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Abstract

Despite years of study, it is still not clear how life emerged from inanimate matter and

evolved into the complex forms that we observe today. One of the most recognized hypothe-

ses for the origins of life, the RNA World hypothesis, assumes that life was sparked by prebi-

otic replicating RNA chains. In this paper, we address the problems caused by the interplay

between hypothetical prebiotic RNA replicases and RNA parasitic species. We consider the

coexistence of parasite RNAs and RNA replicases as well as the impact of parasites on the

further evolution of replicases. For these purposes, we used multi-agent modeling tech-

niques that allow for realistic assumptions regarding the movement and spatial interactions

of modeled species. The general model used in this study is based on work by Takeuchi and

Hogeweg. Our results confirm that the coexistence of parasite RNAs and replicases is pos-

sible in a spatially extended system, even if we take into consideration more realistic

assumptions than Takeuchi and Hogeweg. However, we also showed that the presence of

trade-off that takes into the account an RNA folding process could still pose a serious obsta-

cle to the evolution of replication. We conclude that this might be a cause for one of the

greatest transitions in life that took place early in evolution—the separation of the function

between DNA templates and protein enzymes, with a central role for RNA species.

1 Introduction

The origins of life and their evolution are currently one of the hottest topics in science. Since

the discovery of catalytic RNA activities [1, 2], the RNA World hypothesis has become the

most plausible hypothesis for the origins of life [3]. Since its foundation [4–6], many research-

ers have performed experiments aimed at finding the most plausible pathways by which

stereochemically appropriate nucleotides could build prebiotic RNAs. Recently, Powner et al.

proved that the 2-aminooxazole pathway could yield pyrimidine nucleotides [7], while the

formamide-based chemistry showed the possibility to create purines and pyrimidines in the

presence of various catalysts [8]. Starting from the assumption that nucleotides were already

present in the primordial soup, Costanzo et al. experimentally demonstrated RNA nucleotide
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self-polymerization [9] and Ferris et al. highlighted the role of mineral surfaces for increasing

the length of the polymers [10].

Another problem related to the origins of life is that according to RNA World hypothesis,

to spark life, the replication of existing RNA molecules would be necessary. RNA replication is

not completely accurate; hence, as a consequence of mutation, evolution forms quasispecies

that is the population of self-replicating polynucleotide chains [11–16]. As a result functional

information can be easily lost in the so-called error catastrophe, especially due to the high

mutation rates that probably characterized the first polymerases [17]. Despite this, researchers

have performed many attempts to create the RNA polymerase ribozyme [18–22], recently

resulting in a cross-chiral RNA polymerase ribozyme [23] and a system of cooperative RNA

replicators [24], as well as RNA polymerase ribozyme that is able to synthesize structured func-

tional RNAs, including aptamers and ribozymes [25]. However, these molecules are too large

to be maintained in a quasispecies population, as they exceed the 100 nucleotide error thresh-

old, which is the maximum length polynucleotide molecule that can be accurately replicated

without high fidelity polymerases [13]. Eigen suggested hypercycles as a solution to the error

threshold problem mentioned above [13, 26]. However, even if the traditional hypercycle

model formulation based on ordinary differential equations (ODE) is ecologically stable, it is

proved to be evolutionarily unstable [27]. In other words, hypercycles are not resistant to para-

sites defined as RNA molecules that do not have replicase catalytic activity but can be repli-

cated by replicases [13, 28–34]. As the traditional hypercycle ODE model was homogeneous,

the later works showed that the spatial consideration enhances the persistence of interacting

individuals and allows for a stable coexistence of replicases and parasites [28, 30, 31, 33,

35–37]. Once the population structure is modeled, hypercyclic interactions are not necessary

[38]. Moreover, Hogeweg and Takeuchi [32] showed by an in silico approach that the

replicase-parasite system (RP system for short) is not only resistant to parasites, but more

importantly, that parasites are responsible for the formation of the traveling wave patterns that

ensured the evolutionary stability of the system.

As discussed above, many of the chemical and biological experiments that have been per-

formed to date have focused on explaining abiogenesis. However, even though they have given

us some answers and clues, it seems that the complexity of life makes it very tough for wet lab

experimental analyses. Strikingly, mathematics and computing science have proven to be very

useful for the analysis of many complex biological phenomena. Computational approaches are

often faster and easier than performing wet lab experiments. Moreover, they allow for the care-

ful tuning of a system’s parameters, which is often beyond the scope of traditional experiments

[39]. Mathematical and computational approaches allow abstraction from the biochemical

details of a system and enable researchers to focus on the core dynamics of a system that is

responsible for the phenomena under consideration. This especially applies to studies on the

origins of life and evolution, as we would like to test various scenarios with often limited

knowledge about the details of their components. Moreover, in silico approaches are perfect

for studying evolution because evolution often occurs on very large timescales that are hard to

observe with standard methods. Nevertheless, when conducting in silico experiments, it should

be kept in mind that the choice of a suitable modeling technique is crucial to ensure that the

results give the correct answers for the problem under consideration.

There are many modeling techniques and simulation methods that can be used to analyze

biological systems, including those that try to explain the origins of life. In this paper we

focused on two modeling formalisms: cellular automata (CA) and multi-agent systems (MAS).

CA is represented as a grid of cells with a finite number of states that evolves in discrete-

time [40, 41]. In the most general case, the state of a given cell at a given time depends only on

its own state and the state of its neighbors at the previous time step. Various CA variants are
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currently one of the most actively studied methods for biophysical simulations [42]. CA uti-

lizes a discrete representation of space and time.

More general approaches are multi-agent systems (MAS) that consist of a set of agents

interacting in a given dynamic environment [43–45]. Agents are capable of autonomous

actions and make decisions by taking into account their internal states and environments. A

decision can modify the internal state of an agent, its behavior or its morphology, as well as the

environment because the agent is able to act locally around it. MAS are well suited for model-

ing crowded environments because, similar to CA, they model global behavior through inter-

actions between individual entities. Compared to the CA approach, the MAS approach is more

suitable for modeling and simulating biological systems because it provides an easier way for

representing the interactions between entities through agent interactions. Unfortunately, this

modeling technique is not as well-supported by existing software as a CA, and simulating

multi-agent systems usually requires the implementation of custom software. However, when

implementing these approaches, authors can easily provide dedicated techniques, methods

and tools for the modeling and simulation of biological systems [46, 47].

In this paper, we address the interplay problems between RNA replicases and RNA parasitic

species in the origins of life context. This problem is important for understanding the pre-life

events that led to current lifeforms and evolution that could govern the transition from the

RNA world to the DNA-RNA-protein world. We asked whether parasites and replicases could

coexist, what types of processes allowed this coexistence, and finally, if and how the coexistence

between parasites and replicases could impact the further evolution of replicases themselves.

In our work, we aimed to verify and deepen the findings from Takeuchi and Hogeweg [33]

regarding the replicase-parasite surface model. We also determined the implementation details

of this model based on the analysis of source code received from Takeuchi. We believe that it

can greatly help researchers who want to better understand this topic. As it has been previously

shown that the methodology has a great impact on results and may therefore lead to varied

interpretations [48], we propose to use multi-agent-based modeling to increase the precision

of the model. We investigated the role of different attributes that characterize the agents and

stability of the system consisting of interacting replicases and parasites, as well as its evolution-

ary dynamics. We also took a closer look at the ability of the system to evolve in a direction

that promotes replication. Our results confirm the general findings of Takeuchi and Hogeweg

[33] regarding multilevel selection. However, in a system with more realistic diffusion modeled

with our agent-based methodology, more precise names for the observed phenomena could be

explosions of life rather than traveling waves. The differences come from the continuous treat-

ment of the space in the MAS model.

Moreover, we present results from our novel analysis, which show that even if stable coexis-

tence is possible in a spatially extended system, this does not guarantee the evolution of better

replicases. This happens because evolution tends to decrease the time replicases spend in a

folded state, therefore increasing their availability as templates. As replication is performed by

RNA replicases that also store the necessary information for creating new instances of them-

selves, the existence of a trade-off that takes into account RNA folding could still pose a serious

obstacle to evolution. This dual nature of RNA replicases might itself be a cause for one of the

greatest transitions in life that took place early during evolution—the separation of function

between DNA templates and protein enzymes, with a central role for RNA species.

2 Materials and methods

The analysis of the replicase-parasite system (RP system) described in the 2.1 section required

the design of several methods. The key method is the simulation algorithm. We based our
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multi-agent approach on the cellular automaton proposed by Takeuchi and Hogeweg [33].

Unfortunately, the above mentioned automaton was described without all the details required

to reimplement it. To solve this problem, we asked authors for the algorithm source code and

analyzed it to be sure that our approach is precisely equivalent of the original work, and so that

we could credibly compare them. The detailed presentation of our algorithm is presented in

the 2.2 section. The most difficult part of the algorithm was the conversion of the parameter

values used by Takeuchi et al. in the multi-agent system. There are no commonly recognized

general methods for converting parameter values between cellular automata and multi-agent

systems, so we propose a new method described in the 2.6 section. Apart from this, the

designed algorithm adapts some existing methods for simulating diffusion (section 2.3) and

first and second-order reactions (sections 2.4 and 2.5 respectively).

2.1 Biological system

The model consists of a set of molecular species that interact in a two-dimensional toroidal

environment that was chosen to avoid edge effects. Each molecule from each species is tracked

individually in the simulation and has its own attributes stored in a state variable xi for each

molecule i. Starting from the initial distribution, the molecules are propagated through the

space by an agent-based simulation. During each simulation step, the number of particles for

each molecular species is recorded, as well as statistics related to the l and a attributes described

below. The agent positions and attribute values are visualized during the simulation by creat-

ing a single image during each simulation step. To keep simulation computationally tractable,

water molecules are not simulated. We based the simulation on mass action kinetics and mod-

eled both first- and second-order reactions.

There are two singular molecule species simulated that are later denoted as uncomplexed;

the parasites are denoted by P and the replicases are denoted by R. The replicases model the

RNA chains with catalytic activities that are called ribozymes, as they are capable of perform-

ing RNA chain replication. The parasites model RNA chains that lack catalyzing replication

abilities, but can be copied by the replicase species and are therefore considered to be parasite

molecules in the modeled system.

During the simulation, uncomplexed molecules, replicases and parasites are characterized

by two attributes that range from 0 to 1. The former is the agent affinity towards replicases,

which is denoted by a, and models how well the molecule is recognized by replicases and its

ability to form a stable complex with replicases. The second attribute is the probability of an

agent being in a folded state, which is denoted by l. Agents can serve as templates for replicases

in the unfolded state. In the folded state, replicases serve as catalysts, whereas parasites in this

state are considered to be inactive in this study. During replication, the affinity towards repli-

cases and the probability of being in a folded state can be slightly changed to mimic mutation

events known from nature.

Two replicases can form a complex of two replicases and a replicase and a parasite can

form a replicase-parasite complex. Each uncomplexed molecule is represented by an agent at

a corresponding position and inherits its general properties from the molecular species in

an object-oriented way. The agents are represented as circles of a given size. Complexes are

virtual species that store information from the molecules that built them and are represented

as two overlapping circles. The existence of a complex models the fact that the bimolecular

reaction responsible replication occurs during the presence of a complex that uses its

components as reactants. All of the interactions modeled by the system are presented in the

Fig 1.
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2.2 Simulation algorithm

The multi-agent simulation algorithm used to simulate the RP system is presented below. Each

replicase and parasite is represented by a single agent in the simulation. When the agent is cre-

ated, its remaining life time (RLT) is initialized random (see Eq 2), and during each simulation

iteration, the time is decreased. When the complex is dissociated, the time does not have to be

recalculated because of memoryless properties (see Section 2.4). There are a maximal number

of allowed neighbors for each agent. If this is exceeded, the agent is removed due to a lack of

resources. During each replication event, there is a certain probability of a mutation to agent

properties with regard to agent affinity towards attributes or the probability of being in a

folded state. The detailed algorithm is presented in the below list 1.

Algorithm 1 Our algorithm.
1: Initializethe simulation.
2: Initializethe numberand positionsof the agentsfrom a file or

randomly.
3: Initializeall replicaseswith equalaR and lR values.
4: Initializeall parasiteswith equal aP and lP values.

Fig 1. Interactions modeled by the multi-agent system. Parasites or replicases can form complexes with other replicases at aP(1 − lP)

and aR(1 − lR) rates, respectively. A two replicase complex can either dissociate at a rate of (1 − aR) or produce a new replicase at rate K.

Analogously, a replicase-parasite complex can either dissociate at a rate of (1 − aP) or produce a new parasite at rate K. Parasites and

replicases can also decay at rate d and move at rate D. Similarly, complexes can move at rate D0. The parameters (rate constants) used in

this simulation were following: d = 0.182; D = 0.75; D0 = 0.0476; K = 239800; Δt = 1; 8i ri = 0.5.

https://doi.org/10.1371/journal.pone.0180827.g001
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5: while((simulationtime < time limit)AND (thereare both parasitesand
replicases(complexedor uncomplexed)present))do

6: Increasethe simulationtime by Δt.
7: Decreasethe RLT time for each agent(complexesand uncomplexed).
8: for all uncomplexed agents with the RLT = 0 do
9: Removethe agents.
10: end for
11: Randomizethe orderof all agents.
12: for all agentxi do
13: if xi is complexAND RLT(xi) = 0 then
14: Dissociateagentsinto two uncomplexed agents with the same

positionas the complex.
15: end if
16: for all agent that overlapsxi (see Eq 3) do
17: Add it to the set of neighborsN
18: end for
19: if |N|>Nmax then
20: removeagentxi from the simulation
21: end if
22: Randomizethe orderof N.
23: Move xi (see Eq 1).
24: if xi is complexthen
25: Decreasethe replication time (TTR).
26: if TTR = 0 then
27: Createnew agentx0 equal to the templatefrom complexxi.
28: Mutatex0.
29: Dissociatexi:
30: Createagentst and r basedon the complexedtemplateand

replicase.
31: Copy the positionof xi to t and r.
32: Restorethe RLT(r)and RLT(t)valuesfrom the momentwhen the

complexwas created.
33: Removexi from the simulation.
34: end if
35: else
36: for all nj 2 N do
37: if (nj is uncomplexed)AND (nj OR xi is replicase)AND

CheckReactionProbability(see Eq 4) then
38: Createcomplexx0.
39: RandomlyinitializeTTR(x0) (see Eq 2).
40: RandomlyinitializeRLT(x0) (see Eq 2).
41: Initializethe positionof x0 as the averagepositionof nj and xi.
42: Removenj and xi from the simulation.
43: end if
44: end for
45: end if
46: end for
47: end while

2.3 Diffusion

Agents move in discrete time (Δt) using continuous-time random walk to simulate the Brown-

ian motion of molecules suspended in a fluid. The position of a molecule after each step of the

simulation is calculated using the following formula [49]:

~xðt þ DtÞ ¼~xðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

~x ð1Þ
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where D is the diffusion coefficient and~x is a Gaussian random two-dimensional vector with

mean 0 and variance 1.

2.4 Unimolecular reactions

In the simulation, the following three types of unimolecular, first-order reactions are allowed:

(1) decay, (2) replication and (3) dissociation. We assume that the state of the agent (in partic-

ular its age) does not determine the probability of a reaction. Moreover, the probability of a

reaction does not depend directly on time. Hence, all first-order reactions are memoryless and

the distribution of time periods after which reactions occur is a random variable with expo-

nential distribution. To keep the simulation cost and time reasonable, instead of checking the

probability of each reaction at each time step, it is possible to calculate the time of a given

unimolecular reaction when a molecule is created using the following formula [50]:

taction ¼ � lnðXÞ=k ð2Þ

where X denotes a random number uniformly distributed in the range (0; 1] and k denotes

the exponential distribution rate. Using this formula, we can simply simulate the reaction after

taction time instead of checking the probability of the reaction after each simulation step, as a

mechanism for reducing the computational complexity. We use an exponential distribution

because it is a good approximation of processes occurring in real systems.

To handle a decay process, we calculate the lifetime of each molecule by substituting the

decay coefficient d for k in Eq 2. This is executed at the beginning of the simulation and then

every time a new molecule is created during replication. We implemented a simulation consis-

tent with the Takeuchi and Hogeweg model [33], where decay is allowed for both complexed

and free agents. In this variant, when one of the complexed agents decays, the other agent is set

free and no longer assumed to be in complex.

Replication and dissociation processes are also modeled as unimolecular reactions and the

simulation algorithm handles them by calculating replication and dissociation times each time

a complex forms between two molecules. For a replication, we substitute a coefficient of repli-

cation K for k in Eq 2. For a dissociation, we substitute a dissociation coefficient (1 − a) for k in

Eq 2, where a is the affinity towards replicases by the agent performing the template role (see

also section 2.5). During each replication event, there is a certain probability μa of a mutation

on an agent’s affinity towards replicases. Moreover, after replication, complex is immediately

dissociated, like in the case of bacteriophage T7 RNA polymerase [51]. After a complex disso-

ciation, a new lifetime is assigned for each of the dissociated components.

2.5 Second-order reactions

In the simulation, two similar types of second-order reactions occur, the formation of a com-

plex between a replicase and a parasite or between two replicases. As second-order reactions

are dependent on the relative positions of the reactants, two molecules can react if they are

within the reaction volume [52, 53], i.e., before the reaction can occur, agents have to move

close to one another. In the simulation, we use the following collision distance:

rc ¼ ri þ rj ð3Þ

as the maximum distance where two molecules can be to make reaction possible. Here, ri and

rj are the radii of the circles representing the agents. In practice, for simplification, we assume

that all agents have an equal size. For a specific agent, all of the agents that are in the reaction

radius form the set of its neighbors. If the number of neighbors is greater than the maximum
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number of neighbors allowed, then the agent is erased. This is done to assure the proper load

of an environment.

In reality, some collisions are elastic and do not trigger a reaction. This can be handled by

introducing a reaction probability ω. To keep the simulation computationally reasonable, as

we keep track of millions of molecules in each simulation, we adopted a simple strategy from

Takeuchi and Hogeweg [33]. The reaction probability in each step is calculated by taking into

account two template parameters, the affinity towards replicases, a, and the probability of

being in a folded state, l. If one of the agents is a parasite, then it is selected as a template; other-

wise, the replicase that did not initiate the reaction (denoted as ni in the algorithm 1) is selected

as the template. The probability is calculated with the following equation:

o ¼ að1 � lÞ ð4Þ

Therefore, a reaction between two molecules happens if they are closer than a collision dis-

tance rc and the random number X, which is uniformly distributed within the range [0, 1], is

smaller than ω. If more than one agent is within the collision distance of the agent under the

consideration, these agents are checked in random order until an agent that reacts is found or

all the agents are processed. If none of the overlapping agents react, nothing happens, meaning

that all the possible reactions were elastic. During each replication event, there is a certain

probability μl of a mutation to the agent’s probability of being in a folded state.

2.6 Parameters

The choice of values for parameters is crucial for the behavior of the system. The current

model is based on the Takeuchi and Hogeweg [33] CA model for parasites and replicases, and

we wanted to keep the MAS model as similar as possible to allow for comparison between the

two models. This is why we made an effort to adjust the values used in the Takeuchi and Hoge-

weg simulations to the MAS model. This was not strictly required, as both models use qualita-

tive, rather than quantitative analysis. However, we preferred to keep their behavior as similar

as possible.

For diffusion rate, it was possible to adjust its value analytically. However, others had to be

adjusted experimentally by performing test simulations. The reason for this approach is that

the approximation method strongly depends on the spatial distribution of agents, which

makes simple conversion nearly impossible. In the following equations, parameters with a CA
subscript represent parameters in Takeuchi’s cellular automaton model, while parameters

without this subscript represent corresponding parameters in our agent-based approach.

The most elementary simulation parameter is the time step length Δt. It determines the

time scale that is used by the other parameters. Taking this into account, Δt can have an arbi-

trary value. In our simulation, we set it to 1 unit because it is straightforward to use the value

Δt = 1 in equations. The method for computing diffusion is presented below.

2.6.1 Diffusion. Single agent To compute the diffusion constant of an uncomplexed

agent, we only consider actions that can occur during the lifetime of this particular agent dur-

ing cellular automaton. This excludes decay and formation of a complex because both of them

cause the end of the presence of agents either explicitly (decay) or implicitly (complex forma-

tion). Under these assumptions, the only action that can be applied to an uncomplexed mole-

cule is diffusion. Because it is the only possible action, the probability that it will occur is equal

to:

pDCA
¼ 1 ð5Þ
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To compare the diffusion probability in Takeuchi’s approach with the diffusion constant in

our multi-agent approach, the average squared lengths of the movement vectors (their vari-

ance) must be computed and weighted, i.e., multiplied by the probability defined above. When

using a Moore neighborhood in the cellular automaton approach, a molecule can move to

eight different cells. Half of them are adjacent with a distance equal to 1 and the remaining are

diagonal with a distance equal to
ffiffiffi
2
p

. The variance of movement vectors can be characterized

by the following equation:

s2
CA ¼

1

8
4 � 12 þ 4 �

ffiffiffi
2
p 2

� �
� pDCA

¼
3

2
pDCA

ð6Þ

In a multi-agent simulation, the variance of the movement vectors can be computed based

on the following equation:

s2 ¼ 2DDt ð7Þ

where D denotes the diffusion coefficient of an agent used at the multi-agent approach.

To assure that both simulations behave similarly, the following condition must be fulfilled:

s2
CA ¼ s2 ð8Þ

By substituting the following Eqs 6 and 7 we get:

3

2
pDCA
¼ 2DDt ð9Þ

D ¼
3pDCA

4Dt
ð10Þ

Complex In Takeuchi’s approach, a complexed molecule moves with two times lower prob-

ability than an uncomplexed one. As in the previous subsection, we have to consider actions

that can occur during the lifetime of the complex. Similar to an uncomplexed agent, we omit

the decay of complexed molecules and complex dissociation. However, in addition to diffu-

sion, we also have to consider replication. That is why the probability of diffusion by an arbi-

trarily chosen complexed molecule is equal to following equation:

pD0CA
¼

DCA

2
DCA

2
þ KCA

ð11Þ

where DCA denotes the diffusion rate and KCA denotes the replication rate used at a cellular

automaton approach.

Moreover, because each complex consists of two neighboring cells, when calculating the

variance of the movement vectors, we have to take into account the movement of the center of

a mass of the complex. When performing diffusion of the complexed molecule, we choose one

of its 8 neighboring cells (in exactly the same way as for an uncomplexed molecule). The com-

plex is moved to this cell, and the other molecule in the complex is moved to the emptied cell.

One of these eight neighbors is the other molecule in the complex. Choosing this cell causes

the exchange of only two complexed molecules, so the center of mass does not move. Choosing

any of the remaining 7 cells causes the movement of the center of mass; in four cases the dis-

tance of movement is equal to
ffiffiffi
2
p

=2, in one case it is equal to 1 and in two cases its equal to
ffiffiffiffiffi
10
p

=2. Taking this into account, we can compute the variance of movement vectors with the
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following equation:

s2
CCA
¼

1

8
4 �

ffiffiffi
2
p

2

� �2

þ 12 þ 2 �

ffiffiffiffiffi
10
p

2

� �2
 !

� ð2pD0CA
Þ ¼ 2pD0CA

ð12Þ

where pD0CA
has to be multiplied by 2 because the complex consists of two cells and any of them

can be chosen to initiate complex movement.

In the multi-agent simulation, the variance of movement vectors for a complex, just as for a

single agent, can be computed based on the following equation:

s2
C ¼ 2D0Dt ð13Þ

where D’ denotes a diffusion coefficient of a complex used at multi-agent approach.

To assure that simulations behave in a similar way, the following condition must be ful-

filled:

s2
C ¼ s2

CCA
ð14Þ

By substituting Eqs 12 and 13 we obtain the following final equation:

2D0Dt ¼ 2pD0CA
ð15Þ

D0 ¼
pD0CA

Dt
ð16Þ

2.6.2 Replication rate. In Takuechi’s model, in each time step, a complex can move, dis-

sociate, decay (each of its parts separately) or replicate. Replication, similarly to decay, is per-

formed with exponential distribution of waiting time, provided the availability of empty space

is constant. In our multi-agent approach, diffusion is a separate step and replication or dissoci-

ation occurs during the time for a specific event. These actions are completely independent.

Moreover, the replication itself is a multi-step process, so modeling it with Dirac Delta func-

tion would be more realistic. This trick forces the deterministic treatment of a probability den-

sity. In practice, the replication time is computed using an exponential distribution, similarly

to other periods, where the variable K is the distribution rate parameter. Such method correctly

models Dirac Delta function, because exponential distribution tends to Dirac Delta with the

rate parameter tending to infinity. Hence, we had to set K to be extremely large, meaning that

the time to replication can be achieved immediately after complex formation. However, this

immediate replication does not mean that it always happens because the complex could disso-

ciate earlier. If dissociation does not happen, then replication occurs.

3 Results

We simulated several variants with the multi-agent simulation described in the 2.2 Section.

We always initialized the system with small replicase and parasite populations, both of which

were of an equal size. We examined the random and nonrandom distribution of agents on a

plane. In the latter case, the agents of one type were placed in a half of the circle, while the

other type in the other half of the circle (Fig 2). We analyzed the case when only parasites were

allowed to mutate, reproducing the experiment of Takeuchi and Hogeweg [33], and the case

when both replicases and parasites could change their parameters. Each time, the parameter

values a or l is presented on a chart; these values are the averages of these values from the

whole simulated population in each simulation step. We assumed that the system will not go

Simulating the origins of life: The dual role of RNA replicases as an obstacle to evolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0180827 July 10, 2017 10 / 28

https://doi.org/10.1371/journal.pone.0180827


extinct if after stabilization parasites and replicases that form the system still coexisted. More-

over, we assumed that the stabilization occurred when the average value of the parameters

stopped changing and the groups of agents were distributed uniformly in the space. This usu-

ally required no more than 150k simulation steps.

During experiments, we observed emergent behavior similar to the traveling waves

described by Takeuchi and Hogeweg [33] in their CA simulations. Such waves consisted of

groups of parasite and replicase agents changing their positions in constant directions similar

to waves in water. The back side of the wave is formed by parasites that exploit replicases that

constitute the front of the wave. As a result, parasites leave an empty space behind them, while

new replicases are formed on the other side of the wave. This local extinction of parasites and

propagation of new agents cause the movement of the wave.

Fig 2. Images taken during the simulation of the first experiment. The presented frames were taken after 7k, 40k, 75k and 158k steps.

The full movie is available as supplemental material S1 Video, S2 Video, S3 Video, and S4 Video. It is split into four parts because of file size

constraints. It is also available in higher quality on the YouTube (https://www.youtube.com/watch?v=mKpiUH0iDoQ). The values of

parameters used during the experiment are presented in Table 1 and label of Fig 1.

https://doi.org/10.1371/journal.pone.0180827.g002
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3.1 Mutation of parasites

In the first set of experiments, we only allowed parasites to mutate and only considered agents

that were initially distributed on two halves of the circle. In total, we conducted four computa-

tional experiments. The detailed parameters characterizing these experiments are presented in

Table 1 and described below. The parameters that were constant are included in the caption of

the Fig 1.

During the first experiment, we allowed the affinity of parasites towards replicases aP, and

the probability of a parasite being in a folded state lP mutate slightly. During the remaining

experiments, the mutation probabilities μaP
and μlP were increased to make the influence of

mutations easier to observe. Moreover, to verify how one mutational probability influences the

behavior of the system, only one of these parameters was mutating while the other was immu-

table. We varied the initial values of aP (denoted as aP0
) or lP (denoted as lP0

) from 0 to 1 to

observe how various initial values influence the survivability of the system. In all experiments,

the affinity of replicases towards replicases was equal to aR = 0.7 and the replicases were cata-

lytically active regardless of their folded state. The value of aR differs from the value that was

used in the experiments by Takeuchi and Hogeweg [33], where it was set to 0.6. We also exam-

ined the value aR = 0.6; however, closer investigation showed that while a slightly higher value

of this parameter equal to 0.7 does not change the characteristics of the system, it does give bet-

ter results in terms of a more stable coexistence between parasites and replicases, meaning that

we could more easily observe the emerging behaviors in the system. When aP0
or lP0

were

immutable, their values were equal to 0.55 and 0.2, respectively. These values come from the

ODE analysis for the parasite-replicase system made by Takeuchi and Hogeweg [33]. They

allowed for the stable coexistence of the parasites and replicases modeled by the ODE assum-

ing no mutation. They also allow the survival of both species in the CA experiments completed

by Takeuchi and Hogeweg and worked correctly in our multi-agent model.

The experiments we performed showed that the system was able to survive with a wide

range of parameters values. The results show that our model, which incorporated space, was

able to preserve the stable coexistence of the modeled agent species, despite the evolutionary

instability of the replicase-parasite system [54]. In the first experiment, we observed that the

average values of aP and lP steadily increased from the beginning of the simulation (Figs 3

and 4). We also observed that parasites increase their average affinity towards replicases aP

through evolution, but that increasing the average lP malso means that parasites spend more

time in a folded state (Figs 4 and 2). These two trends are in opposition to each other, as the

former makes parasites more parasitic, the latter makes them less harmful. Increasing the time

that parasites spend in a folded state appears to be unreasonable from the parasite point of

view, as parasites in a folded state cannot be replicated and have no predefined function. This

was also observed by Takeuchi and Hogeweg [33]. Their results regarding the surface model

Table 1. The parameters used in the experiments analyzing the mutation of parasites that varied

between experiments. aP0
denotes the initial value for the affinity of parasites towards replicases, lP0

denotes

the initial value for the probability of a parasite being in a folded state, and μaP
, μlP

denote probability of mutation

of those two parameters, respectively, in each simulation step. When the parameter is immutable, the value of

the mutation is not applicable.

Experiment aP0
lP0

μaP
μlP

1 0.55 0.2 0.01 0.01

2 0.55 0.0–1.0, step 0.1 N/A 0.19

3 0.0–1.0, step 0.1 0.2 0.19 N/A

4 0.0–1.0, step 0.1 0.2 N/A 0.19

https://doi.org/10.1371/journal.pone.0180827.t001
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show that the observed trajectories of the aP and lP population averages can be separated into

two phases, short-term and long-term evolution. In the first phase, the values of aP and lP are

not changing. In the second phase, both observed values are increasing. In our experiment the

first phase is very short and lasted approximately 25k steps.

After reproducing the Takeuchi and Hogeweg experiment, we performed an experiment

where only lP is mutable to better understand the obtained results. Moreover, we wanted to

extend these results and further investigate how various mutable lP initial values influence the

behavior of the system, while the affinity towards replicases is immutable. Investigation of lP0

varying from 0 by 0.1 to 1 showed that a stable coexistence is possible assuming quite low to

average values for lP0
(0.1� lP0

� 0.6). When lP0
is extremely low (lP0

= 0), parasites can easily

form complexes with replicases and their virulence is so strong that they exploit the replicases

so quickly that they kill their host, and as a consequence, they kill themselves. High lP0
values

(lP0
� 0.7) make parasites inaccessible to replicases as parasites spend most of their time in the

folded state, and therefore do not have the chance to replicate and disappear. The average val-

ues for lP during the initial settings for lP0
= 0.0 and lP0

= 0.7 are depicted in Fig 5. As presented

in this figure, the system dies quickly. The results show that the system with mutable lP is able

to stabilize its behavior assuming that the values of lP0
are in the range of 0.1� lP0

� 0.6. In

such a case, the average value of lP quickly stabilizes between 0.2 and 0.3 and stays in this range

during the simulations (Fig 6). A closer look into the individual waves reveals that as the

Fig 3. Average values of aP changing over time during the first experiment. The values of parameters used during the

experiment are presented in Table 1 and label of Fig 1.

https://doi.org/10.1371/journal.pone.0180827.g003
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simulation progresses, the back side of a wave starts to be composed of parasites whose lP value

is continuously decreasing. Therefore, the parasites tend to maximize their chances of complex

formation and become more parasitic. Takeuchi and Hogeweg provided an explanation for

why the average value of lP is maintained at a constant level for the whole system [33]. This is

achieved due to the interplay between evolution at the level of waves and within waves. While

the individual waves undergo an aging-like process caused by the maximization of the viru-

lence of parasites forming a wave, this is counteracted by the high fecundity of waves com-

posed of parasites that have relatively low complex formation abilities.

Another experiment verified how the initial value for the affinity towards replicases affects

the behavior of the system. During this experiment, we varied the value of aP0
and let it mutate,

while lP was immutable. The results showed that a stable coexistence was impossible in this

case, regardless of the initial values for aP. The maximal number of steps for which system the

preserves the investigated species is less than 16k (Fig 7). When aP0
is low (aP0

� 0.3), parasites

cannot easily form complexes with replicases, and as a consequence they quickly die. When

aP0 is medium and high (0.4� aP0
� 0.9), parasites rapidly increase their average aP value. In

this case, the increase in the affinity towards replicases is not mitigated by an increase in the lP
values as was observed in the first experiment, and the system dies as a result system. For an

extremely large value of aP0
= 1, the increase in the aP values cannot occur because it is already

at a maximum from the beginning of the simulation. In fact, the system tends to minimize the

Fig 4. Average values of lP changing over time during the first experiment. The values of parameters used during the

experiment are presented in Table 1 and label of Fig 1.

https://doi.org/10.1371/journal.pone.0180827.g004
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threat of too high of an affinity by decreasing the aP values, though this is not able to defy the

parasites. As a consequence, when aP0
> 0.4 the parasites exploit the hosts so strongly that the

hosts cannot replicate themselves and the parasites kill the system.

Taking into account previous experiments, we wanted to further investigate the role of the

aP parameter on system survival. Therefore, we conducted the fourth experiment in which we

varied the initial value of aP0
but did not allow it to mutate, instead lP was mutable. The muta-

tion of lP is necessary to possibly counteract the initial affinity settings towards replicases and

assure (at least theoretically) the stable coexistence of parasites and replicases. The results from

the experiment show that when aP0
is high (aP0

� 0.7) parasites bind much better than repli-

cases and that they strongly exploit their host wave, kill it and lead to their own destruction. At

low aP0
values (aP0

� 0.3)), the parasites faced competition from the replicases that have higher

average affinity values for replicases, were unable to make complexes as their affinity towards

replicases was lower and disappear from the system. This situation seems to be unrealistic. We

believe that loosing catalytic activity is easy, but that it is harder to completely loose affinity

towards a given catalyst. Preserving catalytic activity often demands the presence of an accu-

rate sequence and structure by the biomolecular catalyst, suggesting that it can easily disappear

during replication via mutation. In contrast, motifs recognized by catalyst recognition motifs

and binding RNA motifs are less conserved [55], suggesting that it is harder to loose affinity

towards a catalyst, even given imperfect replication. Taking these data into account, when

highly active replicases with average affinities towards replicases are subject to mutations

Fig 5. Average values for lP during the second experiment with lP0 = 0.0 and lP0 = 0.7. The values of parameters used

during the experiment are presented in Table 1 and label of Fig 1.

https://doi.org/10.1371/journal.pone.0180827.g005
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during replication, they can easily become parasites; the affinity towards the catalyst does not

have to change even if the catalytic activity is completely destroyed. Therefore, we expect that

in the quasi-species population, in which there are replicases that have average affinity values

towards themselves, parasites with similar average affinities towards replicases will form.

When aP0
is average (0.4� aP0

� 0.6), coexistence is possible. Moreover, within the range of

average aP0
values, these values affect the size of the waves. At aP0

= 0.4 the waves are very small

and not well-structured as all of them are connected (left image in Fig 8). At aP0
= 0.5 the

waves are bigger and better structured (middle image in Fig 8). The biggest and best structured

waves can be observed when aP0
= 0.6 (right image in Fig 8). Changes in the average lP values

shows the quick accommodation to a given affinity value and the stabilization of average lP val-

ues approximately 0.05, 0.1 or 0.3 for aP0
values equal to 0.4, 0.5 and 0.6, respectively (Fig 9).

Results obtained from the experiment 2–4 regarding the behavior of the system and obser-

vation of lP values suggest that the evolution of lP has a stabilizing role in the investigated sys-

tem and that it is crucial for the coexistence of parasites and replicases.

3.2 Mutation of parasites and replicases

The previous section presented results from simplified experiments in which only parasites

were the subject of changes. Here, we will consider the case in which mutations during replica-

tion affect not only parasites but also replicases. This should help to further investigate how the

interplay between parasites and replicases affects the evolution of a system. To answer this

question, we performed a fifth experiment where we let four parameters change during repli-

cation, the affinity of parasites and replicases towards replicases (aP and aR, respectively) and

the probability of either parasites or replicases (lP and lR, respectively) being in a folded state.

Fig 6. Average values for lP during the second experiment with lP0 ranging from 0.1 to 0.6 (0.1 step). The values of parameters used

during the experiment are presented in Table 1 and label of Fig 1.

https://doi.org/10.1371/journal.pone.0180827.g006

Simulating the origins of life: The dual role of RNA replicases as an obstacle to evolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0180827 July 10, 2017 16 / 28

https://doi.org/10.1371/journal.pone.0180827.g006
https://doi.org/10.1371/journal.pone.0180827


During the experiment, we performed several tests where we varied the initial aP and aR values

to check how these changes affect the behavior of the system. The initial parameter values used

during the experiment are shown in Table 2 with the information regarding whether the sys-

tem survived or went extinct under these initial conditions. We analyzed the random and cir-

cular initial distribution of the agents. The initial values for lP and lR were always equal to 0.2.

The probability of mutation at each replication event was set to 0.01 for each of the four muta-

tion parameters. Similarly to the previous experiments, the parameters that are constant are

included in the caption of the Fig 1.

For the random distribution of agents, the system was not able to survive under most of the

tested conditions. For the nonrandom distribution, the system was able to maintain the stable

coexistence of parasites and replicases and survive. This is possible assuming that the initial

Fig 7. Average values for aP during the third experiment with aP0 ranging from 0 to 1. The values of parameters used during the

experiment are presented in Table 1 and label of Fig 1.

https://doi.org/10.1371/journal.pone.0180827.g007

Fig 8. Screen shots from the fourth experiment for various of aP initial values taken after

approximately 80k simulation steps. The values of parameters used during the experiment are presented

in Table 1 and label of Fig 1.

https://doi.org/10.1371/journal.pone.0180827.g008
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value of aP0
is significantly lower than the initial aR0

value and that aP0
and aR0

are high enough

to assure the survival of their species. In the case of the systems that did not go extinct, the

average aP values were rapidly growing at the beginning of the simulation to 0.7, followed by a

more smooth increase (Fig 10). The average lP values dropped slightly at the beginning of the

simulation and then slowly increased. This is the same trend that we observed during the first

experiment and the same trend that was observed by Takuechi and Hogeweg [33] in the analo-

gous experiment. The average aR values grow very rapidly during the simulation to the

Fig 9. Average values of lP during the fourth experiment when aP0
= 0.4 (blue), aP0

= 0.5 (orange) and aP0
= 0.6 (green).

The values of parameters used during the experiment are presented in Table 1 and label of Fig 1.

https://doi.org/10.1371/journal.pone.0180827.g009

Table 2. Initial values for the aP and aR parameters that were tested during the fifth experiment

together with the information regarding whether the system survived after the specific initial distribu-

tion of the agents.

Initial distribution of agents

aP0
aR0

circle random

0.3 0.5 extinct extinct

0.4 0.6 survive extinct

0.4 0.7 survive extinct

0.55 0.6 extinct extinct

0.55 0.7 survive survive

0.8 0.6 extinct extinct

0.8 0.7 extinct extinct

https://doi.org/10.1371/journal.pone.0180827.t002
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maximum possible level close to 1. In turn, the average lR value decreases very quickly and sta-

bilizes at a very low level that is below 0.05. We observed that replicases increase their affinities

towards replicases to the maximum possible value through evolution as well as decrease the

time that they spend in a folded state. This means that replicases tend to be better recognized

by other replicases and are favored as templates. This is due to a fact that replicases that spend

more time in a folded state are replicated less often than replicases that are mostly in a template

form.

4 Discussion

The parasite-replicase system model that is described in this paper explicitly considers para-

sites and replicases. It also explicitly treats the space similar to the previously analyzed CA

model [33]), but accounts for more realistic diffusion based on the Brownian motions of mole-

cules. The space in the model is two-dimensional, which is consistent with the assumption that

placing RNA chains on a mineral surface can improve chain formation [10, 56–58]. Our

model can be classified as a multilevel selection model of type 1 (MLS1), where the entities are

Fig 10. Plots showing the average aP, aR, lP and lR values during the simulations in the fifth experiment. The initial values for the

investigated parameters were aP0 = 0.55, aR0 = 0.7, lP0 = 0.2, lR0 = 0.2. The probability of mutation for each parameter was set to 0.01 and

the agents were initially distributed on a circle. The values of remaining parameters used during the experiment are presented in label of

Fig 1.

https://doi.org/10.1371/journal.pone.0180827.g010
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the individual molecules rather than their groups. In contrast, a multilevel selection model of

type 2 (MAS2) treats collectives as focal units [59], e.g., stochastic corrector model [28].

4.1 Stability of the replicase-parasite system

Our results show that even explicitly included parasites allow for a stable coexistence for both

the replicase and parasite species, assuming that the parasites are mild.

From the evolutionary strategy point of view, we observed kin selection as it is known that

in the case of strong altruists, they need assortative grouping to survive [60]. As replicases are

challenged by parasites, the individual replicase is a strong altruist because it pays the absolute

cost in fitness. The spatial consideration of the problem assures that replicases that are co-

localized are often relatives. This is caused by finite diffusion; molecules diffuse slowly so

newly created replicases with similar parameters are close to one another. Therefore, the lim-

ited dispersal of relatives allows for the maintenance of the strongly altruistic replicases. A

more detailed consideration of our parasite-replicase multi-agent model, in which molecules

are subject to mutation during replication, revealed that the affinity towards replicases is

responsible for the structure of waves (Experiment 4), whereas the probability of being in a

folded state seems to be the stabilizing factor in a system (Experiments 2–4). The interplay

between replicases and parasites allows the system to survive (it has macroscopic stability)

despite the microscopic (or local) instability caused by the parasites competing with the repli-

cases. This is caused by the system dynamics, which are characterized by mesoscopic entities;

in this case, the waves generated by the interactions between parasites and replicases. Similar

results regarding multi-level selection were obtained by Takeuchi and Hogeweg [33]. In the

cellular automaton model, these waves were called traveling waves [33]; however, due to the

continuous space and more realistic diffusion implemented in our MAS approach, these trav-

eling waves look more like an explosion of life.

Ma and Hu [61] performed a computer simulation that aimed to answer the question of

whether cooperation between functional molecules (ribozymes) was possible during the early

stages of evolution. They adapted a Monte-Carlo approach to design a grid Monte-Carlo

model with a resolution at the level of individual molecules. The results demonstrated that not

only is cooperation possible, but spread of different functional molecules can also occur, which

are beneficial to different aspects of self-replication. Moreover, these molecules could survive

despite the threat posed by parasites. What is more, the parasites became extinct during the

simulation even if they act as better templates. The reason for the parasite extinction was not

investigated in this paper. In our approach, we noticed completely different results, as the para-

sites were present in the simulated system even after a long run. Even if parasites were not

placed ad hoc, parasites form due to imperfect replication, and it is hard to imagine that a repli-

cator system could remove parasites.

4.2 Evolution of replication

Based on the experiment with evolving parasites and replicases, we see that even if the para-

site-replicase system is stable and allows for the coexistence of these two quasispecies, the pres-

ence of a strong trade-off taking into account RNA folding favors the evolution of replicases in

the form of a template rather than in a folded form. Replication is fastest on unfolded, short

and linear templates, whereas catalytic activity requires that the polymer is folded into rela-

tively compact and stable spatial structures, which often requires the existence of long chains.

Thus, a good template is unlikely to be a good catalyst at the same time. Therefore, this might

be an obstacle to further improvements and evolvability of efficient replicases. If RNA fulfilled

both roles of storage of information and the main catalyst, evolution could have stuck, which
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obviously did not occur. This could be the reason why RNA stopped fulfilling the globally role

of both the catalyst and template during the later stages of evolution. The division of function

into a DNA template and protein catalysts with RNA being important intermediate molecules

affected the vitality and behavior of the system, and allowed the evolution of better catalysts

that ensured further development. This was also confirmed by the work of Takeuchi et al. [62].

They showed that after the introduction of DNA, RNA does not have to make a trade-off

between being a catalyst and a template at the same time because it is unnecessary for RNA to

serve as a template. Moreover, according to the paper, the lack of catalytic activity in DNA by

itself can generate a sufficient selective advantage for RNA replicator systems to produce

DNA.

Scheuring [63] theoretically analyzed the possibility of avoiding the error threshold in early

replicator systems by analyzing non-enzymatic and enzymatic replication. For the case of

enzymatic replication, he suggested that longer ribozymes could be more precise replicases

and that they would consequently be fitter and might be maintained and spread in a quasispe-

cies population. However, he did not consider that if longer molecules fold into complex

shapes that give them better catalytic properties, their replication would be much more diffi-

cult. Therefore, longer molecules, even if they may be advantageous for the system, are not

easy to maintain in the replicating population. For this reason, adaptive traits cannot be pre-

served if the same molecule has to serve as both a catalyst and a carrier of genetic information.

Indeed, our results show that replicases tend to minimize the time they spend in a folded state

and tend to maximize their availability as templates.

In turn, Szabó et al. [37] took a more detailed look into the ability of replicating RNA sys-

tems to evolve and maintain better replicases. They considered the following three parameters

for replicating molecules: (1) replicase activity, (2) replicase fidelity and (3) template efficiency,

all of which were based on the primary structure of the simulated molecules. This approach

modeled the presence of different molecular domains responsible for different molecular

traits. Moreover, these three replicase traits were expected to conflict with one another. Inter-

estingly, it turned out that selection favored molecules bearing all three domains simulta-

neously during the simulation due to the reciprocal molecular altruism on a surface.

In the above model by Szabó et al., the modeling of separate domains that were responsible

for specific functions allowed for an adaptive evolution of better replicases. In our multi-agent

approach, the presence of a specific binding site for a replicase (template efficiency) is

expressed as the affinity of a molecule towards replicases a. Moreover, in our model, the effi-

ciency of a template is also affected by its availability for replicases in an unfolded state

(expressed by l). Both mentioned parameters could potentially mutate during our simulations.

In contrast, the replicase fidelity (expressed as a mutation probability) together with the repli-

case activity (expressed as a rate of replication) were maintained at a constant level during our

simulations. Instead of this and according to Takeuchi and Hogeweg, we assumed that replica-

tion is limited by the requirement to form complexes rather than limiting itself directly. The

complex formation depends on the values of a and l. In our case, none of the tracked proper-

ties were modeled as separate domains, instead they were attributed to the molecule as a

whole. In the Szabó et al. model there were no trade-off between properties. This difference

might be the reason why we observed only the selection of replicases towards better templates.

These is because, better folded molecules, even if they could be potentially better replicases,

cannot survive in this case because they will not be efficiently replicated.

Related work by Ma et al. [64] showed that primordial RNA replicases may have appeared

in a nucleotide pool, spread and evolved into more efficient RNA replicases provided that they

recognized their own sequences and their complements as catalytic targets. This assumption

has been discussed by the authors who remarked that they are not sure how this condition
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could be fulfilled. They claimed that a plausible mechanism could be through Watson-Crick

pairing similar to the recognition mechanism of group I ribozymes [65]. However, group II

ribozymes lack phylogenetic conservation in ribozyme and substrate sequences near group II

intron target sites. Instead, these ribozymes detect a structure at the junction between the sin-

gle and double-stranded residues on the bound substrate [66] that is more robust than

sequence recognition. In fact, many RNA motifs [67] do not have well-conserved primary

sequences, e.g., RNA zip codes [55]. In the Ma et al. [64] work, the parasites did not pose a

threat to the evolving system. When they adopted more plausible strategies by recognizing

only part of a catalytic domain (as a motif), replicase emergence was hindered by the presence

of parasites. Moreover, their results did not show that limited dispersal alone could ensure the

emergence of primordial replicases and their evolution as in Szabó et al. [37]. Finally, even if

the Ma et al. model was of micro-resolution and various factors had been taken into account,

the chain folding problem was not investigated. Again, the lack of a trade-off imposed by

incorporating the folding of RNA into the model was probably the reason why they did not

observe the evolution of replicases towards being better templates.

In the light of our results, especially interesting is the work by Könnyü et al. [68]. They

assumed that parasites can evolve into replicases. However, metabolically cooperating repli-

cases (that is the replicases that enhance metabolism-producing monomers for replicase

growth) which were also incorporated into their model, could not mutate based on the

assumption that they are strictly constrained from changing by their spatial structure and

monomer sequence due to the specific enzymatic function they have. In their model, non-

enzymatic and enzymatic replication could occur. They showed that the coexistence of benefi-

cial catalysts and parasites is possible and that selection favors RNAs that are good templates

but not good catalysts or RNAs that are good templates and at the same time are effective repli-

cases. These two possibilities came from the assumption that, similar to our approach, being a

good template and having good replicase activity was a trade-off relationship. In this case, they

directly influenced the strengths of the trade-off. Strong trade-offs selected the replication of

efficient templates without catalytic properties, whereas weak ones selected RNAs that are

both efficient templates and catalysts. In our research, this trade-off is always strong, which is

why we observed only the selection of better templates. Whether this trade-off can be assumed

to be strong or not in reality is an open question that probably requires more consideration.

Colizzi and Hogeweg [69] analyzed a system similar to ours, a minimal replicator system

consisting of parasites and replicases. Both molecule types could change their complex forma-

tion rates via directionless mutation. Their results showed that if parasites are strong, replica-

tors evolve high complex formation rates. In contrast, weak parasites do not lead to the

evolution of higher association rates, and a system without parasites evolves towards mini-

mized complex formation to a minimal viable value of 0.05. Our interpretation of results is dif-

ferent than Colizzi and Hogeweg’s as they considered only complex association rate of

replicases as a whole, whereas we considered two important properties affecting complex asso-

ciation rate: affinity towards replicases and folding of RNA. In our model, replicases that

spend more time in a folded state, have association rate smaller. Increase in the association

rate of replicases is achieved by increasing the affinity of replicases towards other replicases

and decreasing the time they spend in a folded form, therefore favoring them as templates. So

when we consider the problem from a viewpoint of folding of RNA chain that affects associa-

tion rate of replicases, it appear that dual role of replicases (catalysts and template) itself is

something that could be an obstacle to further evolution.

Comparison to the related works [37, 63, 68, 69] shows how the basic assumptions embed-

ded in a model can influence the results and their understanding. The number of degrees of

freedom on which evolution acts can in fact influence the selection pressure. Modeling RNA
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properties as separate functional domains and taking into account the RNA chain folding

problem are two fair assumptions. As future work, it would be interesting to incorporate both

of these properties into one model and observe the results. Moreover, the investigation of how

replication rate is affected by the selection would also be an interesting investigation. Our

MAS approach is perfect for these purposes, as manipulating agent properties is

straightforward.

4.3 The role of parasites

Because mutations are inevitable, especially during the early stages of the RNA World when

the mechanism that corrects mismatched nucleotides had not been evolved yet, parasites were

always present in the quasispecies. Moreover, as a loss of a catalytic activity is much easier than

the loss of an affinity towards replicases, the once formed parasites were subsequently copied

and further mutations could occur. In this way, parasites could freely roam through the

sequence space [70] and, occasionally, new functions could be developed. Some mutations

may have provided advantages to the system, and, if so, they could be further improved by evo-

lution. For example, the mutant could become a new replicator, maybe even better than the

previous one, or it could become a nucleotide synthase that produced building blocks for new

chains. Moreover, the mutant could even evolve completely different functions and become

for example an amphiphilic synthase, which produces protocell-membrane elements. The

presence of amphiphilic elements in a neighborhood could allow for the direct compartmen-

talization of the replicator-parasite system and, by that, provide a way for one of the earliest

major evolutionary transitions, the formation of protocells [71, 72]. Moreover, from the theo-

retical point of view, this could introduce completely different selection mechanisms (MLS2)

into play in the evolution of life [28]. If it happened that the result of mutation was a trans-ami-

noacylator, which is possible as only 5 nucleotides are crucial for performing this function

[73], then a route for the formation of a translation system could evolve. This makes our view-

point feasible, because of the presence of a strong trade-off imposed by the double role of RNA

replicases connected to their structure (folded versus unfolded state), the division of labor into

a template capable of storing the information and a catalyst would be necessary for further

evolution.

In this context, the article of Takeuchi and Hogeweg [74] shows that when the genotype-

phenotype mapping of individual replicators is considered, the replicase—parasite interaction

leads to the evolution of more lineages of parasites and replicases. Therefore parasites are not

the threat to the system. They rather stimulate speciation and the evolution of more complex

ecosystem.

5 Conclusions

During our experiments, we observed mesoscopic entities resembling traveling waves known

from the Takeuchi and Hogeweg CA model. However, in our case, because of the more contin-

uous treatment of the space, these mesoscopic entities looked more like explosions of life. We

confirmed the general findings from Takeuchi and Hogeweg [33] regarding multilevel selec-

tion governing the evolution of the replicase-parasite surface model. Interplay between para-

sites and replicases makes the system stable, which is caused by evolution acting on the

mesoscopic entity level and between them. However, even if stable coexistence is possible in a

spatially extended system, this still does not mean that evolution leads to more efficient repli-

cases. Instead, evolution tends to decrease the time replicases spend in a folded state, this way

increasing their availability as templates. As replication is performed by RNA replicases that

also store the necessary information for creating new instances of themselves, the existence of
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a trade-off that takes into account RNA folding could still pose a serious obstacle to the evolu-

tion. Thus, to evolve life as we know it, separation of the roles performed by replicases, infor-

mation storage and replication of the information, into two molecules appears to be one of the

crucial events that had to occur early in the stages leading to life.

Supporting information

S1 Video. Experiment 1, part 1. First part of the movie that was recorded during the simula-

tion of the first experiment. The video was split equally to four parts because of file size con-

straints. The full movie in higher quality is also available on the YouTube (https://www.

youtube.com/watch?v=mKpiUH0iDoQ). The values of parameters used during the experi-

ment are presented in Table 1 and label of Fig 1. Several frames from the movie are also pre-

sented in Fig 2.

(MP4)

S2 Video. Experiment 1, part 2. Second part of the movie that was recorded during the simu-

lation of the first experiment. The video was split equally to four parts because of file size con-

straints. The full movie in higher quality is also available on the YouTube (https://www.

youtube.com/watch?v=mKpiUH0iDoQ). The values of parameters used during the experi-

ment are presented in Table 1 and label of Fig 1. Several frames from the movie are also pre-

sented in Fig 2.

(MP4)

S3 Video. Experiment 1, part 3. Third part of the movie that was recorded during the simula-

tion of the first experiment. The video was split equally to four parts because of file size con-

straints. The full movie in higher quality is also available on the YouTube (https://www.

youtube.com/watch?v=mKpiUH0iDoQ). The values of parameters used during the experi-

ment are presented in Table 1 and label of Fig 1. Several frames from the movie are also pre-

sented in Fig 2.

(MP4)

S4 Video. Experiment 1, part 4. Fourth part of the movie that was recorded during the simu-

lation of the first experiment. The video was split equally to four parts because of file size con-

straints. The full movie in higher quality is also available on the YouTube (https://www.

youtube.com/watch?v=mKpiUH0iDoQ). The values of parameters used during the experi-

ment are presented in Table 1 and label of Fig 1. Several frames from the movie are also pre-

sented in Fig 2.

(MP4)
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72. Szathmáry E. Toward major evolutionary transitions theory 2.0: Table 1. Proceedings of the National

Academy of Sciences. 2015; 112(33):10104–10111. https://doi.org/10.1073/pnas.1421398112

73. Turk RM, Chumachenko NV, Yarus M. Multiple translational products from a five-nucleotide ribozyme.

Proceedings of the National Academy of Sciences. 2010; 107(10):4585–4589. https://doi.org/10.1073/

pnas.0912895107

74. Takeuchi N, Hogeweg P. Multilevel Selection in Models of Prebiotic Evolution II: A Direct Comparison of

Compartmentalization and Spatial Self-Organization. PLoS Computational Biology. 2009; 5(10). https://

doi.org/10.1371/journal.pcbi.1000542 PMID: 19834556

Simulating the origins of life: The dual role of RNA replicases as an obstacle to evolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0180827 July 10, 2017 28 / 28

https://doi.org/10.1371/journal.pcbi.1002024
http://www.ncbi.nlm.nih.gov/pubmed/21455287
https://doi.org/10.1556/Select.1.2000.1-3.13
https://doi.org/10.1016/j.biosystems.2006.06.005
http://www.ncbi.nlm.nih.gov/pubmed/17014951
https://doi.org/10.1006/jmbi.2000.4323
http://www.ncbi.nlm.nih.gov/pubmed/11243778
https://doi.org/10.1186/s12859-015-0718-6
http://www.ncbi.nlm.nih.gov/pubmed/26329823
https://doi.org/10.1186/1471-2148-8-267
https://doi.org/10.1186/1471-2148-8-267
http://www.ncbi.nlm.nih.gov/pubmed/18826645
https://doi.org/10.1371/journal.pcbi.1004902
https://doi.org/10.1371/journal.pcbi.1004902
http://www.ncbi.nlm.nih.gov/pubmed/27120344
https://doi.org/10.1515/fcds-2016-0007
https://doi.org/10.1111/j.1558-5646.1995.tb04464.x
https://doi.org/10.1073/pnas.1421398112
https://doi.org/10.1073/pnas.0912895107
https://doi.org/10.1073/pnas.0912895107
https://doi.org/10.1371/journal.pcbi.1000542
https://doi.org/10.1371/journal.pcbi.1000542
http://www.ncbi.nlm.nih.gov/pubmed/19834556
https://doi.org/10.1371/journal.pone.0180827

