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Abstract

The liver is a vital organ with critical functions in metabolism of various biologically useful 

materials, synthesis of several vital proteins, detoxification of toxic substances, and immune 

defense. Most liver functions are not mature at birth and many changes happen during postnatal 

liver development, which lead to differential vulnerabilities of the liver at different developmental 

stages. However, the details of what changes occur in liver after birth, at what developmental 

stages they occur, and molecular mechanisms in the regulation of the developmental process are 

not clearly known. The nuclear receptor Farnesoid X receptor (FXR) is an important 

transcriptional regulator in liver. Here, we used RNA-Sequencing to analyze the transcriptome of 

mouse liver from perinatal to adult ages in both C57BL/6 and Fxr−/− mice. We have defined a 

clear timeline of functional transition from prenatal through neonatal and adolescent to adult in 

C57BL/6 mice. Without FXR, activation of neonatal-specific pathways was prolonged and 

maturation of multiple metabolic pathways was delayed. The loss of FXR also led to increased 

expression of 27 other transcription regulators. Our data support a conclusion that developmental 

transcriptome revealed significant functional transition during postnatal liver development and 

FXR plays an important role in control of postnatal liver maturation.
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1. Introduction

In the adult, the liver is a mature organ with critical, well-defined roles in the maintenance of 

nutrient homeostasis, bile acid synthesis, the metabolism of xenobiotics and endogenous 
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hormones, and the detoxification of exogenous compounds [1]. In the developing fetus and 

neonate, however, the liver acts as a hematopoietic organ with a distinct function in 

generating blood cells [2]. During the period of postnatal development, a transition occurs in 

order for the liver to gain mature metabolic activity. Significant changes in gene expression 

take place during this time in order to facilitate the switch from a hepatic microenvironment 

supportive of hematopoiesis to one that promotes a broad range of metabolic and 

detoxifying functions [3].

Differences in the metabolic capabilities of neonatal and adult livers are implicated in 

clinical therapeutic challenges. It is known that the activity of drug metabolizing enzymes 

changes dramatically throughout human postnatal development, resulting in pediatric 

pharmacokinetic and detoxification pathways being unique from adults [4]. Pediatric 

patients can be at a higher risk of developing drug-induced liver injuries when treated with 

drugs that require detoxification by the liver. On the other hand, infants can also be more 

resistant to liver damage when toxic drug metabolites are produced via metabolism or 

require higher doses [5]. Hyperbilirubinemia, or neonatal jaundice, is also common in 

infants during the first weeks of life. This condition is characterized by a buildup of bilirubin 

due to the neonatal liver’s reduced capacity for bilirubin conjugation and excretion and can 

lead to neurotoxicity or cellular injury [6].

While our understanding of embryonic liver development has greatly expanded over recent 

years, the regulation of postnatal liver development and maturation remains a relatively 

understudied area. There is still a need to identify key transcription factors, external 

environmental signals, and cellular mechanisms that promote liver growth and maturation 

following birth. Nuclear receptors are known to act as sensors for both endogenous and 

exogenous compounds that can then affect gene transcription upon their activation. Because 

of this, many nuclear receptors have critical roles in adult liver functions, diseases, and 

regeneration, and allow the organ to respond to environmental stimuli, such as drug exposure 

[7]. The farnesoid X receptor (FXR), encoded by the NR1H4 gene, is highly expressed in 

the liver and becomes activated upon the binding of bile acids. FXR is best characterized for 

its role in cholesterol synthesis and bile acid homeostasis, although it is also a major 

regulator of hepatic triglyceride and glucose levels [8–10]. Aside from nutrient homeostasis, 

FXR has also appears to play a role in liver regeneration and repair, as bile acids promote 

liver regeneration while the deletion of FXR delays the regeneration process in rodents [11–

13].

The importance of FXR in hepatic physiology and diseases has mainly been studied in the 

context of the fully matured adult liver and microenvironment. However, its role in liver 

regeneration suggests that FXR may also be a critical factor in liver growth during postnatal 

development. Following birth, a surge of bile acids enters the circulation as the neonate in 

order to facilitate the digestion of high-fat milk. The activation of FXR by these bile acids 

may initiate the liver’s transition from a hematopoietic organ to a fully matured metabolic 

organ by regulating gene expression. Bile acids have already been shown to initiate the 

expression of hepatic bile acid transporters and Phase I drug metabolizing enzymes via FXR 

in newborn mice [14, 15]. Understanding how FXR regulates the rest of the hepatic 

transcriptome following birth and during postnatal development may give insight to 
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mechanisms controlling the liver’s functional switch in early life and the development of 

diseases, such as non-alcoholic steatohepatitis, later in life, as they may originate from 

epigenetic programming at the neonatal age [16].

In the current study, RNA-sequencing (RNA-seq) was used to characterize the mouse liver 

transcriptome at various ages throughout the perinatal stage to adulthood in both wild type 

C57BL/6 and FXR knockout mice with C57BL/6 background. Analysis of the data focuses 

on the role FXR in influencing hepatic gene expression throughout development and 

initiating the functional switch from a hematopoietic organ to a mature metabolic organ by 

comparing ontogenic differences in the presence versus the absence of FXR. The results 

validate FXR as a major factor in the regulation of postnatal liver maturation and provide 

defined ages, at which dynamic changes in the hepatic transcriptome occur.

2. Materials and Methods

2.1. Animals

The mice were bred and cared under standard conditions according to the criteria outlined in 

the NIH “Guide for the Care and Use of Laboratory Animals” in the Office of Animal Care 

Facility at the University of Connecticut. The use of these mice was approved by the 

University of Connecticut’s Institutional Animal Care and Use Committee. Liver samples 

(n=3) were collected at the following 6 ages: day −2 (gestational day 17.5), day 1 (exactly 

24 hours after birth), and days 5, 20, 25, and 60 (collected at approximately 9:00 AM). 

These ages represent the periods of prenatal (day −2), neonatal (days 1 and 5), adolescent 

(days 20 and 25), and young adults (day 60). Due to potential variations caused by the 

estrous cycle in maturing female mice, only male livers were used in this study. The livers 

were immediately frozen in liquid nitrogen after removal and stored at −80°C.

2.2. Total RNA extraction, sequencing library construction, and RNA-Seq

Transcriptomes of C57BL/6 mouse livers at different developmental ages were previously 

determined [17] and ontogenic patterns of gene expression for cytochrome P450s [18], non-

P450 phase I drug metabolizing enzymes [19], phase II drug metabolizing enzymes [20], 

transporters [21], epigenetic modifiers [22], energy metabolism genes [23], and long non-

coding RNAs [24] were established. The generation and characterization of Fxr−/− mice on a 

C57BL/6 background are previously described [25, 26]. Transcriptomes of Fxr−/− mouse 

livers at different developmental ages were determined in this study. RNA extraction, library 

construction, RNA-Seq, and FASTQ data file collection were performed as previously 

described [18, 19, 21].

2.3. RNA-Seq data analysis

For comparison of C57BL/6 and Fxr−/− samples at the 6 ages of day −2, 1, 5, 20, 25 and 60, 

the RNA-Seq reads from the FASTQ files of these two types of mice were mapped to the 

mouse reference genome (GRCm38/mm10) by Tophat 2.0.8. The output files in BAM 

format were analyzed by Cufflinks 2.1.1 to estimate the transcript abundance, represented as 

fragments per kilobase of exon per million reads mapped (FPKM).
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2.4. Analysis of differentially expressed genes

Genes with statistically significant differential expression were defined by ANOVA using 

the following criteria: 1) the gene mean FPKM > 1; 2) fold change for the average FPKM of 

the three replicates > 1.5 between compared samples; 3) Benjamini-Hochberg adjusted p-

values from t-test < 0.05.

2.5. Similarity of transcriptome among the liver samples at different ages

Pearson correlation coefficient-based heat map visualization of the average FPKM of the 

three replicates at each age were used to examine similarity of transcriptome among the liver 

samples at different ages.

2.6. Gene ontology analysis

Lists of differentially expressed genes at ages of day −2, 1, 5, 20 and 25 compared to day 60 

in both C57BL/6 and Fxr−/− mice were supplied to High-Throughput GoMiner for biological 

interpretation [27]. Significantly enriched GO categories were selected with a false 

discovery rate (FDR)<0.05. For the visualization of nuclear receptors and core transcription 

factors expression in liver, significant differential expressions were defined in the same way 

as in GO analysis.

2.7. Data access

The RNA-Seq data for C57BL/6 and Fxr−/− mice are available from GEO under the 

accession number GSE58827 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE58827).

2.8. Validation of transcription profiles defined by RNA-Seq with RT-PCR

Expression of selected genes defined by RNA-Seq in both C57BL/6 and Fxr−/− mice was 

validated by RT-PCR. Three wild type replicates and three FXR−/− replicates were used for 

each age in RT-PCR analysis. Total RNA was converted into cDNA using Reverse 

Transcription kit according to the manufacturer’s protocol (Bio-Rad). PCR was performed 

using a CFX-96 thermocycler system (Bio-Rad, Hercules, CA, USA). To create the reaction 

mixture, 100 ng cDNA was added to 2X SYBR Green PCR Master Mix (Bio-Rad), with 10 

μM forward primers and 10 μM reverse primers. Primer sequences for selected genes are 

listed in Supplemental Table S1 available online at http://www.agialpress.com/journals/nurr/

2017/101308. PCR was conducted at 95°C for 3 minutes, followed by 40 cycles of 95°C for 

10 seconds and 60°C for 1 minute. Results of RT-PCR for selected genes are shown in 

Supplemental Figure S1 available online at http://www.agialpress.com/journals/nurr/

2017/101308, alongside FPKM results. The supplemental Table S2 available online at http://

www.agialpress.com/journals/nurr/2017/101308 shows a strong correlation for the ten 

selected genes with Pearson’s correlation r values between 0.857 and 0.967 for C57BL/6 

mice and between 0.960 and 0.999 for Fxr−/− mice between the two quantification methods.
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3. Results

3.1. FXR gene expression during postnatal liver maturation in mice

Six ages from the four developmental stages were selected to analyze the liver transcriptome 

at day −2 (perinatal), day 1 and day 5 (neonatal), day 20 and day 25 (adolescent), and day 60 

(adult). RNA-Seq generated an average 137 million (from 103 to 164 million) 100 bp paired 

end reads for the 36 samples from 6 different ages for C57BL/6 and Fxr−/− mice with a 

mean of 86% (from 73 to 95%) reads mapped to the mouse reference genome (GRCm38/

mm10). Unique mapped reads were assigned to each gene by Cufflinks to define gene 

expression levels represented by FPKM to 23,297 annotated genes in the mouse genome 

(Supplemental Table S3 available online at http://www.agialpress.com/journals/nurr/

2017/101308). RNA-Seq revealed that the mRNA expression of FXR was relatively low in 

prenatal liver at day −2, but immediately increased at day 1 and remained consistent through 

postnatal maturation in C57BL/6 mice (Figure 1A). RNA-Seq also showed that FXR was 

transcribed in the Fxr−/− mice, but the RNA-Seq reads for the last exon of the Fxr gene (exon 

11) was undetectable in the Fxr−/− mice (Figure 1B), which confirmed that the Fxr null mice 

lacked the last exon, which contains a large portion of the ligand binding/dimerization 

domain and the entire 3′-untranslated region [25], and thus is not functional.

3.2. Comparison of transcriptome of C57BL/6 and Fxr−/− mice during postnatal liver 
maturation

Table 1 lists number of genes expressed at each examined age for both C57BL/6 and Fxr−/− 

livers, when genes with FPKM >1 were considered as the genes expressed in liver. The 

expressed genes for C57BL/6 remained consistent between 10,338 at prenatal day −2 and 

10,402 at neonatal day 5, but decreased about 19% in adult liver (day 60) to around 8507; 

whereas the expressed genes for Fxr−/− also remained consistently between 11,577 at 

prenatal day −2 and 11,698 at neonatal day 5, but decreased to around 10,058 at adult day 60 

(13% decreased compared to prenatal day −2 of Fxr−/−).

The similarity of gene expression across the postnatal liver maturation was analyzed in both 

C57BL/6 and Fxr−/−samples with the Pearson’s correlation coefficient r analysis (Figure 2). 

The correlation heat map of the 6 developmental ages displayed clear developmental stage 

transition in C57BL/6 liver. But the correlation heat map for Fxr−/−samples exhibited 

dramatic differences in the developmental stage transition. The outstanding feature was that 

the difference between adolescent (day 20 and 25) and neonatal (day 1 and 5) stages was 

diminished, implying that the deletion of Fxr appears to delay the postnatal liver maturation.

3.3. Timeline of liver functional transition in C57BL/6 mice

Livers of 60 day-old mice were considered as mature and the transcriptome of each younger 

age was compared to that of 60 day-old mice for defining the timeline of liver function 

transition during postnatal maturation. Both significantly over-expressed and under-

expressed genes were identified by ANOVA analysis. The identified genes were further used 

for identification of effected biological pathways by gene ontology (GO) analysis with the 

GoMiner tool. The enriched GO categories in the over-expressed genes at earlier ages and 

their significance false discovery rate (FDR) levels across the ages are shown in Figure 3A. 
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The number of over-expressed genes at each age was listed in the top of Figure 3A. There 

was a clear developmental transition of enriched biological processes in these over-

expressed genes as indicated by the brackets B, C and D, which correlated to different ages. 

GO categories in bracket B were specific to perinatal and neonatal stages, and representative 

GO categories in this group are shown in Figure 3B. Enriched biological processes at the 

prenatal and neonatal stages were mainly related to cell cycle and basic cellular processing, 

suggesting active cell proliferation in prenatal and neonatal livers. GO categories related to 

blood cell development and homeostasis are also enriched at these stages, which correspond 

to the hematopoietic function of perinatal liver. Typical GO categories in bracket C, which 

were specific to neonatal livers at day 1 and 5, are shown in Figure 3C. The major enriched 

pathways at this stage were related to blood cell generation and immune activation. So the 

neonatal liver still retained residual hematopoietic function from fetal liver. With exposure to 

the environment after birth, the immune system became activated. Representative GO 

categories enriched at day 20 are shown in Figure 3D, which are the pathways related to 

tissue structure organization, and a few metabolic process (alcohol and sulfur compounds). 

At day 25, there were no significant GO categories with gene over-expression compared to 

day 60.

A similar GO analysis was done for the under-expressed genes during postnatal liver 

maturation (Figure 4). There were fewer under-expressed genes as the age became closer to 

day 60 (Figure 4A). Day 25 samples had a few significant GO categories, indicating the liver 

was close to mature at this age. The majority of pathways with genes under-expressed were 

different metabolic processes. One group matured relatively late (day 20) during postnatal 

maturation (see a list in Figure 4B, including metabolism of fatty acids, sterols, cholesterol, 

organic acids, glutathione, and amino acids). Under-expressed GO categories specific to age 

day −2, 1, and 5 were biological processes related to metabolism of different compounds, 

including xenobiotics, vitamin, tryptophan, small molecules, as well as immunity (Figure 

4C). The representative GO categories that matured early during development (day 1) are 

listed in Figure 4D, which include pathways of critical nutrient metabolism, such as glucose, 

lipid, and amino acids, bile acids transport, and blood coagulation. These results revealed 

details of hepatic functional transition and maturation during postnatal liver maturation.

3.4. Timeline of liver functional transition in Fxr−/− mice

At 20- and 25-days of age compared to 60-days of age, there were more differentially 

expressed genes in Fxr−/− samples than in C57BL/6 samples (Figure 5A and 6A). The 

enriched GO categories for over-expressed genes in livers of Fxr−/− mice could generally be 

divided into two groups (bracket B and C in Figure 5A). One group contained similar GO 

categories, such as cell cycle, cellular processes, and hematopoiesis that exhibited in the 

analysis of C57BL/6 samples, but they were not as age-specific as in C57BL/6 and enriched 

at later ages in Fxr−/− samples (Figure 5B). The other group contained GO categories not 

appeared in C57BL/6 samples, and they were mainly pathways for other organ development 

instead of the liver, such as head, neuron, heart, muscle, epithelium, adrenal gland, kidney, 

and male gonad (Figure 5C). This result indicted that the nuclear receptor FXR might have 

important roles to maintain the liver identity during postnatal development. The enriched 

GO categories for under-expressed genes in Fxr−/−samples were similar to that in C57BL/6 
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samples, including numerous metabolic processes, such as xenobiotics, lipid, fatty acids, and 

amino acids (Figure 6B). But many of them displayed delayed maturation and were 

continually enriched at later ages.

3.5. Effects of Fxr−/− on the expression of hepatic nuclear receptors and core transcription 
factors

Previous studies on the regulation of liver-specific genes have identified a core group of 

hepatic regulators, which form a complex hepatic transcription factor network during liver 

development [28]. To assess the role of FXR in this network and the effect of Fxr−/− on the 

expression of hepatic transcription regulators, we examined the developmental expression of 

core transcription factors and all nuclear receptor family members in livers of C57BL/6 and 

Fxr−/− mice. A total of 53 genes in the transcription regulator group were examined 

(Supplemental Table S4 available online at http://www.agialpress.com/journals/nurr/

2017/101308). Among them, 14 genes were not expressed in liver, including Nr2e1, Rorb, 

Nr0b1, Nr2e3, Esr2, Nr5a1, Nr4a3, Nr4a2, Vdr, Hnf4g, Esrrb, Nr2f1, Esrrg, and Nr4a1. 
Other 9 gene were expressed in liver but had no significant changes between C57BL/6 and 

Fxr−/− samples, which are Rxrg, Rarg, Hnf1b, Thra, Nr1d1, Rxrb, Nr1h2, Nr2f6, and Hnf4a. 
The remaining 30 genes had significant differential expression between C57BL/6 and Fxr−/− 

mice for at least one age during postnatal liver maturation (Figure 7). Within the 

differentially expressed genes, only 3 showed decreased expression in the Fxr−/− samples, 

including Nr2c1, Nr1h3, and the known FXR target gene Nr0b2, and the rest 27 genes all 

increased in the Fxr−/− samples. The increased expression of most hepatic transcription 

regulators in Fxr−/− mice was probably a result of compensatory effects for the loss of FXR, 

and suggested widespread interactions within the transcription regulatory network, where 

regulators cooperated in determining the hepatic functions.

4. Discussion

In this study, we used RNA-Seq to examine alteration of transcriptome in liver during 

postnatal maturation in Fxr−/− and its control background C57BL/6 mice that resulted in two 

major findings: (1) the timeline of liver functional transition during postnatal maturation; 

and (2) novel roles of FXR in control of liver postnatal maturation.

Liver as the largest vital organ in the body is completely formed at birth, but not fully 

mature. During postnatal maturation, many genes in the liver alter their expression to 

achieve functional transition from a prenatal hematopoiesis organ to an adult metabolic 

organ. By using RNA-Seq, we detected approximately 45% of the 23,196 annotated mouse 

genes were transcribed in the prenatal liver at day −2. Transcribed genes were decreased to 

36% in the matured liver at day 60 (Table 1). Pearson correlation coefficient r value between 

livers on day −2 and day 60 is less than 0.1 (Figure 2), indicating the functions as reflected 

by gene transcription levels are significantly altered from prenatal to adult livers. A gradual 

transition occurs during the postnatal liver maturation. Therefore, we used the transcriptome 

at day 60 as a mature reference liver to compare to the transcriptomes at each younger age, 

representing prenatal, neonatal, and adolescent livers. The GO pathway analysis of the 

differentially expressed genes demonstrated that most of the highly expressed genes at early 
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ages belonged to diverse biological processes of cell proliferation, basic cellular metabolism, 

cellular structure assembly, and hematopoiesis (Figure 3). However, with increase of age, the 

liver cells became more static and functionally more specialized in metabolism (Figure 4). 

Thus the expressed genes changed to a more concentrated group.

Our GO analysis revealed the details of biological changes that happened during postnatal 

liver maturation. During the perinatal stage (day −2 to 5), the liver underwent rapid cell 

proliferation and growth and blood cell development was still active in liver (Figure 3B). 

During the neonatal stage (day 1 and 5), there was extensive immune cell activation as the 

newborns were exposed to the environment and started food intake, which introduced 

enormous challenges to the immune system. But the immunity in liver was not matured at 

this stage (Figure 3C), which may explain the common diagnosis of sepsis in neonates [29]. 

At day 20, the liver went through changes of cell adhesion and tissue structure maturation 

(Figure 3D). Some metabolic pathways were over-expressed at this age, and this might 

correspond to the cause of increased resistance to certain drugs in young children [30]. 

Genes in most metabolic processes were under-expressed at young ages (Figure 4). The ones 

that matured at earlier ages were in pathways for the metabolism of the most critical 

nutrients, like glucose, lipids, and amino acids (Figure 4D). The critical function of blood 

coagulation also matured immediately after birth to prevent life-threatening hemorrhage. As 

the mice were usually weaned and separated from the mother three weeks after birth, this 

was the time that most of the liver functions became mature. At day 25, very few genes were 

still differentially expressed compared to day 60.

FXR is selected in this study to examine its roles in control of biological processes during 

postnatal liver maturation because FXR has been identified as a key regulator of functions in 

a mature liver, such as maintaining homeostasis of bile acids, lipids, and glucose [31]. Bile 

acids are immediately produced by the liver after birth to help absorption of the mother’s 

milk and act as endogenous signals [14]. RNA-Seq in this study also revealed an immediate 

increase of FXR transcription from prenatal to neonatal livers, and then FXR was expressed 

at a consistent level throughout postnatal maturation (Figure 1). By deletion of the last exon 

of the Fxr gene, Fxr−/−mice have served as a powerful tool to study the roles of FXR in liver 

functions [25, 26, 32]. These knockout mice still express a truncated form of the nuclear 

receptor that lacks the functional ability to recognize ligands. However, it is important to 

note that the protein still contains the DNA binding domain and may still have constitutive 

activity even in the absence of ligand activation. Therefore, in this study, we used Fxr−/−mice 

to determine the role of FXR activation in control of gene transcription during postnatal liver 

maturation. In comparison of the Pearson correlation coefficient r values across the different 

developmental ages, a clear dissimilarity of transcriptome between each developmental stage 

of prenatal, neonatal, adolescent, and adult in C57BL/6 mice was diminished in the Fxr
−/−mice, especially during the neonatal (day 1) and adolescent (day 25) ages (r value is 

appropriate 0.8 in Fxr−/−vs. 0.6 in C57BL/6 mice in Figure 2), indicating that without FXR, 

liver maturation process is delayed. The same conclusion can also be obtained from the GO 

analysis. The effect of FXR on postnatal liver maturation was most significant at the 

adolescent stage, as the pathways specifically active during the neonatal stage in C57BL/6 

mice failed to be shut down at adolescent stage in Fxr−/−mice, and the pathways that should 

mature before the adolescent stage remained immature in Fxr−/− mice (Figure 5 and 6). The 
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surge of bile acids during this period, as shown by previous studies [14], may underlie the 

critical function of FXR at this developmental stage.

FXR may interact with other key transcriptional regulators to achieve its roles in control of 

liver functions. Six hepatic transcription factors have been identified to form complex 

autoregulatory and cross-regulatory circuits [28]. Through analysis of genome-wide FXR 

binding sites, we have provided evidence to show that FXR is involved in broad biological 

pathways in maintaining hepatic homeostasis [33], and FXR co-regulates gene transcription 

with HNF4 in mouse liver on a genome-wide scale [34]. In this study, our result of the 

multiple organ developmental processes in Fxr−/− mice further confirmed the role of FXR as 

a core hepatic nuclear receptor that defines the hepatic phenotype. And this may be a more 

pervasive phenomenon as most of the nuclear receptors together with the core transcription 

factors showed altered expressions in Fxr−/− mice. While most transcriptional regulators 

displayed increased expression, probably to compensate FXR function, the liver X receptor 

α (LXRα, Nr1h3) showed significantly decreased expression at all ages. Interestingly, 

LXRs and FXR are known to be the yin and yang of cholesterol and fat metabolism, 

maintaining a balanced regulation of cholesterol and bile acid metabolism [35]. And our 

results suggest a further interplay between these two nuclear receptors, as FXR may be 

involved in the regulation of LXRα.

Postnatal liver development is largely an under-studied area. Some groups have identified 

certain critical factors for postnatal liver development, including β-Catenin and Yes-

associated protein [36, 37]. These two factors showed increased expression during postnatal 

liver development to promote cell proliferation, and deletion of either of them might lead to 

impaired liver growth. Our transcriptome data also revealed the developmental expression of 

β-Catenin and Yes-associated protein. They were both induced in Fxr−/− mice, which is 

consistent with the prolonged cell proliferation in Fxr−/− livers. And the result further 

indicates their direct roles in control of liver growth.

Quantifying the developmental transcriptome is an initial step to study postnatal liver 

maturation. It utilized advanced technology to generate an overall picture of gene 

expression, and revealed potential fields of interest that await further research. For example, 

histology and liver functional studies based on the transcriptome data would help provide a 

more defined concept of how the liver matures. This study can also give greater insight into 

the role nutrition may play in liver development. Decreases in FXR signaling due to lowered 

fat intake and decreases in bile acid production may alter hepatic gene expression ontogeny. 

Future studies to over-express FXR or treat animals with FXR agonists during development 

may complement the loss-of-function study and help differentiate the direct and indirect 

effects of FXR in regulating postnatal liver development. Altogether, these studies would 

enable a more profound understanding of liver development and assist in the management of 

diseases in liver.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) mRNA Expression of FXR revealed by RNA-Seq during postnatal liver maturation. (B) 

Confirmation of the deletion of the last exon of the Fxr gene in Fxr−/− mice revealed by 

RNA-Seq. Distribution of RNA-Seq reads were viewed on IGV genome browser.
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Figure 2. 
Similarity of gene expression during postnatal liver maturation in C57BL/6 and Fxr−/− mice. 

Pearson correlation coefficient-based heat maps are drawn to present the similarity of gene 

expression profiles based on all expressed genes over 6 different ages.

Peng et al. Page 14

Nucl Receptor Res. Author manuscript; available in PMC 2018 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Gene ontology (GO) analysis for over-expressed genes during postnatal liver maturation 

compared to day 60. (A) Heat map for GO categories with significantly overexpressed genes 

at ages of day −2, 1, 5, 20, and 25. The color represents the false discovery rate (FDR) of 

each GO category. The numbers on the right are the cumulative numbers of GO categories. 

The three brackets B, C, and D identify groups of GO categories enriched at specific ages 

during development. Representative GO categories in each bracket are show in the 

corresponding panels of (B), (C), and (D).
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Figure 4. 
Gene ontology analysis for under-expressed genes during postnatal liver maturation 

compared to day 60. (A) Heat map for GO categories with significant under-expression 

genes at ages of day −2, 1, 5, 20, and 25. The color represents the false discovery rate of 

each GO category. The numbers on the right are the cumulative number of GO categories. 

The three brackets B, C, and D identify groups of GO categories enriched at specific ages 

during postnatal liver maturation. Representative GO categories in each bracket are show in 

the corresponding panels of (B), (C), and (D).
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Figure 5. 
Gene ontology analysis for over-expressed genes during postnatal liver maturation compared 

to day 60 in Fxr−/− mice. (A) Heat map for GO categories with significant gene over-

expression at ages of day −2, 1, 5, 20, and 25. The color represents the false discovery rate 

of each GO category. The numbers on the right are the cumulative number of GO categories. 

The brackets B and C are used to label different groups of GO categories. Representative 

GO categories in each bracket are show in the corresponding panels of (B) and (C). The 

FDR values with red color in panel (B) indicate the same GO categories having a FDR > 

0.05 in the age-matched C57BL/6 samples.
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Figure 6. 
Gene ontology analysis for under-expressed genes during postnatal liver maturation 

compared to day 60 in Fxr−/− mice. (A) Heat map for GO categories with significant gene 

under-expression at ages of day −2, 1, 5, 20, and 25. The color represents the false discovery 

rate of each GO category. The numbers on the right are the cumulative number of GO 

categories. The bracket B is used to label a group of GO categories. (B) Representative GO 

categories in the bracket B. The FDR values with red color indicate the same GO categories 

having a FDR > 0.05 in the age-matched C57BL/6 samples.
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Figure 7. 
The effect of Fxr−/− on ontogenic expression of nuclear receptors and core transcription 

factors in liver. Heat map of expression profiles are drawn for all nuclear receptors and main 

hepatic transcription factors (genes labeled on the right) with significant differential 

expression between C57BL/6 and Fxr−/− samples. For each gene, the value of log2(1+[fold 

change of mean FPKM]) over the ages are calculated to show the trends of expression. The 

three gene names in red color have higher expression in C57BL/6 samples than in Fxr−/− 

samples.
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