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Abstract

Background: Whole malaria parasites are highly effective in inducing immunity against malaria. Due to the limited success
of subunit based vaccines in clinical studies, there has been a renewed interest in whole parasite-based malaria vaccines.
Apart from attenuated sporozoites, there have also been efforts to use live asexual stage parasites as vaccine immunogens.

Methodology and Results: We used radiation exposure to attenuate the highly virulent asexual blood stages of the murine
malaria parasite P. berghei to a non-replicable, avirulent form. We tested the ability of the attenuated blood stage parasites
to induce immunity to parasitemia and the symptoms of severe malaria disease. Depending on the mouse genetic
background, a single high dose immunization without adjuvant protected mice from parasitemia and severe disease (CD1
mice) or from experimental cerebral malaria (ECM) (C57BL/6 mice). A low dose immunization did not protect against
parasitemia or severe disease in either model after one or two immunizations. The protection from ECM was associated with
a parasite specific antibody response and also with a lower level of splenic parasite-specific IFN-c production, which is a
mediator of ECM pathology in C57BL/6 mice. Surprisingly, there was no difference in the sequestration of CD8+ T cells and
CD45+ CD11b+ macrophages in the brains of immunized, ECM-protected mice.

Conclusions: This report further demonstrates the effectiveness of a whole parasite blood-stage vaccine in inducing
immunity to malaria and explicitly demonstrates its effectiveness against ECM, the most pathogenic consequence of malaria
infection. This experimental model will be important to explore the formulation of whole parasite blood-stage vaccines
against malaria and to investigate the immune mechanisms that mediate protection against parasitemia and cerebral
malaria.
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Introduction

Studies of natural immunity to human malaria and evidence

from experimental models suggest that repeated exposure to

malaria parasites is the most effective method to induce immunity

against malaria [1]. Likewise, the most successful experimental

malaria vaccine is based on repeated immunizations with

radiation-attenuated malaria sporozoites delivered by multiple

bites from infected mosquitoes [2]. In Plasmodium falciparum

malaria, the immunity induced by irradiated sporozoites is

species-dependent yet it is cross-protective against different

parasite strains [3]. Attenuated parasite vaccines have long been

an interest for malaria [1], and so far the major efforts to develop

such whole organism vaccines have focused on generating

attenuated sporozoites by radiation [4,5], chemical [6], drug cure

[7], or targeted gene disruption methods [8,9,10]. In comparison,

less research has been done on live vaccines against the malaria

blood stages which are responsible for the clinical symptoms of the

disease [1,11]. However, attenuated blood-stage vaccines pro-

duced by radiation [12,13] gene disruption [14,15,16], and drug

cure methods [17,18], have demonstrated effectiveness for

protection against parasitemia and symptoms of severe malaria.

In the current study, we investigate the effectiveness of a

radiation-attenuated blood-stage parasites for protection against

parasitemia and severe disease in experimental models of malaria.

We used the highly virulent murine malaria parasite Plasmodium

berghei ANKA (Pb-A) which, depending on the mouse genetic

background, produces two distinct yet uniformly fatal pathologies.

In CD1 mice, a few virulent blood-stage Pb-A are sufficient to

initiate a patent infection that ultimately produces high parasite

parasitemia, severe anemia, and death. In contrast, C57BL/6

mice infected with Pb-A are susceptible to experimental cerebral

malaria (ECM) which is characterized by an early onset of

neurological defects, coma, and death associated with a relatively

low parasitemia [19,20]. We show that a single, non-adjuvanted

immunization with a high-dose of radiation-attenuated, blood-

stage Pb-A parasites protected CD1 mice from parasitemia and

severe disease, and it protected C57BL/6 mice from ECM.
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Protection from ECM was associated with an anti-parasite

antibody response and a reduced IFN-c response in the spleen

during a virulent infection.

Materials and Methods

Mice, parasites, and immunizations
Ethics statement. 6–8 week old female C57BL/6 and Swiss-

CD1 mice were used in accordance with the animal study

protocols (#2009-22, 2007-14) approved by the Food and Drug

Administration, Center for Biologics Evaluation and Research

Institutional Animal Care and Use Committee. Blood-stage

Plasmodium berghei ANKA (Pb-A) parasites (an uncloned parasite

line) from 270 C glycerolyte stocks were injected intraperitoneally

into donor mice with the same genetic background of the

experimental mice [19]. Parasitemia was monitored by Giemsa-

stained thin blood smears and total RBC were counted by

hemocytometer. For challenge infections, 104 parasitized RBC

(pRBC) were injected intravenously (iv) via the tail vein. Mice were

evaluated for ECM symptoms and the ability to survive beyond

day 10 post infection as previously described [20]. For

immunization, 103 or 107 irradiated pRBC were injected into

mice iv as described in the text.

Radiation-attenuation of parasite growth
To attenuate parasite growth, freshly harvested Pb-A pRBC

were diluted in phosphate buffered saline (PBS) to a concentration

of 56107 pRBC per milliliter (ml). One ml aliquots of parasites

were then immediately exposed to a Cesium-137 source for

various time periods at room temperature in a Gammacell 1000

irradiator. Radiation dose was calculated from the machine-

specific estimate of 1505 Rads per minute.

Spleen cell culture
Culture media and buffers were obtained from Invitrogen unless

specified otherwise. Freshly isolated mouse splenocytes were plated

in triplicate in 24-well tissue culture plates. For parasite antigen

stimulation, pRBC were lysed with 4 freeze/thaw cycles, and

16106 pRBC equivalents were added per well. Control wells were

stimulated with an equal number of lysed uninfected RBC, or with

medium alone. Cells were cultured for 72 hours, then superna-

tants were collected by centrifugation and stored at 270 C.

Interferon-gamma protein levels were assayed in culture superna-

tants using the Ready-Set-Go sandwich ELISA kit (Ebioscience)

according to the manufacturer’s instructions with a stated

detection sensitivity limit of 15 pg/ml.

Brain sequestered cells
Brain cell suspensions were prepared as described [21]. Briefly,

the brains of anesthetized mice were perfused intracardially with

Hank’s Buffered Saline Solution (HBSS), removed, and then

pushed through 70 micron filters. Cell suspensions were

centrifuged at 4006 g at 21 C, and the pellets were resuspended

in RPMI/FCS with 0.5 mg/ml collagenase D (Roche), 3 units/ml

DNAse (Roche), and 5 mM MgCl2. The samples were rotated for

60 minutes at room temperature, allowed to stand for 10–

15 minutes, and the supernatants were collected. Each sample

was brought to a final concentration 33% Percoll (Sigma-Aldrich)

and then under-layered with 70% Percoll/HBSS. The gradients

were centrifuged at 5156g for 30 minutes at 21 C, the cells were

collected from the 33/70% interface, and washed with HBSS.

Residual red blood cells were lysed with ACK lysis buffer, and the

samples were washed twice in RPMI/FCS before preparation for

multicolor flow cytometry.

Flow Cytometry
Brain cells (pooled from 4 mice within each group) were stained

with the Fixable Viability Dye eFluor 660 (eBioscience) according

to the manufacturer’s instructions. Cells were blocked with

TruStain fcX anti-mouse CD16/32 (Biolegend) and then stained

in HBSS, 1% BSA on ice for 30 minutes with the following anti-

mouse antibodies: AlexaFluor 488-CD8a (Biolegend), PE-NK1.1

(Biolegend), PerCP-CD11b (Biolegend), APC-eFluor 780-CD45

(eBioscience), eFluor 450-CD3, AlexaFluor488-CD44 (Biolegend),

PE-CD62L (Biolegend), PerCP-CD69 (Biolegend), APC-eFluor

780-CD8a (eBioscience), and then fixed with IC fixation buffer

(eBioscience). Samples were read on an LSRII cytometer (BD).

Fluorescence-minus-one (FMO) controls were used to set popu-

lation gates for each panel. Data analysis was performed in FlowJo

v7.5 software. 36,000–160,000 cells were analyzed for each pooled

brain sample.

Serum antibody ELISA
Mouse sera were pooled within treatment groups and then

stored at 220 C. Pb-A-specific antibodies were detected by

endpoint ELISA at O.D. 405 nm as previously described [22].

Positive signal cut-off was defined as two times the mean O.D.

value from normal sera. Antibody titer was determined as the

highest sample dilution which produced an O.D. value greater

than or equal to the cut-off.

Statistics
Graphs, survival analysis, and statistics were performed in

GraphPad Prism 5 (Graphpad Software, Inc). Two-sided p-values

and 95% confidence intervals are reported. Survival to day 10 in

ECM experiments was analyzed using Fisher’s exact test as

previously described [20]. For Two-Way ANOVA, the Bonferroni

correction for multiple comparisons on post tests was used.

Results

Determination of the radiation dose necessary to
attenuate blood-stage Pb-A

To determine the radiation dose necessary to attenuate Pb-A

growth and virulence, parasitized red blood cells (pRBC) were

exposed to increasing doses of radiation. Parasite attenuation was

evaluated by intravenously (iv) injecting 107 irradiated pRBC into

CD1 mice and then monitoring the mice for parasite growth and

disease symptoms (Figure 1). Parasites irradiated at doses up to

60 kilorads reproduced in the mice, and these mice developed

patent parasitemias within 7 days (Figure 1, Ctrl, 10–60 krad

groups). Higher radiation doses produced greater evidence of

parasite attenuation. All of the mice that received 80 kilorad

irradiated parasites (14/14) were free of patent infection through

day 7, and 70% (10/14) did not develop detectable parasitemias or

disease symptoms for the duration of the experiment (Figure 1,

open circles). However, by day 14, 30% (4/14) of the mice that

had been injected with 80 kilorad irradiated parasites developed

patent infections and severe disease symptoms. This suggested that

the 80 kilorad irradiation attenuated the growth and virulence of

the majority of the parasites, but that a few residual parasites

escaped attenuation and were eventually able to establish

fulminant infections.

In contrast, all of the mice (10/10) that received 100 kilorad

irradiated parasites (Figure 1, open squares, solid line) remained

free from patent parasitemia and disease symptoms for the

duration of the experiment. This demonstrated that the 100 ki-

lorad dose was sufficient to cause the complete attenuation of

Immunity Induced by Irradiated BS Pb-A
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blood-stage Pb-A parasites, and so the 100 kilorad dose was chosen

to attenuate parasite growth in subsequent experiments.

Attenuated Pb-A blood-stage parasites induce protection
against parasitemia and severe disease in CD1 mice

We determined whether iv immunization with 103 or 107

irradiated Pb-A blood-stage parasites (IrrPb) protected CD1 mice

against parasitemia and/or severe disease after a challenge

infection with virulent blood-stage Pb-A (Figure 2A). No residual

IrrPb were detected in the blood smears of immunized mice on the

day before the virulent challenge. After challenge, the group

immunized with 103 IrrPb displayed an uncontrolled blood

infection similar to naı̈ve mice, and none of these mice (0/5)

survived beyond day 12 without developing severe disease

symptoms. In contrast, the group immunized with 107 IrrPb

(n = 5, Figure 2A, open squares) showed evidence of controlling

the blood stage infection after challenge, and reached a peak mean

parasitemia of 7.3% on day 8 with only one of these mice

developing severe disease symptoms on this day. 80% (4/5) of the

107 IrrPb immunized mice did not develop severe malaria

symptoms and their mean parasitemias decreased to low or

undetectable levels by day 21 (Figure 2A). These mice remained

free from disease symptoms for 5 months of observation after

challenge. This is strong evidence that a single immunization with

107 IrrPb protects CD1 mice from virulent challenge, while a

similar immunization with 103 IrrPb is not protective.

To test whether more than one immunization of attenuated

parasites would improve protection, groups of CD1 mice were

immunized with 103 or 107 IrrPb and 24 days later they were

given a booster immunization with an equal number of IrrPb. The

mice were then challenged with virulent Pb-A pRBC and

parasitemia was monitored (Figure 2B). Similar to naı̈ve mice

(Figure 2B, filled circles), mice immunized twice with 103 IrrPb

(Figure 2B, open triangles) displayed continually increasing

parasite growth after challenge. Mice that had received two

immunizations with 107 IrrPb (n = 5, Figure 2B, open squares)

developed a peak mean parasitemia of 9.7% on day 8 after

challenge, and by day 21, all of these mice (5/5) had controlled

parasitemias down to low or undetectable levels. Similar to the

results from single immunization experiments (Figure 2A), these

results demonstrated that two immunizations with 107 IrrPb was

protective in a model of acute blood-stage disease, while two

immunizations with 103 IrrPb was not protective.

Attenuated Pb-A blood-stage parasites induce protection
against ECM in C57BL/6 mice

Since immunization with IrrPb protected CD1 mice from

parasitemia and acute blood-stage disease, we wanted to test

Figure 1. Determination of the radiation dose necessary to
attenuate blood-stage Pb-A parasites. Virulent Pb-A parasitized
RBC (pRBC) were exposed to increasing doses of gamma irradiation (10,
20, 40, 60, 80, 100 kilorads). 107 irradiated pRBC or non-irradiated
control pRBC (Ctrl) were injected intravenously (iv) into groups of naı̈ve
CD1 mice and parasitemia was monitored by blood smear. The graph
shows the percentage of mice without patent parasitemia in each
group over time beginning with day 2. Data are pooled from 3
experiments. Groups of mice infected with control pRBC or with pRBC
exposed to 10, 20, 40, or 60 krad irradiation all developed patent
parasitemia by day 7 (n = 4 mice each group). Accordingly, the curves
describing these groups approach 0% by day 7. 70% (10/14) of mice
infected with 80 krad irradiated pRBC remained free from patent blood-
stage disease by day 14 (open circles, dashed line). 100% (10/10) of the
mice injected with 100 krad irradiated pRBC remained free from blood
stage infection under the period of observation (open squares, solid
line). 100 krad irradiation was chosen as the attenuating dose in
subsequent experiments.
doi:10.1371/journal.pone.0024398.g001

Figure 2. Protection from parasitemia and severe disease in
CD1 mice after immunization with irradiated blood-stage Pb-A.
A) Protection in CD1 mice after a single immunization with 107

irradiation attenuated Pb-A blood-stage parasites (IrrPb). 103 or 107

IrrPb were injected iv into groups mice. On day 24 after injection,
immunized and naı̈ve mice were challenged with 104 virulent Pb-A
pRBC and parasitemia was monitored by blood smear (mean +/2 SD)
Daggers indicate mice that were euthanized or that died during the
experiment. All naı̈ve mice (4/4, filled circles) and 103 IrrPb immunized
mice (5/5, open triangles) displayed uncontrolled parasite growth and
succumbed to acute blood-stage infection by day 12 after challenge. In
contrast, mice immunized with 107 IrrPb (4/5, open squares) controlled
parasite growth after challenge and managed blood parasitemia down
to low or undetectable levels. B) Protection in CD1 mice after a two
immunizations with 107 IrrPb. Groups of mice were immunized with 103

or 107 IrrPb, and then given a boost immunization 24 days later with an
equal number of IrrPb (Boost). 24 days after the final immunization,
immunized and naı̈ve mice were challenged with 104 virulent Pb-A
pRBC. In mice immunized with 2 doses of 103 IrrPb (n = 5 mice, open
triangles), parasitemia levels continued to increase after challenge,
similar to naı̈ve mice (n = 5 mice, filled circles). In contrast, when mice
were immunized with 2 doses of 107 IrrPb (n = 5 mice, open squares),
blood parasitemia declined over time to low or undetectable levels.
doi:10.1371/journal.pone.0024398.g002
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whether a similar immunization regimen would protect

C57BL/6 mice from the symptoms of experimental cerebral

malaria (ECM). Groups of C57BL/6 mice immunized once

with 103 or 107 IrrPb were challenged with virulent Pb-A pRBC

and then monitored for the symptoms of ECM, survival beyond

day 10, and blood parasitemia (Figures 3A and 3B). After

challenge, 10% (1/10) of naı̈ve mice (filled circles) and 12% (2/

17) of mice immunized with 103 IrrPb (open triangles) survived

beyond day 10 (Figure 3A). The mean parasitemia levels were

below 10% for all groups before day 10 (Figure 3B). This is

consistent with the ECM model in C57BL/6 mice, and

suggested that immunization with 103 IrrPb did not offer any

significant protection from ECM or parasitemia. In contrast,

81% (17/21) of mice immunized with 107 IrrPb (open squares)

did not display any symptoms of ECM and survived beyond

day 10 (Figure 3A, p = .0003 survival to day 10, naı̈ve vs. 107

IrrPb immunized mice). This is very strong evidence that a

single immunization with 107 IrrPb induced a high level of

protection from ECM. Similar to other reports in this model

[23], the mice that were protected from ECM and survived

beyond day 10 still succumbed to hyperparasitemia by the end

of the experiment (Figure 3B).

To test whether two immunizations with IrrPb enhanced

protection from ECM, C57BL/6 mice immunized twice with 103

or 107 IrrPb with a 28 day interval were challenged with virulent

Pb-A pRBC (Figures 3C and 3D). After challenge, 20% (1/5) of

naı̈ve mice (filled circles) and none (0/10) of the mice immunized

twice with 103 IrrPb (open triangles) survived to day 10, indicating

that two immunizations did not improve the ability of 103 IrrPb to

induce protection against ECM in this model. In contrast, 100%

(10/10) of the mice immunized twice with 107 IrrPb (open squares)

survived to day 10 after challenge (p = .0037, survival to day 10,

naı̈ve vs. 107 IrrPb boost immunized mice), which was strong

evidence that two immunizations with 107 IrrPb protected from

ECM. Immunization with 107 IrrPb did not protect against

parasitemia in the C57BL/6 model since all mice that survived

ECM eventually succumbed to high parasite levels (Figure 3B and

D).

Protective immune responses associated with attenuated
Pb-A blood-stage parasites

We next investigated the antibody and cellular responses

induced by a single immunization with 103 or 107 IrrPb for

correlations with the protection from ECM. Pb-A-specific IgG

Figure 3. Protection from experimental cerebral malaria (ECM) in C57BL/6 mice after immunization with IrrPb. A and B) Protection
from ECM after a single immunization of 107 IrrPb. Data are pooled from two independent experiments. Groups of mice were immunized with 103 or
107 IrrPb and then challenged with 104 virulent Pb-A pRBC on day 19 or 28 after immunization. To assess ECM, challenged mice were monitored for
neurological symptoms, the ability to survive beyond day 10 (A), and blood parasitemia levels (B). A) 10% (1/10) of naı̈ve mice (filled circles) and 12%
(2/17) of mice immunized with 103 IrrPb (open triangles) survived beyond day 10 after challenge. In contrast, 81% (17/21) of mice immunized with
107 IrrPb (open squares) survived beyond day 10 (two-sided p = .0003, 107 IrrPb group vs. naı̈ve group, Fisher’s exact test). B) In each group, mice that
succumbed to ECM before day 10 had blood parasitemias less than 10%, while mice that survived beyond day 10 eventually developed
hyperparasitemia. C and D) Protection from ECM after two immunizations with 107 IrrPb. Mice were immunized with 103 or 107 IrrPb twice with a 28
day interval (Boost), challenged with 104 virulent pRBC, and then monitored for survival (C) and blood parasitemia (D). C) 20% (1/5) of naı̈ve mice
(filled circles) and none (0/10) of the mice immunized twice with 103 attenuated parasites (open triangles) survived beyond day 10 after challenge. In
contrast, all (10/10) of the mice immunized with 107 attenuated parasites (open squares) survived beyond day 10 (p = .0037, 107 IrrPb group vs. naı̈ve
group, Fisher’s exact test), and eventually developed hyperparasitemia (D).
doi:10.1371/journal.pone.0024398.g003
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antibodies were not detected in sera from 103 IrrPb immunized

mice with or without challenge, similar to naı̈ve mice (Figure 4A

and B). In contrast, Pb-A-specific IgG antibodies were detected in

sera from 107 IrrPb immunized mice before challenge (Figure 4A),

and antibody titers were detected at levels 1–2 log-fold higher in

the sera from these mice during a virulent challenge (Figure 4B).

Thus, the immunization with 107 IrrPb which was protective

against ECM generated a parasite-specific serum antibody

response, while the non-protective immunization with 103 IrrPb

did not produce a measureable antibody response.

Parasite-specific IFN-c responses were also measured in spleen

cell cultures from immunized mice before or during a virulent

infection (Figure 4C and 4D). Among uninfected mice, IFN-c was

not detected in samples from naı̈ve or 103 IrrPb immunized mice

(Figure 4C, n.d). However, samples from uninfected 107 IrrPb

immunized mice did produce IFN-c protein in response to Pb

antigen stimulation (Figure 4C, black bar, PbAg), indicating that

immunization with only the higher dose of IrrPb was able to

induce IFN-c production by spleen cells in the absence of a

virulent infection.

During a virulent Pb-A challenge infection, the spleen cells from

naı̈ve mice and 103 IrrPb immunized mice produced the highest

levels of IFN-c (Figure 4D). As described in Figure 3, these groups

had the highest prevalence of ECM, and this pattern of IFN-c

expression is consistent with published reports. In contrast, during

a virulent infection the spleen cells from the 107 IrrPb immunized

mice produced significantly less IFN-c in comparison with cells

from naı̈ve mice, whether they were stimulated in vitro with

parasite antigen (Figure 4D, black bars. p,.0001, naı̈ve vs. 107

IrrPb, mean difference 596 (411, 781) pg/ml) or unstimulated

(Figure 4D, white bars. p,.0001, naı̈ve vs. 107 IrrPb, mean

difference 534 (349, 719) pg/ml).

Since a single immunization with 107 IrrPb 1) protected mice

from ECM, 2) produced a parasite-specific antibody response, and

3) was associated with a decreased IFN-c response in the spleen

during infection, we decided to examine the response to this

immunization further. Consistent with other studies using

attenuated blood-stage Pb-A, the average spleen weights from

immunized challenged mice (Figure 5, 107 IrrPb Challenged) were

1.5–2-fold larger than the spleen weights from naı̈ve challenged

mice (p,.001, mean difference = 0.17 (0.09, 0.24) grams),

suggesting an increased splenic activity during infection. In the

absence of a virulent Pb-A challenge, the spleens from immunized

mice were not significantly heavier than the spleens from naı̈ve

mice (Figure 5, Unchallenged).

We next examined the immune cell subtypes in the brains of

mice after a single immunization with 107 IrrPb for correlations

with the protection from ECM (Figure 6). As reported previously,

Figure 4. Immune responses associated with IrrPb immunization in C57BL/6 mice. C57BL/6 mice were immunized once with 103 or 107

IrrPb, challenged with virulent pRBC, and tissues were harvested on day 6 when ECM appeared in naı̈ve mice. A and B) Serum IgG antibodies
(subclasses IgG1, IgG2a, IgG2b, and IgG3) to blood-stage Pb-A antigen were measured by endpoint ELISA. Values are averaged from two independent
experiments. Parasite-specific IgG antibodies were not detected (n.d.) in sera from naı̈ve mice or 103 IrrPb immunized mice before (A) or after
challenge (B) with virulent pRBC. Parasite-specific IgG antibodies were detected in sera from 107 IrrPb immunized mice before challenge (A), and the
antibody titers increased between 1 to 2 log-fold in the sera of these mice after challenge (B). C and D) Cellular responses: IFN-c responses in the
spleen during a virulent infection are reduced in immunized mice. Spleen cells from unchallenged (C) or challenged (D) mice were cultured with
blood-stage Pb-A antigen (Pb Ag), uninfected RBC (RBC), or media control (Unstim). IFN-c protein was measured in cell culture supernatants by
sandwich ELISA (mean +/2 SEM) C) Among unchallenged mice, IFN-c was not detected (n.d.) in samples from naı̈ve mice or 103 IrrPb immunized
mice. A low level of IFN-c was detected in samples from 107 IrrPb immunized mice after stimulation with parasite antigen (Pb Ag, black bar). D)
During a virulent infection, the highest levels of IFN-c were detected in samples from naı̈ve and 103 IrrPb immunized mice. 107 IrrPb immunized mice
had lower levels of antigen-stimulated IFN-c in comparison to antigen-stimulated samples from naı̈ve mice (black bars, mean difference 2596 (411,
781) pg/ml, p,.0001, Two Way ANOVA).
doi:10.1371/journal.pone.0024398.g004
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CD8 T cells and macrophages were prominent in the brain

vasculature of Pb-A infected naı̈ve mice on day 6 (Figure 6A, and

6B, Naı̈ve Challenged, solid black and hatched bars, 4.2+/22.1%

and 2.6+/20.7% of isolated cells, respectively). Microglia, NK

cells, and NKT cells were detected at low frequencies in these

experiments, and significant differences were not detected among

any of the sample groups (Figure 6B). The number of total cells

and specific cell types analyzed in each group are shown in

Figure 6C.

Surprisingly, CD8 T cells and macrophages were also detected

in the brains of mice immunized with 107 IrrPb on day 6 after

challenge, and their frequencies were not significantly different

from those observed in naı̈ve mice during infection (Figure 6B, 107

IrrPb Challenged, solid black and hatched bars, 3.3+/20.2% and

2.0+/20.6% of isolated cells, respectively). In agreement with

previous reports in the Pb-A model, the brain-sequestered CD8 T

cells from infected naı̈ve and immunized mice largely had a

CD44+ CD62L2 effector phenotype (Figure 6D, hatched bars),

and approximately 55% of these effector cells were also positive for

the early activation marker CD69+ (Figure 6E) consistent with

active, tissue invading cells. This indicated that immunization with

107 IrrPb protected mice from ECM after a virulent Pb-A

challenge without significantly reducing the infiltration of CD 8 T

cells into the brain vasculature.

Discussion

Some of the earliest malaria vaccine studies in experimental

models were based on the use of irradiation-attenuated whole

malaria parasites [24]. However, due to the perceived difficulties

related to their safety and large scale production, the whole

parasite approach was not considered to be a practical vaccine

strategy. In recent years, the limited success of sub-unit based

vaccines in clinical studies has reignited the interest in whole

parasite based malaria vaccines [11]. Notwithstanding their

potential value as candidate vaccines, studies with radiation-

attenuated parasites offer an excellent opportunity to explore host

pathogenesis and to examine the immune mechanisms induced by

protective vaccines against malaria.

In the current study, a single, non-adjuvanted immunization

with 107 irradiated blood-stage parasites protected CD1 mice from

parasitemia and severe disease, while up to two immunizations

with 103 irradiated parasites were not protective. This anti-parasite

immunity is consistent with previous studies of irradiated blood-

stage malaria parasites that showed protection from parasitemia

and severe malaria anemia in different model systems

[12,13,24,25,26]. The protection in the previous studies was

achieved without adjuvants, and it also required the intravenous

delivery of large numbers of blood-stage parasites.

To our knowledge, the current study is the first to also

demonstrate the effectiveness of irradiated blood-stage parasites

for protection against ECM, the most pathogenic consequence of

malaria infection. A single immunization with 107 irradiated

parasites protected against ECM, while two immunizations of 103

irradiated parasites did not protect. However, in contrast to

immunized CD1 mice, the immunized C57BL/6 mice that had

acquired anti-disease immunity against ECM did not acquire anti-

parasite immunity. Similar observations have been noted in other

experimental studies [23,27], suggesting that anti-disease immu-

nity and anti-parasite immunity act through distinct mechanisms.

This notion is further supported by the observations of distinct

immune mechanisms that confer immunity against severe malaria

and parasitemia in adults living in endemic areas [28,29].

The mechanism of protection in this study is not known, and

thus it is not clear what relative roles humoral and cellular

responses may have played for this protection. The protective

immunization against ECM in this study was associated with a

parasite-specific antibody response that increased following a boost

during a challenge infection. However, whether these antibodies

played any role against protection from ECM (C57Bl/6 mice) or

parasitemia (CD1 mice) is not clear. In previous studies, antibody

responses have been shown to be important to some whole

parasite vaccines [14,16], and it has been proposed that part of

their protective effects may come from an increased clearance of

opsonized parasites [30]. In the current study, the immunized

ECM-protected mice did not have significantly lower blood

parasitemia levels compared to non-protected mice, suggesting

that bulk parasite clearance is unlikely to fully explain protection.

However, the spleen sizes of protected mice increased 2-fold

during a virulent infection, and since this can be indicative of

increased parasite clearance and/or immune cell recruitment,

further experiments will be necessary to address this question in

detail. The ECM-protective immunization was also associated

with a reduced parasite-specific IFN-c response in the spleen

during a virulent infection. In mice that have a Th1 bias such as

C57BL/6, splenic IFN-c production during a blood-stage Pb-A

infection is thought to promote inflammatory responses that

contribute to ECM pathology [31]. In contrast, the non-protective

immunization in this study did not stimulate anti-parasite

antibodies and it only modestly reduced parasite-specific IFN-c
expression during an infection, indicating that it was less effective

at stimulating both antibody and cellular responses.

While elevated levels of splenic IFN-c during the fulminant

phase of Pb-A infection in mice are associated with susceptibility to

ECM, a very early IFN-c response in the spleen during infection

has been associated with resistance to ECM [32]. In a previous

study, it was proposed that CD 8+ T cells were a source of the

early splenic IFN-c responses during Pb-A infection, and the

authors provided evidence that NK cells, NKT cells, and cd T

cells did not significantly contribute to this IFN-c signal. In the

current study, the unchallenged, IrrPb immunized mice produced

detectable levels of splenic IFN-c when stimulated in vitro with Pb-

A antigen. While the source of this splenic IFN-c produced upon

immunization with IrrPb was not studied, we cannot discount the

possibility that antigenically primed CD 4+ T cells or some other

Figure 5. Spleen weights of mice immunized with IrrPb
increase during a virulent infection. C57BL/6 mice were immu-
nized once with 107 IrrPb, challenged with virulent parasites, and then
spleens were harvested on day 6 after challenge. Spleens from
immunized mice after challenge were an average 0.17 grams (0.09,
0.24) larger than the spleens from naı̈ve mice after challenge (two-sided
p,.001, Two Way ANOVA, Bonferroni post test). Results (n = 8 mice in
each group) are pooled from two independent experiments.
doi:10.1371/journal.pone.0024398.g005
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splenic cells were responsible for the IFN-c production through an

immunological feedback mechanism, since ECM-protected IrrPb

immunized mice had lower splenic IFN-c levels after Pb-A

challenge (Figure 5).

Recently, it has been proposed that immunization with

subpatent doses of viable blood-stage parasites that have been

genetically attenuated or curtailed by drug cure can provide

protection from a virulent challenge [16,18,33]. These are

intriguing findings, and may in part be linked to the degree to

which the attenuated parasites are able to replicate and persist to

stimulate the immune system without causing severe disease

symptoms. In the current study, even the largest inoculums of

irradiated parasites fell below the limit of blood-smear detection

within a few days, suggesting that these parasites were capable of

little or no replication. This level of attenuation was necessary

because it appeared that replication competent blood-stage Pb-A

Figure 6. Flow cytometry analysis of cell subtypes in brains of mice immunized with 107 IrrPb. Brain samples were processed on day 6
after virulent challenge and were pooled from all 4 mice in each group. Results are combined from two independent experiments. A) Representative
cell plots from naı̈ve mouse brain samples during a virulent infection. Gates for macrophages (CD45+, CD11b+), microglia (CD45int, CD11b+), and
CD8 T cells (CD45+, CD3+, CD8+) are indicated. B) Graph of brain sequestered cell frequencies. Naı̈ve mice had increased frequencies of brain-
sequestered CD8 T cells and macrophages during a virulent challenge (Naı̈ve Challenged, black and hatched bars). Immunized challenged mice
displayed frequencies of brain-sequestered CD8 T cells and macrophages that were similar to frequencies observed in naı̈ve mice during a challenge
(107 IrrPb Challenged, black and hatched bars). The mean difference in brain-sequestered CD8 T cells from 107 IrrPb challenged vs. naı̈ve challenged
mice was 2.9 (22.8, 1.0)%, p = .12, Two Way ANOVA. C) Graph of the number of cells analyzed for each group. The absolute numbers of total cells
and CD8 T cells analyzed were not significantly different between the 107 IrrPb immunized and naı̈ve groups, p..5, Two Way ANOVA. D) Brain-
sequestered CD8 T cells from both immunized and naı̈ve mice largely had a CD44+ CD62L2 effector phenotype (hatched bars), and E) approximately
55% of these effector cells were also CD69+ in both Naı̈ve mice and 107 IrrPb immunized mice after challenge.
doi:10.1371/journal.pone.0024398.g006
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also remained virulent to produce fulminant infections and severe

disease. In another study, genetically attenuated, blood-stage Pb-A

parasites that retained an ability to replicate carried a very high

risk of severe disease themselves, although mice that survived the

initial vaccination developed robust immunity against both

parasites and disease during subsequent challenge infections

[14]. In the current study, low numbers of the non-replicating

parasites failed to induce anti-parasite or anti-disease immunity.

Although immunization with a high dose of irradiated Pb-A

protected mice against ECM in this study, the protected mice still

accumulated CD8 T cells in their brain vasculature similar to

ECM-susceptible mice. Previous studies have shown that brain

sequestered CD8 T cells are necessary but not sufficient for ECM

in the Pb-A model [34,35,36,37]. Similar to this study, perforin-

deficient mice that were resistant to ECM still accumulated

activated effector CD8 T cells (CD44+, CD62L2, CD69+) in

their brains [35]. Further experimentation will be needed to

explore the mechanism of ECM resistance induced by irradiated

blood stage parasites.

In summary, inline with our results in the P. berghei model, it is

possible that a single inoculation with a high dose of replication-

deficient P. falciparum parasites might protect children in endemic

areas from parasite burden and/or cerebral malaria. In either

scenario, such a vaccine might lower the prospect of death from

severe malaria during their vulnerable early years and thus provide

them with the opportunity to develop clinical immunity after

continued parasite exposure.
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