20new%20learning,architectures%20and%20shared%20synaptic%20weights
https://arxiv.org/abs/2109.13208#:~:text=We%20propose%20a%20new%20learning,architectures%20and%20shared%20synaptic%20weights
https://arxiv.org/abs/2109.13208#:~:text=We%20propose%20a%20new%20learning,architectures%20and%20shared%20synaptic%20weights
https://arxiv.org/abs/2109.13208#:~:text=We%20propose%20a%20new%20learning,architectures%20and%20shared%20synaptic%20weights
https://arxiv.org/abs/1510.08829

