

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[(1-Benzoylpiperidin-4-yl)methyl]benzamide

K. Prathebha,^a D. Reuben Jonathan,^b Sathya Shanmugam^a and G. Usha^a*

^aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and ^bPG and Research Department of Chemistry, Presidency College, Chennai-5, Tamil Nadu, India Correspondence e-mail: guqmc@yahoo.com

Received 13 March 2014; accepted 2 June 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.125; data-to-parameter ratio = 16.3.

In the title compound, $C_{20}H_{22}N_2O_2$, the piperidine ring adopts a chair conformation. The phenyl rings are inclined to one another by 80.1 (1) $^{\circ}$ and make dihedral angles of 46.1 (1) and $40.2 (1)^{\circ}$ with the mean plane of the piperidine ring. In the crystal, pairs of $N-H \cdots O$ hydrogen bonds link the molecules into inversion dimers. C-H···O interactions further link the molecules, forming a three-dimensional supramolecular network.

Related literature

For the synthesis of the title compound, see: Prathebha et al. (2013); Venkatraj et al. (2008). For the biological activity of piperdine derivatives, see: Ramalingan et al. (2004); Sergeant & May (1970). For bond-length data, see: Allen et al. (1987). For related structures, see: Al-abbasi et al. (2010); Ávila et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

 $C_{20}H_{22}N_2O_2$ $M_r = 322.40$ Triclinic, $P\overline{1}$ a = 9.8039 (2) Å b = 10.4453 (2) Å c = 10.6765 (2) Å $\alpha = 62.208 (1)^{\circ}$ $\beta = 66.009 \ (1)^{\circ}$

 $\gamma = 68.150 \ (1)^{\circ}$ V = 860.80 (3) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K $0.22 \times 0.20 \times 0.20 \text{ mm}$ 12912 measured reflections

 $R_{\rm int} = 0.028$

3562 independent reflections

2929 reflections with $I > 2\sigma(I)$

Data collection

Bruker Kappa APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.982, T_{\max} = 0.984$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	217 parameters
$wR(F^2) = 0.125$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
3531 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13 - H13A \cdots O1^{i}$ $C3 - H3 \cdots O2^{ii}$ $N2 - H2A \cdots O2^{ii}$ $C8 - H8 \cdots O1^{iii}$	0.97	2.60	3.5548 (18)	169
	0.93	2.47	3.3803 (17)	167
	0.86	2.11	2.9401 (15)	162
	0.93	2.52	3.4506 (19)	176

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 2, -y + 1, -z; (iii) x, y, z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

The authors thank Professor Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6968).

References

- Al-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, 02896
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Ávila, R. M. D., Landre, I. M. R., Souza, T. E., Veloso, M. P. & Doriguetto, A. C. (2010). Acta Cryst. E66, o1630.
- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Prathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, 01424.
- Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527-533.
- Sergeant, L. J. & May, E. L. (1970). J. Med. Chem. 13, 1061-1063.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Venkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 411-426.

supporting information

Acta Cryst. (2014). E70, o771 [doi:10.1107/S1600536814012793]

N-[(1-Benzoylpiperidin-4-yl)methyl]benzamide

K. Prathebha, D. Reuben Jonathan, Sathya Shanmugam and G. Usha

1. Comment

Biologically active alkaloids of substituted piperidines have been targeted for their total or partial synthesis (Ramalingan *et al.*, 2004). Piperidines are known to have *CNS* depressant action at low dosage levels and stimulant activity with increased doses. In addition, the nucleus also possesses analgesic, anglionic blocking and anesthetic properties as well (Sergeant & May, 1970). We report in this communication, the synthesis and crystal structure of a new piperidine derivative.

The phenyl rings form dihedral angles of 46.1 (1)° and 40.2 (1)°, respectively, with the best plane through the piperidine ring atoms. The C—N distances [1.337 (2)- 1.468 (2) Å] are in the normal range and are in good agreement with values of a similar reported structure (Ávila *et al.*, 2010). The piperdine ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) of q2 = 0.0351 (1) Å, phi2 = -50.61 (3)° q3 = 0.5633 (1) Å, QT = 0.5644 (2) Å and $\theta 2 = 3.67$ (2)°.

The crystal packing shows N-H-O hydrogen bonds linking the molecules to centrosymmetric dimers (Fig. 2).

2. Experimental

The procedure (Prathebha *et al.*, 2013, Venkatraj *et al.*, 2008) adopted in the synthesis of the typical diamide is as follows: In a 250 mL round-bottomed flask 4-methyl piperidine (0.01 mol) was taken in, to which 100 mL of ethyl methyl ketone was added and stirred at room temperature. After 5 minutes, triethylamine (0.02 mol) was added and the mixture was stirred for 15 minutes. Then, benzoyl chloride (0.02 mol) was added and the reaction mixture was stirred at room temperature for about 2 h. A white precipitate of triethyl ammonium chloride was formed. It was filtered and the filterate was evaporated to get the crude product. The crude product was recrystallized twice from ethyl methyl ketone. Melting Point: 127 °C, yield: 85%.

3. Refinement

H atoms were positioned geometrically and treated as riding on their parent atoms with C—H = 0.93 - 0.97 Å and N—H. 87 with $U_{iso}(H) = 1.5U_{eq}$ (C-methyl) and = 1.2U $_{eq}(N,C)$ for other H atoms.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

The packing of the molecules in the crystal structure. The dashed lines indicate the hydrogen bonds.

N-[(1-Benzoylpiperidin-4-yl)methyl]benzamide

Crystal data

 $\begin{array}{l} C_{20}H_{22}N_2O_2\\ M_r = 322.40\\ Triclinic, P\overline{1}\\ Hall symbol: -P 1\\ a = 9.8039 (2) Å\\ b = 10.4453 (2) Å\\ c = 10.6765 (2) Å\\ a = 62.208 (1)^{\circ}\\ \beta = 66.009 (1)^{\circ}\\ \gamma = 68.150 (1)^{\circ}\\ V = 860.80 (3) Å^3\\ Z = 2 \end{array}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scan
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min} = 0.982, \ T_{\max} = 0.984$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wP(F^2) = 0.125$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(P^2) = 0.125$	heighbouring sites
S = 1.04	H-atom parameters constrained
3531 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0625P)^2 + 0.1352P]$
217 parameters	where $P = (F_o^2 + 2F_o^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.56 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 344

 $\theta = 2.3 - 26.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Block, colourless

 $0.22 \times 0.20 \times 0.20$ mm

12912 measured reflections 3562 independent reflections 2929 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$

T = 293 K

 $R_{\rm int} = 0.028$

 $h = -12 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -13 \rightarrow 13$

 $D_{\rm x} = 1.244 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.188 \text{ Mg m}^{-3}$

 $D_{\rm m}$ measured by not measured

Cell parameters from 3562 reflections

Mo *K* α radiation, $\lambda = 0.71073$ Å

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and i	sotropic or equiv	valent isotropic dis	placement paramete	ers $(Å^2)$
-------------------------------------	-------------------	----------------------	--------------------	-------------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.8259 (2)	0.13083 (19)	-0.42562 (19)	0.0716 (5)
H1	0.8464	0.0451	-0.4428	0.086*
C2	0.9233 (2)	0.14731 (18)	-0.37349 (19)	0.0687 (4)

H2	1.0097	0.0725	-0.3554	0.082*
C3	0.89322 (16)	0.27493 (16)	-0.34793 (16)	0.0557 (3)
H3	0.9605	0.2865	-0.3147	0.067*
C4	0.76373 (14)	0.38484 (14)	-0.37167 (13)	0.0462 (3)
C5	0.6671 (2)	0.3663 (2)	-0.4234 (2)	0.0706 (4)
Н5	0.5791	0.4396	-0.4391	0.085*
C6	0.6987 (2)	0.2410 (2)	-0.4522 (2)	0.0805 (5)
H6	0.6338	0.2313	-0.4895	0.097*
C7	0.75109 (14)	0.87255 (14)	0.19275 (14)	0.0459 (3)
C8	0.68184 (17)	0.89913 (16)	0.32258 (16)	0.0555 (3)
H8	0.6521	0.8227	0.4115	0.067*
С9	0.65695 (19)	1.03945 (18)	0.32005 (18)	0.0655 (4)
H9	0.6091	1.0571	0.4075	0.079*
C10	0.7016 (2)	1.15236 (17)	0.1911 (2)	0.0705 (4)
H10	0.6842	1.2465	0.1904	0.085*
C11	0.7722 (2)	1.12603 (19)	0.0627 (2)	0.0797 (5)
H11	0.8044	1.2023	-0.0254	0.096*
C12	0.7961 (2)	0.98681 (18)	0.06295 (17)	0.0687 (4)
H12	0.8428	0.9704	-0.0251	0.082*
C13	0.74162 (16)	0.54026 (13)	0.13846 (15)	0.0491 (3)
H13A	0.6493	0.5026	0.1824	0.059*
H13B	0.8142	0.4717	0.1942	0.059*
C14	0.80986 (15)	0.55186 (13)	-0.02091 (15)	0.0489 (3)
H14A	0.8293	0.4553	-0.0244	0.059*
H14B	0.9072	0.5801	-0.0608	0.059*
C15	0.70474 (15)	0.66528 (13)	-0.11683 (15)	0.0485 (3)
H15	0.6124	0.6289	-0.0839	0.058*
C16	0.65720 (17)	0.81395 (14)	-0.09792 (16)	0.0545 (3)
H16A	0.7453	0.8581	-0.1435	0.065*
H16B	0.5798	0.8810	-0.1483	0.065*
C17	0.59429 (16)	0.79586 (15)	0.06342 (16)	0.0535 (3)
H17A	0.5726	0.8908	0.0712	0.064*
H17B	0.4992	0.7629	0.1067	0.064*
C18	0.78445 (14)	0.71670 (14)	0.20002 (14)	0.0455 (3)
C19	0.78213 (19)	0.68686 (15)	-0.27908 (16)	0.0573 (3)
H19A	0.7154	0.7658	-0.3369	0.069*
H19B	0.8762	0.7184	-0.3109	0.069*
C20	0.71745 (15)	0.52476 (14)	-0.34233 (14)	0.0483 (3)
N1	0.70509 (12)	0.68746 (11)	0.14379 (12)	0.0470 (3)
N2	0.81811 (14)	0.55385 (12)	-0.30954 (13)	0.0534 (3)
H2A	0.9056	0.4929	-0.3064	0.064*
01	0.59104 (12)	0.60806 (12)	-0.34789 (13)	0.0697 (3)
O2	0.88170 (13)	0.62016 (11)	0.25938 (13)	0.0689 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0865 (11)	0.0708 (10)	0.0764 (10)	-0.0293 (9)	-0.0096 (9)	-0.0448 (9)

C2	0.0719 (10)	0.0632 (9)	0.0812 (11)	-0.0047 (7)	-0.0229 (8)	-0.0417 (8)
C3	0.0563 (8)	0.0607 (8)	0.0644 (8)	-0.0080 (6)	-0.0217 (6)	-0.0346 (7)
C4	0.0523 (7)	0.0514 (7)	0.0393 (6)	-0.0144 (5)	-0.0127 (5)	-0.0186 (5)
C5	0.0704 (10)	0.0781 (11)	0.0874 (11)	-0.0067 (8)	-0.0393 (9)	-0.0430 (9)
C6	0.0848 (12)	0.0992 (13)	0.0971 (13)	-0.0290 (10)	-0.0304 (10)	-0.0573 (11)
C7	0.0473 (7)	0.0477 (7)	0.0529 (7)	-0.0087 (5)	-0.0160 (5)	-0.0267 (6)
C8	0.0653 (8)	0.0561 (8)	0.0526 (7)	-0.0163 (6)	-0.0129 (6)	-0.0274 (6)
C9	0.0734 (10)	0.0675 (9)	0.0698 (9)	-0.0176 (7)	-0.0082 (8)	-0.0455 (8)
C10	0.0833 (11)	0.0542 (8)	0.0871 (11)	-0.0199 (8)	-0.0168 (9)	-0.0393 (8)
C11	0.1130 (14)	0.0594 (9)	0.0692 (10)	-0.0401 (9)	-0.0106 (10)	-0.0232 (8)
C12	0.0919 (11)	0.0662 (9)	0.0542 (8)	-0.0308 (8)	-0.0042 (8)	-0.0314 (7)
C13	0.0590 (7)	0.0381 (6)	0.0579 (8)	-0.0068 (5)	-0.0231 (6)	-0.0217 (5)
C14	0.0568 (7)	0.0382 (6)	0.0582 (8)	-0.0033 (5)	-0.0214 (6)	-0.0244 (5)
C15	0.0561 (7)	0.0432 (7)	0.0580 (8)	-0.0076 (5)	-0.0229 (6)	-0.0251 (6)
C16	0.0682 (8)	0.0403 (7)	0.0666 (8)	0.0011 (6)	-0.0362 (7)	-0.0249 (6)
C17	0.0558 (7)	0.0474 (7)	0.0720 (9)	0.0045 (6)	-0.0318 (7)	-0.0344 (6)
C18	0.0471 (6)	0.0467 (7)	0.0497 (7)	-0.0062 (5)	-0.0158 (5)	-0.0249 (5)
C19	0.0773 (9)	0.0465 (7)	0.0576 (8)	-0.0108 (6)	-0.0268 (7)	-0.0228 (6)
C20	0.0530 (7)	0.0493 (7)	0.0442 (6)	-0.0080 (6)	-0.0163 (5)	-0.0190 (5)
N1	0.0534 (6)	0.0408 (5)	0.0580 (6)	-0.0019 (4)	-0.0242 (5)	-0.0265 (5)
N2	0.0609 (7)	0.0520 (6)	0.0609 (7)	-0.0032 (5)	-0.0262 (5)	-0.0314 (5)
01	0.0602 (6)	0.0635 (6)	0.0921 (8)	0.0024 (5)	-0.0320 (6)	-0.0379 (6)
O2	0.0756 (7)	0.0571 (6)	0.0973 (8)	0.0054 (5)	-0.0534 (6)	-0.0382 (6)

Geometric parameters (Å, °)

C1—C6	1.369 (3)	C13—N1	1.4665 (14)
C1—C2	1.377 (2)	C13—C14	1.5166 (18)
C1—H1	0.9300	C13—H13A	0.9700
C2—C3	1.3854 (19)	C13—H13B	0.9700
С2—Н2	0.9300	C14—C15	1.5272 (18)
C3—C4	1.3782 (19)	C14—H14A	0.9700
С3—Н3	0.9300	C14—H14B	0.9700
C4—C5	1.3788 (19)	C15—C19	1.5236 (19)
C4—C20	1.5026 (17)	C15—C16	1.5319 (16)
C5—C6	1.378 (2)	C15—H15	0.9800
С5—Н5	0.9300	C16—C17	1.517 (2)
С6—Н6	0.9300	C16—H16A	0.9700
C7—C12	1.376 (2)	C16—H16B	0.9700
С7—С8	1.3830 (18)	C17—N1	1.4610 (16)
C7—C18	1.5065 (16)	C17—H17A	0.9700
С8—С9	1.3823 (19)	C17—H17B	0.9700
С8—Н8	0.9300	C18—O2	1.2277 (15)
C9—C10	1.363 (2)	C18—N1	1.3367 (16)
С9—Н9	0.9300	C19—N2	1.4573 (16)
C10-C11	1.369 (2)	C19—H19A	0.9700
С10—Н10	0.9300	C19—H19B	0.9700
C11—C12	1.383 (2)	C20—O1	1.2270 (16)

C11—H11	0.9300	C20—N2	1.3387 (17)
C12—H12	0.9300	N2—H2A	0.8600
C6—C1—C2	119.84 (14)	C13—C14—C15	112.38 (10)
С6—С1—Н1	120.1	C13—C14—H14A	109.1
C2—C1—H1	120.1	C15—C14—H14A	109.1
C1—C2—C3	120.26 (15)	C13—C14—H14B	109.1
C1—C2—H2	119.9	C15—C14—H14B	109.1
C3—C2—H2	119.9	H14A—C14—H14B	107.9
C4-C3-C2	120.12 (13)	C19—C15—C14	111.50 (11)
C4—C3—H3	119.9	C19 - C15 - C16	109.95 (11)
C2-C3-H3	119.9	C14-C15-C16	109.78 (10)
C_{3} C_{4} C_{5}	118 85 (13)	C19 - C15 - H15	108.5
C_{3} C_{4} C_{20}	$124\ 40\ (11)$	C_{14} C_{15} H_{15}	108.5
$C_{5} = C_{4} = C_{20}$	124.40(11) 116.74(12)	C16 C15 H15	108.5
$C_{5} - C_{4} - C_{20}$	110.74(12) 121.14(15)	$C_{10} = C_{10} = C_{10} = C_{10}$	100.5
C_{0}	121.14(13)	C17 - C16 - C15	100.2
$C_0 = C_3 = H_5$	119.4	C17 - C10 - HI0A	109.2
C4 - C5 - H3	119.4	C13 - C10 - H10A	109.2
CI = CO = CS	119.76 (14)	C17 - C10 - H10B	109.2
CI = C6 = H6	120.1		109.2
C5—C6—H6	120.1	H16A - C16 - H16B	107.9
	118.99 (12)	NI-CI/-C16	110.21 (10)
C12—C7—C18	122.18 (12)	NI—CI7—HI7A	109.6
C8—C7—C18	118.70 (12)	С16—С17—Н17А	109.6
C9—C8—C7	119.91 (13)	N1—C17—H17B	109.6
С9—С8—Н8	120.0	С16—С17—Н17В	109.6
С7—С8—Н8	120.0	H17A—C17—H17B	108.1
C10—C9—C8	120.86 (14)	O2—C18—N1	122.09 (11)
С10—С9—Н9	119.6	O2—C18—C7	119.08 (11)
С8—С9—Н9	119.6	N1—C18—C7	118.82 (11)
C9—C10—C11	119.43 (14)	N2—C19—C15	113.75 (11)
С9—С10—Н10	120.3	N2—C19—H19A	108.8
C11—C10—H10	120.3	С15—С19—Н19А	108.8
C10-C11-C12	120.43 (15)	N2-C19-H19B	108.8
C10-C11-H11	119.8	C15—C19—H19B	108.8
C12—C11—H11	119.8	H19A—C19—H19B	107.7
C7—C12—C11	120.36 (14)	O1—C20—N2	121.84 (12)
C7—C12—H12	119.8	O1—C20—C4	120.44 (12)
C11—C12—H12	119.8	N2—C20—C4	117.72 (11)
N1—C13—C14	109.34 (10)	C18—N1—C17	126.14 (10)
N1—C13—H13A	109.8	C18—N1—C13	120.63 (10)
C14—C13—H13A	109.8	C17—N1—C13	112.60 (9)
N1—C13—H13B	109.8	C20—N2—C19	121.23 (11)
C14—C13—H13B	109.8	C20—N2—H2A	119.4
H13A—C13—H13B	108.3	C19—N2—H2A	119.4
C6—C1—C2—C3	-0.1 (3)	C12—C7—C18—O2	107.97 (17)
C1—C2—C3—C4	1.3 (2)	C8—C7—C18—O2	-67.72 (17)

C^2 C^2 C^4 C^5	-1.1(2)	C12 C7 C18 N1	-72 10 (18)
C2-C3-C4-C3	-1.1 (2)		-/3.19(18)
C2—C3—C4—C20	177.72 (13)	C8—C7—C18—N1	111.12 (14)
C3—C4—C5—C6	-0.4 (2)	C14—C15—C19—N2	63.59 (15)
C20—C4—C5—C6	-179.32 (15)	C16—C15—C19—N2	-174.42 (11)
C2-C1-C6-C5	-1.4 (3)	C3—C4—C20—O1	-170.49 (13)
C4—C5—C6—C1	1.7 (3)	C5-C4-C20-O1	8.4 (2)
C12—C7—C8—C9	0.9 (2)	C3—C4—C20—N2	9.15 (19)
C18—C7—C8—C9	176.74 (12)	C5-C4-C20-N2	-172.00 (13)
C7—C8—C9—C10	-0.8 (2)	O2-C18-N1-C17	-176.01 (13)
C8—C9—C10—C11	-0.1 (3)	C7—C18—N1—C17	5.18 (19)
C9—C10—C11—C12	1.0 (3)	O2-C18-N1-C13	-5.8 (2)
C8—C7—C12—C11	0.0 (2)	C7—C18—N1—C13	175.39 (11)
C18—C7—C12—C11	-175.70 (15)	C16—C17—N1—C18	110.77 (14)
C10-C11-C12-C7	-1.0 (3)	C16—C17—N1—C13	-60.11 (14)
N1-C13-C14-C15	-56.11 (14)	C14—C13—N1—C18	-111.16 (13)
C13—C14—C15—C19	174.11 (10)	C14—C13—N1—C17	60.29 (14)
C13—C14—C15—C16	52.02 (15)	O1—C20—N2—C19	-0.2 (2)
C19—C15—C16—C17	-174.15 (11)	C4—C20—N2—C19	-179.78 (11)
C14—C15—C16—C17	-51.14 (15)	C15—C19—N2—C20	89.66 (15)
C15-C16-C17-N1	55.05 (15)		

Hydrogen-bond geometry (Å, °)

D—H	H···A	$D^{\dots}A$	D—H···A
0.97	2.60	3.5548 (18)	169
0.93	2.47	3.3803 (17)	167
0.86	2.11	2.9401 (15)	162
0.93	2.52	3.4506 (19)	176
	<i>D</i> —H 0.97 0.93 0.86 0.93	D—H H···A 0.97 2.60 0.93 2.47 0.86 2.11 0.93 2.52	DHH···AD···A0.972.603.5548 (18)0.932.473.3803 (17)0.862.112.9401 (15)0.932.523.4506 (19)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+2, -*y*+1, -*z*; (iii) *x*, *y*, *z*+1.