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The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding
platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The
CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle.
These patterned modifications have led to the postulation of the “CTD code” hypothesis, where stage-specific patterns define a
spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications
in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD
code and examine the relevance of describing patterns of posttranslational modifications as a “code.” Finally, we discuss major
questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription
regulation that will necessarily emerge upon addressing those challenges.

1. Introduction

The transcription of DNA to RNA in eukaryotes is catalyzed
by three structurally related RNA polymerases, with each
acting on a different class of genes [1]. RNA polymerase I
synthesizes most of the ribosomal RNA (rRNA) subunits
while RNA polymerase III synthesizes tRNAs, 5S rRNA, and
other small RNAs [2–4]. These two polymerases account for
75% and 15% of transcription in the cell, respectively [5].
However, the most studied polymerase is RNA Polymerase II
(Pol II), which is responsible for the transcription of protein-
coding genes, small nuclear RNA (snRNA), and small
nucleolar RNA (snoRNA) [6–8]. In higher eukaryotes, Pol
II generates long noncoding RNA (lncRNA) and microRNA
(miRNA) [9, 10]. Pol II also transcribes cryptic unsta-
ble transcripts (CUTs) and stable unannotated transcripts
(SUTs), which are degraded after synthesis [11–13]. The
suppression of CUTs is important to prevent inappropriate
transcription within ORFs, to enhance processivity during
transcription elongation, and to prevent gene silencing via
histone deacetylation [14–18].

Of the twelve Pol II subunits, five are common between
the three polymerases [1, 19–21]. It is believed that the
specific functions attributed to each polymerase arise from
the combined action of remaining nonidentical subunits and
other factors that associate with them. An especially unique
feature of Pol II is the carboxy-terminal domain (CTD) of
its large subunit Rpb1 (Figure 1(a)). The CTD serves as the
primary point of contact for a wide variety of molecular
machines involved in RNA biogenesis during the transcrip-
tion cycle (reviewed in [8, 22–32]). This domain consists of a
highly conserved heptapeptide repeat: Y1S2P3T4S5P6S7 [33–
36]. The number of times this sequence is repeated varies
among eukaryotic organisms, ranging from 15 repeats in
amoeba, to 26 repeats in the budding yeast Saccharomyces
cerevisiae, to 52 repeats in humans. When fully extended,
the yeast CTD can span a distance of up to 650 Å, over
4 times the diameter of the core polymerase (Figure 1(b))
[24, 34, 35]. The ability of this repetitive sequence to
interact with a wide range of nuclear factors stems from the
dynamic plasticity of its structure and the diversity of binding
surfaces generated by the multitude of post-translational
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Figure 1: RNA polymerase II structure. (a) Side view of the core Pol II crystal structure containing all twelve subunits and displaying the
RNA exit channel (bold arrow) and the positioning of the CTD adapted from Armache et al. [71]. Cartoon in the upper right displays
the color coding for the Pol II subunits used in the crystal structure. (b) Illustration of the relative length(s) between the CTD in various
conformations and the core Pol II adapted from Meinhart et al. [72]. RNA positioning (red) upon exit of the Pol II and the positioning of
the DNA template (blue) upstream and downstream of the core Pol II are also displayed. (c) Known modifications possible on the Pol II
CTD are displayed. Glycosylation and phosphorylation are mutually exclusive modifications. Structural images of a heptad repeat in the cis-
and trans-conformation are also shown [73–75]. G: β-O-linked N-acetylglucosamine [76]; P: O-linked phosphate.
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Figure 2: The primary components of the RNA biogenesis machinery and their interactions with the RNA polymerase II C-terminal
domain (CTD). Briefly, hypophosphorylated Pol II assembles at the preinitiation complex (PIC) with the Mediator and general transcription
factors (GTFs), with TFIIH associating last. The TFIIH-associated kinase Kin28 phosphorylates Ser5 (shown in red) and Ser7 (shown in
purple) on the CTD. Mediator-associated kinase Srb10 also contributes to the phosphorylation of Ser5-P. This mark enables promoter
release and mediates interactions with the capping enzyme (CE) complex, Nrd1 component of termination machinery, and Set1 histone
methyltransferase, which places trimethyl marks on histone H3K4. The Ser5-P mark also facilitates recruitment of Bur1 kinase. Bur1
places initial Ser2-P marks, which facilitate recruitment of Ctk1 kinase, and continues to replenish Ser7-P marks during elongation.
Ctk1 is the primary Ser2 kinase, and its phosphorylation recruits splicing machinery (SP) through Prp40, as well as Set2 histone
methyltransferase, which places di- and trimethyl marks on histone H3K36. Cleavage and polyadenylation (PA) machinery are recruited
through many factors associating with the CTD. One of the factors, Pcf11, binds cooperatively to Ser2-P with Rtt103. The exonuclease
complex (Exo) is also recruited through interaction between CTD and Rtt103 and through cooperative interaction between Rtt103 and
Pcf11. Finally, the hypophosphorylated CTD is regenerated through three CTD phosphatases. Ser2-P is removed by the phosphatase Fcp1,
while two phosphatases, Rtr1 and Ssu72, combine to remove Ser5-P marks during elongation and at termination, respectively. Upon de-
phosphorylation, Pol II is released with the assistance of a mechanism involving Pcf11 and can begin another cycle of transcription.

modifications it can accommodate. Tyrosine, threonine, and
three serines can all be phosphorylated, the threonine and
serine can be glycosylated, and the prolines can undergo
isomerization (Figure 1(c)) [27, 37, 38]. In humans, CTD
repeats further away from core Pol II bear noncanonical
repeats that can be methylated [39]. Taken together, at least
1059 unique modification patterns can occur on the CTD.
The combinatorial nature of these modifications, which is
reminiscent of the histone code, led to the hypothesis of

a CTD code, where the patterns of modifications are read
by the transcriptional machinery and these patterns dictate
the association or disassociation of complexes [40, 41]. To
date, much effort has been made towards characterizing these
modifications and understanding the interactions between
the CTD and components of various protein machines that
play a role in RNA biogenesis. Our current knowledge of the
integration of these events by Pol II CTD is summarized in
Figure 2, and the known yeast CTD-interacting factors are
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Table 1: Proteins known to bind RNA polymerase II C-terminal domain in S. cerevisiae.

Protein/complex Role in RNA biogenesis Phospho-CTD bound References

TFIIE Preinitiation complex Hypophosphorylated CTD [63, 77]

TFIIF Preinitiation complex Hypophosphorylated CTD [77]

TBP Preinitiation complex (TFIID) Hypophosphorylated CTD [78]

Mediator Complex Transcription activation/repression Hypophosphorylated CTD [48, 79]

Ceg1 Capping Ser5-P [80–85]

Abd1 Capping PCTD [83]

Set1 Histone methylation Ser5-P [86]

Rpd3C(Rco1) Histone deacetylation Ser2-P + Ser5-P [87, 88]

Spt6 Histone chaperone Ser2-P [89]

Nrd1 Transcription termination/processing Ser5-P [90]

Sen1 Transcription termination/processing Unknown [91]

Asr1 Pol II ubiquitylation (Rpb4/7 Ejection) Ser5-P [92]

Ess1 Proline isomerase Ser2-P [93, 94]

Set2 Histone methylation Ser2-P + Ser5-P [95, 96]

Prp40 Splicing PCTD [97]

Npl3 Promotes elongation/prevents polyadenylation Ser2-P [98]

Pcf11 Cleavage/polyadenylation (CF1A) Ser2-P [99, 100]

Rna14 Cleavage/polyadenylation (CF1A) PCTD [101]

Rna15 Cleavage/polyadenylation (CF1A) PCTD [101]

Ydh1 Cleavage/polyadenylation (CPF) PCTD [102]

Yhh1 Cleavage/polyadenylation (CPF) PCTD [103]

Pta1 Cleavage/polyadenylation (CPF) Ser5-P [104]

Rtt103 5′-3′ Exonuclease (Rat1) Ser2-P [105]

Sus1 mRNA export Ser5-P [106]

Yra1 mRNA export Hyperphosphorylated CTD [107]

Rsp5 Pol II ubiquitylation (DNA damage response) Ser2-P [108, 109]

Hrr25 DNA damage repair PCTD [24, 110]

CTD-interacting proteins, the processes they are involved in, the phosphorylation state of the CTD with which they associate, and where in the literature the
interaction is documented. Ser2-P refers to phosphorylated serine 2, Ser5-P refers to phosphorylated serine 5, and PCTD refers to a mixed phosphorylation
state generated by in vitro phosphorylation of a CTD peptide with cell extracts. Additional protein-CTD interactions are described [110] but have not been
directly tested.

displayed in Table 1. The focus of this paper is to highlight
the recent advances in our understanding of the role of CTD
in the early stages of the Pol II transcription cycle, expand
on the concept of the CTD code hypothesis, and address the
current questions and challenges within the field.

1.1. RNA Pol II Transcription Cycle

1.1.1. Transcription Initiation. Initiation of transcription
begins with the recruitment of gene-specific transcription
factors (TFs), general transcription factors (GTFs), the Me-
diator complex, and Pol II. These factors self-assemble into
a pre-initiation complex (PIC) at the promoters of Pol II-
transcribed genes [29, 32]. Recognition of the promoter
is only partially understood, but it is believed to occur
via the recognition of the various cis-elements in the pro-
moter region, such as the TATA box. Binding generally
occurs within upstream nucleosome-free regions—the DNA
centered over promoters flanked by well-positioned nucle-
osomes [42–45]. There are two main models for how these
factors assemble at this region: the sequential model and

the holoenzyme model (Figure 3). In both models, TFs
first bind at the upstream activating/repressing sequences
(UAS/URS) and recruit the transcriptional machinery. In
the sequential model, TBP/TFIID/SAGA assembly at the
promoter is accompanied by TFIIA, followed by TFIIB [46,
47]. Then, the Mediator complex arrives, connecting the
PIC to transcription factors assembled at the UAS/URS [48–
51]. This massive complex consists of three large modules
known as the head, middle, and tail and an additional
kinase module containing a cyclin-dependent kinase (Srb10
in yeast, Cdk8 in metazoans) [52–57]. The Mediator complex
is important for basal transcription and plays a central role
in facilitating communication between transcription factors
bound to regulatory elements and the PIC [49–51, 56–60].
However, there are studies that suggest the Mediator is not
present at most genes, and it only associates with a few
UAS/URS in an activator- and stress-specific manner [61,
62]. Pol II is then recruited, followed by the last GTF, TFIIH,
which is brought to the PIC by TFIIE [63]. It is possible
that several pathways of ordered recruitment exist for GTFs.
Other components, including Pol II, TFIIE, and TFIIH, may
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Figure 3: Recruitment and composition of PIC components. Sequential recruitment of the Mediator complex, GTFs, and Pol II (left) or the
recruitment of the Pol II holoenzyme (top right), which assembles the pre-initiation complex (PIC) at promoters (bottom right).

be recruited via interactions with the Mediator [64]. The
holoenzyme model originated from the observation that Srb
proteins, which are components of the Mediator, are tightly
associated with core Pol II in the absence of DNA [65].
In this model, Pol II is associated with the Mediator and
other general transcription factors as a massive holoenzyme
supercomplex that is recruited immediately after TBP binds
[66–68]. These complexes have been identified in yeast and
mammalian systems [69]. Importantly, Pol II is fully able to
activate transcription upon arrival in this state [68, 70].

Two complexes of the PIC, TFIIH and the Mediator, con-
tain important kinases that phosphorylate the CTD. TFIIH is
a ten-subunit complex containing two helicases, an ATPase,
a ubiquitin ligase, a neddylation regulator, and a cyclin-de-
pendent kinase (Kin28 in yeast, Cdk7 in metazoans) [111–
118]. Both Kin28/Cdk7 and Srb10/Cdk8 have been shown to
phosphorylate Ser5 (Ser5-P) in vivo, with Kin28/Cdk7 being
the dominant kinase [24, 113, 119–124]. The 5′ enriched
Ser5-P mark has been linked to a variety of chromatin-
modifying and RNA processing events.

1.1.2. Transcription Elongation. Phosphorylation of Ser5 is
involved in coordinating the placement of several key post-
translational modifications on chromatin that constitute the
histone code [41] (reviewed in [125–127]). The structural
properties of chromatin, such as the +1 nucleosome that
resides immediately after gene promoters, are thought to
provide a significant physical barrier to transcription. This
barrier is weakened or removed through the combined action
of posttranslational modifications on the flexible histone tails
and chromatin remodeling complexes [127]. In this context,
the Ser5-P mark recruits the yeast histone methyltransferase
Set1. Trimethylation of histone H3K4 by Set1 and subsequent

trimethylation of H3K79 by Dot1 are frequently associated
with active transcription and have a reciprocal effect on
H3K14 acetylation by SAGA and NuA3 [28, 86, 128, 129].
Ser5-P also recruits the histone deacetylase complexes Set3
and Rpd3C(S) [87], which are important for suppressing
CUT initiation at promoters [87, 88].

An especially important role of Ser5-P is the recruitment
of the capping enzyme complex. The capping complex pla-
ces the m7G cap on the nascent transcript as it exits the
core polymerase, stabilizing the mRNA by preventing its
degradation by 5′-3′ exonucleases. The CTD repeats proxi-
mal to the core Pol II are ideally placed near the RNA exit
tunnel to facilitate this capping reaction [130, 131]. The
guanylyltransferase (Ceg1 in S. cerevisiae) and possibly the
methyltransferase (Abd1 in cerevisiae) directly interact with
both the Ser5-P and the core polymerase [80–85, 132,
133]. Although the recognition of the CTD is structurally
different between yeast and mammalian capping enzymes,
both complexes require Ser5-P for binding [81, 131]. A
parallel line of experiments showed that inhibition of Kin28
kinase activity using a small-molecule inhibitor leads to a
severe reduction in Ser5-P and 5′-capping of transcripts at
gene promoters [134, 135]. In agreement with this, teth-
ering the mammalian capping enzyme to the CTD rescues
the null Ser5 to alanine mutants in the fission yeast
Schizosaccharomyces pombe [136]. Interestingly, inactivation
of Kin28 does not eliminate transcription: neither steady-
state mRNA levels nor the ability to initiate transcription
at the inducible GAL1 gene is significantly compromised by
the inhibition [135]. A subsequent study using the same
chemical inhibition system confirmed the earlier observa-
tions but incorrectly attributed small differences in transcript
levels to inappropriate normalization of earlier microarray
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Figure 4: Bur1 phosphorylation of the CTD facilitates the transition from initiation to elongation. (a) Ser5-P enhances recruitment and
subsequent phosphorylation of Ser2 by Bur1. Bur1 also phosphorylates Spt5, which acts with the Paf1 complex to promote elongation. (b)
CTD phosphorylation by Bur1 enhances the activity of Ctk1 on Ser2. The majority of the Ser2-P is maintained by competition between
phosphorylation by Ctk1 and dephosphorylation by Fcp1. This increase in Ser2-P facilitates recruitment of many Ser2-P-binding proteins,
such as Npl3.

data [137]. No such global normalization was performed by
Kanin et al. [135] and it is unclear why the subsequent study
[137] made the unsubstantiated and erroneous claim that the
data was treated incorrectly. Kanin et al. were quite cognizant
of the consequences of inhibiting an enzyme that could
have a role in global transcription. Moreover, quantitative
PCR and northern blot assays, experiments that were not
reliant on microarray normalization, showed little difference
in expression (Hein and Ansari, 2007, unpublished data)
[135]. These results strongly support the conclusion that
inactivating Kin28 does not significantly impact global
transcription. It is important to note that these studies
only focused on chemical inhibition of Kin28 and that the
inhibition is not an “all or none” phenomenon due to
equilibrium binding of the small molecule to the kinase; it
is possible that extremely low levels of Ser5 phosphorylation,
by either Srb10 or residual Kin28, suffice for transcription
initiation. Importantly, chemical inhibition of both Kin28
and Srb10 shows a drop in Pol II across the ORF, supporting
the model where Ser5-P may help in promoter clearance
[138].

We and others have recently demonstrated that Kin28/
Cdk7 is also the primary kinase that phosphorylates Ser7
(Ser7-P) [139–141]. The phosphorylation occurs at protein-
coding and noncoding genes and seems to be Mediator
dependent [142]. Cyclin-dependent kinases are thought to
prefer a substrate bearing Ser-Pro rather than Ser-Tyr dipep-
tides [143]. Additionally, while Kin28 has been localized to
promoters [83], Ser7-P marks were thought to be found only
at non-coding genes and at the 3′ end of protein coding genes
[144, 145]. The role of Ser7-P at promoters remains an active
area of investigation.

Following promoter clearance, transcription initiation
factors are exchanged for transcription elongation factors
required for RNA processing, passage through chromatin,
and suppressing cryptic transcripts. In budding yeast, this

exchange occurs immediately after the +1 nucleosome [146].
The association of these elongation factors, which include
Paf1, Spt16, Spt4, Spt5, Spt6, Spn1, and Elf1, occurs concur-
rently on all Pol II genes and is independent of gene length,
type, or expression [146]. The recruitment of these factors
is essential for transcription processivity (Spt4/5) [147–
149], histone regulation (Spt6/16, Spn1, Elf1) [150–156],
and gene activation/3′ processing (Paf1) [157]. Similarly,
mammalian P-TEFb complex is recruited to Pol II at this
stage of transcription [158–161]. This complex contains
a cyclin-dependent kinase (Cdk9) that phosphorylates the
DRB-sensitivity-inducing factor (DSIF), which allows Pol
II to overcome the promoter-proximal pausing induced
by the negative elongation factor (NELF) complex [23,
159]. It is unclear if promoter-proximal pausing occurs
in yeast, but it is known that Bur1 (the yeast homolog
of Cdk9) promotes elongation through post-translational
modification of Spt5 (DSIF) (Figure 4(a)) [162]. Bur1 also
improves transcription elongation through the recruitment
of histone-modifying enzymes and the phosphorylation of
CTD. Bur1 activity promotes the ubiquitylation of H2BK123
by the ubiquitin conjugating enzyme Rad6 and Bre1 [129,
163]. H2BK123Ub promotes Set1 trimethylation of histone
H3K4 and subsequent trimethylation of H3K79, both of
which are important for transcription activation [28, 86,
128, 129]. Bur1 also promotes transcription elongation
by coupling promoter-proximal CTD modifications with
promoter-distal marks. Bur1 is recruited to the transcription
complex by the Ser5-P marks placed at the promoter. It
then phosphorylates Ser2 (Ser2-P), priming the CTD for
the recruitment of Ctk1 (Cdk12), the major Ser2 kinase
[164]. Initial CTD phosphorylation also increases the activity
of Ctk1, thereby coupling sequential CTD modifications
(Figure 4(b)) [23, 159, 165, 166]. Interestingly, Bur1 travels
with Pol II and phosphorylates Ser7-P. Although the exact
role of this modification is unclear, it is likely a mark that
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promotes elongation, as genes with uniformly high levels of
Ser7-P are transcribed at significantly higher levels [138].

Most Ser5-P marks are removed near the +1 nucleo-
some through the action of the newly characterized CTD
phosphatase Rtr1 [167]. This phosphatase has been shown
to specifically remove Ser5-P marks immediately after pro-
moter clearance. The Ser2-P phosphatase Fcp1 also asso-
ciates during elongation, but Ser2-P levels remain high across
the transcript due to the opposing action of the Ser2-P kinase
Ctk1 [168, 169]. It is thought that the Ubp8 component of
SAGA travels with Pol II and promotes deubiquitylation of
H2BK123Ub [170], which allows the association of Ctk1 and
subsequent phosphorylation of Ser2 on the CTD [171].

Ser2-P is critically important for the interaction between
the CTD and many histone modifying and RNA processing
machines [75, 83, 132, 172–178]. Increasing levels of Ser2-
P, in combination with the residual Ser5-P, promote the
recruitment of the Set2 methyltransferase, which catalyzes
the formation of H3K36me2 and H3K36me3 [95, 96, 179–
181]. This leads to the recruitment of the histone deacetylase
complex Rpd3C(S) and the removal of acetylation from hi-
stones H3 and H4, thereby resetting the transcription state
of the nucleosomes and repressing cryptic transcription
within ORFs [87, 182, 183]. Ser2-P is involved in the co-
transcriptional and posttranscriptional processing of RNA.
Cotranscriptional processing of introns via splicing involves
the yeast protein Prp40, which preferentially associates with
Ser2-P/Ser5-P marked CTD [97]. Ser2-P is also bound by the
SR-like (serine/arginine rich) protein Npl3, which functions
in elongation, 3′-end processing, hnRNP formation, and
mRNA export [184–187]. Finally, increasing levels of Ser2-P,
coupled with depletion of Ser5-P, leads to the recruitment of
the termination and polyadenylation machinery (discussed
below).

1.1.3. Transcription Termination. The role of CTD modifi-
cations in orchestrating transcription termination is better
described in recent reviews [31, 188]. In essence, two models
have been proposed to explain how Pol II termination
occurs, with the emerging view being that it is likely a
combination of the two models that best describes the
mechanism. The first model, known as the “allosteric” or
“antiterminator” model, proposes that transcription through
the polyadenylation site leads to an exchange of elongation
factors for termination factors, resulting in a conformational
change of the elongation complex. Indeed, this model is
supported by chromatin immunoprecipitation (ChIP) data
of elongation factor exchange at the 3′ end of genes [146,
189]. The second model, known as the “torpedo” model,
postulates that cleavage of the transcript at the cleavage and
polyadenylation site (CPS) creates an entry site for the 5′-
3′ exonuclease Rat1 (Xrn2 in mammals), which degrades
the 3′ RNA and promotes Pol II release by “torpedoing”
the complex [189–191]. In this model, recruitment of Rat1
is likely to be indirect, possibly through its partner Rtt103.
Rtt103 has been shown to bind Ser2-P in a cooperative
manner with Pcf11 [192], an essential component of the
cleavage factor IA (CFIA) complex that also promotes Pol II
release [193]. Interestingly, ChIP data shows Pcf11 at both

protein-coding and noncoding genes, and mutating Pcf11
results in terminator read-through due to inefficient cleavage
at both gene classes [75, 174, 193–196]. Pcf11 may play an
important role in both the termination and processing of
protein-coding and non-coding genes.

Processing of Pol II transcripts occurs via one of two
distinct, gene class-specific pathways in yeast. Many small
mRNAs (<550 bp), CUTs, snRNA, and snoRNAs (non-
coding genes) are processed via the Nrd1-Nab3 pathway
(Figure 5), while longer mRNAs (protein-coding genes) are
processed in a polyadenylation-dependent process (Figure 6)
[8, 11, 12, 27, 31, 178, 195, 197–199]. The decision to
proceed down a certain processing path is modulated by
the phosphorylation state of the CTD. Nrd1 preferentially
associates with Ser5-P, and its recruitment is also enhanced
via histone H3K4 trimethylation by Set1 [90, 200]. Nrd1 and
Nab3 scan the nascent RNA for specific sequence elements
(GUAA/G or UGGA for Nrd1, and UCUU or CUUG for
Nab3) as it exits the core polymerase [90, 199, 201–207]. The
helicase Sen1 (senataxin in humans), which exists in complex
with Nrd1 and Nab3, resolves the DNA:RNA hybrids known
as R-loops that form between the template DNA and
the nascent RNA, keeping the specific sequence elements
exposed and preserving genomic stability [208–210]. The
involvement of Sen1 is dependent on the phosphatase Glc7,
which dephosphorylates Sen1 and is essential for the proper
termination of snRNA and snoRNA transcripts [211]. Upon
detecting its consensus sequence elements, the Nrd1 complex
and the Rnt1 endonuclease cleave these short transcripts
[195, 212–214], which are then trimmed at the 3′ end by the
TRAMP complex and the exosome [6, 215–217]. Nrd1 then
disengages from the transcription complex, with help from
antagonizing Ser2-P marks [198]. Unlike snRNA/snoRNAs,
which have protective structural elements in the RNA, Nrd1-
terminated CUTs have no protective elements at their 3′ ends
and are thus fully degraded by TRAMP after cleavage [8, 11,
12]. Nrd1 has been mapped to the 5′ end of transcribed
regions, but a recent study has demonstrated that Nrd1
occupancy is maintained across the open reading frame of
genes [196]. Although no homolog of Nrd1 has been found
in mammalian cells, the Integrator complex that is involved
in 3′ processing of snRNA transcripts is recruited by Ser7-
P [218]. The association of this complex with Ser7-P CTD
was demonstrated by the abolishment of this interaction
upon mutation of Ser7 to alanine [145]. Subsequent analysis
using a panel of CTD peptides determined that the Integrator
prefers to bind a diphosphorylated CTD substrate spanning
two heptad repeats in the S7-P-S2-P conformation [219]. It is
possible that Ser7-P may serve as a similar scaffold for snRNA
and snoRNA processing machinery in yeast.

The second pathway, used for the processing of most
mRNA transcripts, involves the cleavage and polyadenylation
factor (CPF) complex, cleavage factor IA and IB (CFIA and
CFIB) complexes, and the exosome (Figure 6) [31, 195, 197].
Many of the termination and 3′ processing factors involved
in this process are known to preferentially associate with
Ser2-P or Ser2-P/Ser5-P enriched CTD including: Npl3,
Rtt103, Rna14, Rna15, Ydh1, Yhh1, Pta1, and Pcf11. In this
pathway, Rna15 competes with Npl3 for recognition of a
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UA-rich site in the nascent RNA [98, 187]. This competi-
tion is removed upon phosphorylation of Npl3 by casein
kinase 2 (CK2) [98]. Rna15 can then bind the nascent
RNA and promote endonucleolytic cleavage followed by
polyadenylation by the polyadenylate polymerase (Pap1)
[197, 220]. Polyadenylation-binding proteins (PAB) then
protect the mature transcript from exonucleolytic degrada-
tion (Figure 6) [221].

In both pathways, the CTD is hypophosphorylated by
the combined action of two essential phosphatases at the
end of transcription: Ssu72 and Fcp1. Ssu72 is a member of
the Associated with Pta1 (APT) complex, which is present
at both gene classes and is involved in 3′ processing of

non-coding RNAs [222]. As such, Ssu72 is primarily local-
ized at the 3′ end of transcripts [222], although there is
one instance in which it has been found at promoters
[223]. Temperature-sensitive mutants of Ssu72 exhibit read-
through at both protein-coding and non-coding transcripts
[224]. Ssu72 is the primary Ser5-P phosphatase [225], and
its phosphatase activity is enhanced by the prolyl isomerase
Ess1/Pin1 and by interacting with Pta1/symplekin [226–
228]. Recently, crystal structures have shed light on the
mechanism of Ssu72: the phosphatase binds to Ser5-P only
when the adjacent Pro6 is in the cis-conformation [73, 74].
In contrast to Ssu72, Fcp1 associates with TFIIF during
transcription and is found across the entire transcribed
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region [168, 169, 229, 230]. Although it has Ser5-P and
Ser2-P phosphatase activity in vitro, Fcp1 is considered a
Ser2-P-specific phosphatase in vivo [231, 232]. Fcp1 activity
is enhanced upon phosphorylation of Fcp1 by CK2 [233].
Defects in Fcp1 also result in transcription read-through
at Nrd1-dependent transcripts [198]. Though it is unclear
which phosphatase removes Ser7-P, new data from our lab
suggest that Ssu72 may be the phosphatase that removes
Ser7-P at both the 5′ and 3′ ends of genes [234]. Removal
of this mark may be even more important than its placement
as mutation of Ser7 to alanine slows growth while mutating
Ser7 to the phosphomimic glutamate is lethal [144].

Global dephosphorylation of the CTD facilitates the re-
lease of Pol II from DNA, which can then recycle to pro-
moters for the next cycle of transcription [224, 235, 236].
It has been proposed that transcription termination and
subsequent dephosphorylation of the CTD is coupled to

transcription reinitiation through gene looping, by which
the promoter and terminator regions are brought together,
allowing Pol II to associate more rapidly with the PIC
[237, 238]. Intriguingly, Ssu72 and the GTF TFIIB have been
shown to be essential in gene looping [223, 239]. Taken
together, the phosphorylation and dephosphorylation of the
CTD is intimately involved in every phase of transcription,
from initiation, to elongation, to termination, and possibly
reinitiation.

1.1.4. Other Regulatory Roles of the CTD. In addition to its
many roles in transcription initiation, elongation, and termi-
nation, the CTD has been implicated in a variety of transcrip-
tion-extrinsic processes, such as mRNA export and stress
response. mRNA export (reviewed in [240–242]) requires the
packaging of the mRNA into export-competent messen-
ger ribonucleoprotein (mRNP) via association with the
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Mex67:Mtr2 heterodimer [243]. This heterodimer is brought
to the mRNA by Yra1 and Sub2, components of the THO
subunit of the TREX1 complex [242]. The process of mRNP
export is coordinated by the protein Sus1. This central pro-
tein directly interacts with Ser5-P and Ser2-P/Ser5-P of the
CTD, Ub8 subunit of the SAGA complex, Yra1 subunit of the
TREX1 complex, and Sac3 subunit of the TREX2 complex at
the nuclear pore (Figure 7) [106, 244].

The CTD is also involved in stress response. The ubiq-
uitin ligase Rsp5 binds the CTD and ubiquitylates Pol II
in response to DNA damage [245, 246]. Similarly, UV-
induced DNA damage in mammalian fibroblasts results in
hyperphosphorylation of the CTD by the mammalian posi-
tive transcription elongation factor b (P-TEFb), which then
regulates Pol II ubiquitylation and subsequent degradation
[247]. Under conditions not well understood, Ser5-P can
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also recruit the Asr1 ubiquitin ligase, which ubiquitylates
the Rpb1 and Rpb2 subunits of Pol II. This ubiquitylation
promotes ejection of the Rpb4/7 heterodimer from the core
polymerase and inactivates Pol II, which may provide a
mechanism for stopping polymerases engaged in abortive or
cryptic transcription [92].

2. The CTD Code Controversy: Is It a Code?

The concept of the CTD code was first proposed due to
the enormous amount of information that can be encoded
via post-translational modification of the CTD repeats [40,
248]. The code would coordinate the assembly of complexes
that “read, write, and erase” the code during transcription.
Historically, the Ser5-P and Ser2-P marks have been the
best characterized, with the canonical distribution of Ser5-P
being enriched at the 5′ end of genes and Ser2-P enriched
towards the 3′ end. Recently, our lab and several others
have been able to map the phospho-CTD occupancy profiles
across the yeast genome [135, 138, 139, 146, 196]. There are
interesting discrepancies between the observations made by
various groups. For example, Mayer et al. find the canonical
profile to be present at every gene with Ser7-P profiles
overlapping with Ser5-P [146], while we find clusters of
genes with noncanonical CTD profiles for Ser2-P, Ser5-P,
and Ser7-P [138]. We observe gene-specific phosphorylation
profiles, with Ser2-P levels being significantly lower at non-
coding genes and Ser7-P profiles diverging from Ser5-P
profiles only at protein-coding genes. The distinct patterns
of CTD marks at these two gene classes reflect the different
mechanisms of transcription termination and 3′ end pro-
cessing machinery that act on these two classes of RNA.
Similarly, Kim et al. also observe differences in phospho-
CTD profiles at snoRNAs and at introns [196]. However,
the positions of the Ser5-P and Ser7-P peaks in Kim et al.
are offset from Tietjen et al. and Mayer et al. Importantly,
all three genome-wide analyses reveal an unexpected degree
of cooccurrence of CTD marks, suggesting a bivalent or
even multivalent mode of recognition by docking partners.
In support of this idea, the Set2 histone methyltransferase
and the Integrator complex have been shown to prefer a
bivalent mark rather than a single phosphorylated residue
[95, 96, 219].

In addition to the various phosphorylation marks, the
isomerization state of the CTD also contributes to the
complexity of the code. For example, Pcf11 binds the CTD
in the trans-conformation while Ssu72 prefers a cis-CTD
as substrate [73–75]. Many in the transcription field have
made the argument that the CTD code is not a true
code because it does not convey biological information
via a rigorous decoding key. However, research in the last
several years has demonstrated that specific phosphoryla-
tion marks and proline isomerization are important for
conveying information from cis-elements encountered by
Pol II to the protein complexes necessary for successful
progression through the transcription cycle. Further inves-
tigation into the mechanism of this information transfer
will resolve the controversy over the existence of a CTD
code.

3. Future Directions

Extraordinarily rapid progress has been made over the last
several years in the field of CTD research; however, many
important questions remain unanswered. Although the pro-
files of Ser7-P have been mapped and several of its kinases
discovered, its function at protein coding genes remains
unclear. Additionally, most of the kinases identified are estab-
lished members of the transcription initiation or elongation
complexes. One could expect to find new enzymes that
could modulate the CTD in response to signals, as post-
translational modifications are often used as a mechanism
for cells to respond to external stimuli. The recent discovery
of Ser7-P at elongating Pol II has also prompted the question
of whether Tyr1 and Thr4 phosphorylation (Tyr1-P and
Thr4-P) occurs? Tyr1 can be phosphorylated by c-Abl in
mammals, but no homolog is present in yeast [249]. In
addition, both Tyr1-P and Thr4-P has been detected in S.
pombe [250]. Interestingly, Tyr1-P and Thr4-P were found
in both the hyperphosphorylated and hypophosphorylated
states of Pol II, opening the possibility of CTD function
independent of transcription. However, neither the profile
nor function of these potential modifications have been
extensively characterized.

The role of non-canonical residues and their modifi-
cation states on mammalian CTD remain to be explored.
In mammals, the Ser7 residue is only weakly conserved in
polymerase-distal repeats of the CTD, often changed to
lysine or arginine [144]. Interestingly, Arg1810 of rpb1 in
the human CTD is methylated by the coactivator-associated
methyltransferase1 (CARM1) [39]. This methylation occurs
prior to both transcription initiation and phosphorylation
of Ser2 or Ser5, and mutation of this residue results in the
improper expression of a variety of snRNAs and snoRNAs. In
addition to methylation, the CTD may also be subject to gly-
cosylation. Recent studies suggest O-GlcNAc are transferred
to Ser5 and Ser7 by O-GlcNac transferase and removed by
O-GlcNAc aminidase during PIC assembly. This cycling of
O-GlcNAc may be important for preventing aberrant CTD
phosphorylation by TFIIH [251].

Besides the characterization of novel marks, significant
structural challenges remain for understanding the known
phosphomarks. One limitation of ChIP is its inability to
identify the exact phosphorylation patterns across individ-
ual CTD repeats in vivo at different points during the
transcription cycle. Recent mutational analysis suggests
that the minimal functional unit of the CTD consists of
three consecutive Ser-Pro dipeptide residues in a S2-S5-S2
configuration [36], but it is unclear if all three serines can be
phosphorylated on one functional unit or if phosphorylation
alternates between repeats. The lack of positively charged
aminoacids makes the phospho-CTD patterns difficult to
decipher via mass spectrometry. Additionally, the highly
repetitive nature of the CTD makes it difficult to distinguish
between the first repeat and the twenty-first. Consequently,
the position along the CTD where interacting partners
associate remains a mystery. Mutation of Ser2 to glutamate
in the core-distal repeats and mutation of Ser5 to glutamate
in the core-proximal repeats are lethal [252]. However, this
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does not directly demonstrate whether the proteins that bind
these phosphorylated residues are located at these repeats.
Characterizing the phosphorylation patterns and protein
occupancies at individual repeats will help determine the
existence of a “CTD recognition” code, and this promises to
be one of the most exciting and important challenges in the
future of CTD research.
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