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Multi-study reanalysis of 2,213 
acute myeloid leukemia patients 
reveals age- and sex-dependent 
gene expression signatures
Raeuf Roushangar1,2 & George I. Mias   1,2

In 2019 it is estimated that more than 21,000 new acute myeloid leukemia (AML) patients will be 
diagnosed in the United States, and nearly 11,000 are expected to die from the disease. AML is primarily 
diagnosed among the elderly (median 68 years old at diagnosis). Prognoses have significantly improved 
for younger patients, but as much as 70% of patients over 60 years old will die within a year of diagnosis. 
In this study, we conducted a reanalysis of 2,213 acute myeloid leukemia patients compared to 548 
healthy individuals, using curated publicly available microarray gene expression data. We carried out 
an analysis of normalized batch corrected data, using a linear model that included considerations for 
disease, age, sex, and tissue. We identified 974 differentially expressed probe sets and 4 significant 
pathways associated with AML. Additionally, we identified 375 age- and 70 sex-related probe set 
expression signatures relevant to AML. Finally, we trained a k nearest neighbors model to classify AML 
and healthy subjects with 90.9% accuracy. Our findings provide a new reanalysis of public datasets, 
that enabled the identification of new gene sets relevant to AML that can potentially be used in future 
experiments and possible stratified disease diagnostics.

Acute myeloid leukemia (AML) is a heterogeneous malignant disease of the hematopoietic system myeloid cell 
lineage1–5. AML is best characterized by terminal differentiation in normal blood cells and excessive production 
and release of cells at various stages of incomplete maturation (leukemia cells). As a result of this faster than 
normal, and uncontrolled growth of leukemia cells, healthy myeloid precursors involved in hematopoiesis are 
suppressed, and ultimately can soar to death within months from diagnosis if untreated1,6. AML accounts for 70% 
of myeloid leukemia and nearly 80% of acute leukemia cases, making it the most common form of both myeloid 
and acute leukemia1,7. The number of new AML cases is increasing each year – in 2019 alone, an estimated 21,450 
new AML patients will be diagnosed, and nearly 10,920 are expected to die from the disease8.

According to the 2016 World Health Organization (WHO) newly revised myeloid neoplasms and acute leu-
kemia classification system9, AML prognosis criteria for classification are highly dependent on the presence 
of chromosomal abnormalities, including chromosomal deletions, duplications, translocations, inversions, 
and gene fusions. AML is diagnosed predominantly through microscopic, cytogenetic, and molecular genetic 
analyses of patients’ blood, and/or bone marrow samples. Microscopic examination may be used to detect dis-
tinctive features (e.g. Auer rods) in cell morphology, cytogenetic analysis to identify chromosomal structural 
aberrations (e.g., t(8;21), inv(16), t(16;16), or t(9;11)), and molecular genetic analysis to identify gene fusion 
(e.g., RUNX1-RUNX1T1 and CBFB-MYH11), and mutations in genes frequently mutated in AML (e.g., NPM1, 
CEBPA, RUNX1, FLT3)1,3,5,10–12. Such cytogenetic and molecular genetic analyses are used to identify prognosis 
markers for classifying AML patients into three risk categories: favorable, intermediate, and unfavorable, cur-
rently based primarily on the European LeukemiaNet (ELN) 2017 classification3,10 (see Estey3 for a recent review, 
including ELN assessments). A large group of AML patients present normal karyotypes and lack chromosomal 
abnormalities3,5,10,11,13. These patients are classified as intermediate risk, and often have heterogeneous clinical 
outcome with standard therapy with risk of AML relapse3,5,14.
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Additionally, AML prognosis worsens with age, and older patients respond less to current treatments, with 
poorer clinical outcomes compared to younger patients15,16. AML can occur in people of all ages but is primarily 
diagnosed among the elderly (>60 years old), with a median age of 68 years at diagnosis8. Recent advances in 
AML biology have expanded our understanding of its complex genetic landscape, and led to significant improve-
ment in prognoses and therapeutic strategy for younger patients2,16. For elderly patients, prognoses remain grim 
and the main therapeutic strategy, remission induction therapy followed by an intensive consolidation phase 
(post-remission), had remained nearly unchanged over the past three decades1,2,4,5,10,16,17. More recently, however, 
new therapeutic agents have been approved for older AML patients4,5, and these include venetoclax (combined 
with decitabine or azacitidine)18, midostaurin (combined with standard chemotherapy)19, and gilteritinib20. It is 
expected that the new therapeutic agents will improve prognosis for older AML patients (where in the past up 
to 70% of AML patients aged 65 or older were reported to die within a year following diagnosis21). While it is 
apparent that the nature of AML changes with age, still little is known about the extent of these associations and 
how they vary with patient age2,22,23, and current indications from ELN and the National Comprehensive Cancer 
Network (NCCN) essentially consider age as a surrogate variable that is used only in conjunction with other treat-
ment‐related mortality factors3,5,10. Taking into consideration age in the identification of changes in AML global 
gene expression may lead to improved early diagnosis and improvement in treatment approaches for elderly 
patients. To further complicate matters, AML has multiple driver mutations and competing clones that evolve 
over time, making it a very dynamic disease13,24.

Multiple gene expression analyses of AML have been carried out, 25 of which have been systematically com-
pared by Miller and Stamatoyannopoulos25, who analyzed information on 4,918 genes, and identified 25 genes 
reported across multiple studies, with potential prognostic features. In this study, we performed a comprehensive 
gene expression analysis of 2,213 AML patients and 548 healthy subjects, by re-analyzing publicly available gene 
expression microarray data from 37 curated studies (a reanalysis following strict inclusion criteria) and identified 
disease-, age- and sex-related gene expression changes associated with AML. The differentially expressed gene 
sets were associated to signaling pathways relevant in AML, and also used to train and test a predictive model of 
AML or healthy status. We believe that our results may lead to improved AML early detection, and diagnostic 
testing with target genes, which collectively can potentially serve as age- and sex-dependent biomarkers for AML 
prognosis, as well as new treatment targets with mechanisms of action different from those used in conventional 
chemotherapy.

Results
Data curation and gene expression pre-processing.  We searched the Gene Expression Omnibus 
(GEO) public repository, based on our systematic workflow and inclusion criteria, Fig. 1a,b. Overall, 2,132 data-
sets were screened, and 643 selected (577 were excluded as non-Affymetrix, various platform arrays). From the 
66 remaining corresponding studies, 34 were excluded due to: lack of metadata, using non-peripheral blood or 
non-bone marrow tissues, or being cell line or cell-type specific, or analyzing treated subjects. After this curation 
we obtained 34 age-annotated gene expression datasets from 32 different studies covering 2,213 AML patients 
and 548 healthy individuals. These 34 datasets were reanalyzed, starting from raw microarray data, to perform a 
gene expression analysis of variance and functional pathway enrichment analysis (see online Methods). Table 1 
provides a description of each dataset with a sub-table summary of all curated data used in this study. After 
pre-processing each individual dataset separately, Fig. 1b, we performed the statistical analysis on 44,754 probe 
sets which were common across all samples (Affymetrix expression microarray data).

Classification of missing metadata annotation.  Following the data curation step, 805 arrays (802 AML 
and 3 healthy) of 2,761 curated data were found to be missing sex annotation, and 737 arrays (all AML patients) 
were missing sample source annotation (i.e. whether the tissue from which RNA had been extracted was either 
bone marrow [BM] or peripheral blood [PB]). To predict the missing sex and sample source annotations, we 
trained and validated a logistic regression (LR) classification model. The prediction of missing annotations for 
these arrays was essential in our study, to increase the sample size, and statistical power26. The trained models 
were cross-validated using our annotated preprocessed expression data, and were 96 ± 8% and 96.7 ± 4% accu-
rate for sex and sample source predictions respectively (see Supplementary Table S1 and Fig. S1 for additional 
LR model performance metrics). Model training, parameters used in training, and validation for this analysis are 
discussed in the Online Methods. The results from classification for missing annotation were used for the down-
stream analysis of gene expression variability, and are presented in Supplementary Files S1 and S2 for sample 
source and sex annotations respectively.

Batch correction.  The different datasets we curated for this study did not include within-study healthy 
controls, which would limit analysis of variance, and particularly the ability to separate biological from batch 
effects. To address this, we implemented an iterative batch effect correction approach, essentially employing a 
weight-based method for correcting batch effects – here we use the term “dataset-wise” batch effect correction 
for this approach. Assuming the batch effects due to each dataset are a function of the number of samples in the 
dataset (weight), normalizing sets of unevenly sized datasets may lead to an unbalanced batch correction. We 
used 5 additional datasets as a reference set, which we refer to as “covariate” hereafter. Each of the covariate refer-
ence datasets included within-study healthy controls. All 5 datasets together consisted of a total 613 arrays (455 
AML and 158 healthy) (Table 1), and were pre-processed exactly as our curated datasets. Each of the remaining 
datasets was batch corrected with respect to the combined covariate datasets reference using ComBat27. After this 
dataset-wise correction, the 5 covariate reference datasets were removed, and our expression data were clustered 
using principal component analysis (PCA), to visually examine the effect of covariate reference datasets on dis-
tributing the batch weight during batch correction (Supplementary Fig. S2).

https://doi.org/10.1038/s41598-019-48872-0


3Scientific Reports |         (2019) 9:12413  | https://doi.org/10.1038/s41598-019-48872-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

Analysis 1: Gene expression analysis and enrichment analysis of AML disease state compared 
to healthy individuals.  Gene expression analysis of AML disease state.  Following batch correction, we per-
formed an analysis of differential expression (DE) on the 34 curated datasets including 2,213 AML patients and 
548 healthy controls. Analysis of Variance (ANOVA)28–30 was performed according to a linear model (see Online 
Methods), including factors for age, sex, and sample source (to account for tissue differences between AML and 
healthy), as well as binary interactions thereof. To avoid assumptions on averaging over multiple probe sets cor-
responding to the same gene symbol, we analyzed probe sets with the linear model. We identified 974 statistically 
significant differentially expressed probe sets (DEPS) (corresponding to 964 unique gene symbols) for AML, 
based on post-hoc analyses (Tukey’s Honestly Significant Difference (HSD) tests implemented in R, with adjusted 
p-value < 0.01), in conjunction with a two-tailed 5% quantile selection31 based on the mean difference distri-
bution between AML-healthy group comparisons across probe sets (to identify largest biological effects). The 
heatmap (Fig. 2a) shows the hierarchical clustering of gene expression from the 974 DEPS, including 487 up- and 
487 down-regulated with respect to AML as compared to healthy. From this analysis, WT1 (Wilms tumor 1) with 
mean difference of 0.26 and adjusted p-value < 4.11 × 10−11 was the most DE up-regulated gene while CRISP3 
(cysteine-rich secretory protein 3) with mean difference of −0.52 and adjusted p-value < 4.11 × 10−11 was the 
least DE gene. Figure 2b shows the top 10 up- and down-regulated DEPS with corresponding gene symbols, that 
resulted from this analysis (also listed in Table 2, including mean difference and p-adjusted values from post-hoc 
analysis using Tukey’s HSD tests). The entire list of all 974 DEPS can be found as Supplementary Table S2.

Figure 1.  General approach, data curation, and analysis workflow summary. The flowchart shows in (a) the five 
main steps that summarize our method of approach for our study, and in (b) the curation and screening criteria 
for raw gene expression and annotation data files curation, data pre-processing, supervised machine learning 
for missing metadata prediction, and batch effects correction. (c) The analysis included a linear model analysis 
of variance (ANOVA) coupled with Tukey’s Honestly Significant Difference (HSD) post-hoc tests, and KEGG 
pathway and GO enrichment. Finally, we performed a machine learning classification of AML based on our 
findings.
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(ii) Pathway and gene ontology enrichment analysis of DEPS.  We carried out overrepresentation analysis in Kyoto 
Encyclopedia of Genes and Genomes (KEGG)32–34 signaling pathways, and Gene Ontology (GO) terms35,36 on all 
974 DEPS, using the Database for Annotation, Visualization and Integrated Discovery (DAVID)37,38. Four KEGG 
signaling pathways were identified as enriched (Benjamini and Hochberg39 adjusted p-value < 0.05), including 
Hematopoietic cell lineage, Cell cycle, p53 signaling pathway, and Transcriptional misregulation in cancer. The 4 

Author, Year GEO accession Disease Status*
Affymetrix platform id: Number of 
samples used & Sample source* Refs*

(A) Curated datasets used in linear model analysis (34 datasets from 32 studies)

Zatkova et al., 2009 GSE10258 AML GPL570: 8 BM 68

Tomasson et al., 2008 GSE10358 AML GPL570: 300 BM 69

Metzeler et al., 2008 GSE12417 AML GPL570: 73 BM & 5 PB
GPL96/97: 160 BM & 2PB

55

Wouters et al., 2009, Taskesen et al., 2011 GSE14468 AML GPL570: 482 BM & 43 PB 70,71

Figueroa et al., 2009 GSE14479 AML GPL570: 16 BM 72

Klein et al., 2009 GSE15434 AML GPL570: 231 BM & 20 PB 73

Lück et al., 2011 GSE29883 AML GPL570: 10 BM & 2 PB 74

Li et al., 2013,
Herold et al., 2014,
Janke et al., 2014,
Jiang et al., 2016

GSE37642 AML GPL570: 140 BM
GPL96/97: 422 BM

56–59

Bullinger et al., 2014 GSE39363 AML GPL570: 11 BM & 2 PB NYP

Opel et al., 2015 GSE46819 AML GPL570: 8 BM & 4 PB 75

TCGA et al., 2015 GSE68833 AML GPL570: 183 BM NYP

Cao et al., 2016 GSE69565 AML GPL570: 12 PB 76

Bohl et al., 2016 GSE84334 AML GPL570: 25 BM & 20 PB NYP

Li et al., 2011 GSE23025 AML GPL570: 21 BM & 13 PB 77

Warren et al., 2009 GSE11375 Healthy GPL570: 26 PB 78

Green et al., 2009 GSE14845 Healthy GPL570: 1 PB NYP

Wu et al., 2012 GSE15932 Healthy GPL570: 8 PB NYP

Karlovich et al., 2009 GSE16028 Healthy GPL570: 22 PB 79

Krug et al., 2011 GSE17114 Healthy GPL570: 14 PB NYP

Kong et al., 2012 GSE18123 Healthy GPL570: 17 PB 80

Sharma et al., 2009 GSE18781 Healthy GPL570: 25 PB 81

Rosell et al., 2011 GSE25414 Healthy GPL570: 12 PB 82

Schmidt et al., 2006 GSE2842 Healthy GPL570: 2 PB 83

Meng et al., 2015 GSE71226 Healthy GPL570: 3 PB NYP

Tasaki et al., 2017 GSE84844 Healthy GPL570: 30 PB 84

Leday et al., 2018 GSE98793 Healthy GPL570: 64 PB 85

Shamir et al., 2017 GSE99039 Healthy GPL570: 121 PB 86

Tasaki et al., 2018 GSE93272 Healthy GPL570: 35 PB 87

Clelland et al., 2013 GSE46449 Healthy GPL570: 24 PB 88

Lauwerys et al., 2013
Ducreux et al., 2016 GSE39088 Healthy GPL570: 46 PB 89,90

Xiao et al., 2011 GSE36809 Healthy GPL570: 35 PB 91

Zhou et al., 2010 GSE19743 Healthy GPL570: 63 PB 92

(B) Covariate datasets (used for batch correction and for testing predictive models)

Jiang et al., 2018# GSE107968* 2 AML; 1 Healthy GPL570: 3 BM NYP

Greiner et al., 2015# GSE68172* 20 AML; 5 Healthy GPL570: 25 PB 64

Majeti et al., 2009# GSE17054* 9 AML; 4 Healthy GPL570: 13 BM 65

Bacher et al., 2012# GSE33223* 20 AML; 10 Healthy GPL570: 30 PB 66

Mills et al., 2009# GSE15061* 404 AML; 138 Healthy GPL570: 542 BM 67

(C) Analysis datasets summary statistics

Disease state Sample source Affymetrix platform id Unique probe sets

AML Healthy BM PB GPL570 GPL96/97 GPL570 GPL96/97

2,213 548 2,090 671 2,177 584 54,675 44,760

Table 1.  Summary table gene expression datasets used in this study. Summary of datasets used in our analysis 
and disease classification. *GEO, Gene Expression Omnibus; AML, acute myeloid leukemia; Refs., references; 
NYP, not yet published; GPL570, Affymetrix Human Genome U133 Plus 2.0 Array; GPL96, Affymetrix Human 
Genome U133A Array; GPL97, Affymetrix Human Genome U133B Array; BM, Bone Marrow; PB, Peripheral 
Blood.
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KEGG signaling pathways are summarized in Table 3 (see also Supplementary Fig. S3a–d), including unadjusted 
p-values, and Benjamini-Hochberg39 adjusted p-values. These signaling pathways were associated with 56 DEPS, 
including 27 up- and 29 down-regulated DEPS (Fig. 2c) - the heatmap of their mean differences (AML-healthy 
values) is shown in Fig. 2d. From our gene enrichment analysis for overrepresentation in GO terms, 21 GO terms 
were statistically significant (Benjamini and Hochberg39 adjusted p-value < 0.05), with 727 DE unique identi-
ties (335 up- and 392 down-regulated). GO terms included protein and microtubule binding for the molecular 
function (MF) category, inflammatory and immune responses, mitotic nuclear division, and cell proliferation 
response for the biological process (BP) category, and finally, cytoplasm, extracellular exosome, cytosol, extracel-
lular space, integral component of plasma membrane immune response, and others, for the cellular component 
(CC) category (Fig. 2e). The complete list of the enrichment analysis results is shown in Supplementary Table S3.

Analysis 2. Gene expression analysis and enrichment analysis of sex- and age-related DEPS 
in AML.  To characterize sex- and age-specific gene expression changes in AML patients compared to 
healthy individuals we conducted the following additional analyses detailed further below: (i) Analysis 2a: 
“Sex-relevance differential gene expression analysis and associated signaling pathways in AML”, and (ii) Analysis 
2b: “Age-dependent differential gene expression analysis and associated signaling pathways in AML”. We used 
the same filtering criteria in both analyses as those used in Analysis 1 for identifying DEPS and signaling path-
ways between AML patients and healthy controls. In addition, DEPS were regarded as statistically significantly 
(up- or down-regulated) for each factor, sex and age, if they displayed p-value from Tukey’s HSD < 2.2 × 10−7 
(Bonferroni40 adjusted p-value of 0.01 divided by the number of probe sets tested, 44,754).

Analysis 2a. Sex-relevance differential gene expression analysis and associated signaling pathways in AML.  We 
identified 266 DEPS that show sex differences between AML patients (p-value < 2.2 × 10−7), as listed in 
Supplementary Table S4. 70 DEPS were found to overlap between Analysis 1 (AML disease state) and Analysis 2a 
(Sex-relevance in AML). Figure 3a shows these 70 DEPS with gene symbol annotations, and their mean difference 
values in the heatmap, which highlights differences in significance for common DEPS in both Analyses 1 and 
2a. Figure 3b shows the hierarchical clustering of the 70 DEPS (rows) on sex and disease state of all 2,213 AML 
and 548 healthy subjects (columns) indicated by color bars above the heatmap. The top 10 DEPS higher in either 
males or females from this analysis are shown in Fig. 3c.

For enrichment analysis, we searched for common intersections in KEGG pathways and GO terms between 
the sex analysis and the 974 DEPS from the disease state analysis. Sex-relevant DEPS were found in 3 different 
signaling pathways, including genes higher expressed in males: FLT3 and CD34 in Hematopoietic cell lineage, 
FLT3 in Transcriptional misregulation in cancer 1, and PMAIP1 in p53 signaling pathway 1. MS4A1 was higher 
in females and found in the Hematopoietic cell lineage pathway (Table 3). Figure 3d shows GO analysis results, 
where 15 overrepresented biological GO terms were overlapped, including terms for extracellular space, immune 
response, protein binding, spindle, and midbody.

Analysis 2b. Age-dependent differential gene expression analysis and associated signaling pathways in AML.  The 
subjects were binned in 8 age-groups: 0–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, and 80–100 years old. 
From this analysis, 1395 unique probe sets across all age-groups had statistically significant differential expression 
(p-value < 2.2 × 10−7, Supplementary Table S5). From these 375 unique DEPS (372 unique gene symbols) were 
found to overlap with the 974 DEPS probe sets from our AML disease state Analysis 1, accounting for an overall 
1400 binary comparisons between the multiple age groups deemed statistically significant, based on Tukey HSD 
tests between age-group pairs. All 1400 identified pairwise differences between age groups and associated probe 
set/gene information can be found as Supplementary Table S6. The top 10 up- and down- regulated DEPS (labeled 
with gene symbols) from this analysis are shown in Fig. 4a. Additionally, 75 DEPS with gene symbols identified 
to have appeared specifically in one age-group comparison are shown in Fig. 4b. Through comparison with the 
results for KEGG analysis for signaling pathways from Analysis 1, 17 DE genes identified in all 4 KEGG pathways 
according to age groups (Fig. 4c, Table 4).

To investigate further the progression with age, pairwise correlations between age-groups were computed. 
The 0–19 age-group was used as a common comparison reference with respect to other groups. Using this 0–19 
group as a baseline, the mean differences of 25 DEPS with respect to the 0–19 baseline across all other groups 
were calculated and visualized in Fig. 4d. The mean difference values between AML and healthy are shown in the 
right-most column of Fig. 4a,b,d for reference.

We also wanted to assess the interaction of age with disease state. We filtered the 375 unique DEPS which 
intersected between the age and disease statistically significant DEPS, to also have a statistically significant inter-
action based on the ANOVA results (p-value < 0.01). This resulted in 43 unique DEPS, statistically significant for 
age, and for disease, and for interaction between age and disease in the linear model (Supplementary Table S6).

AML classification machine learning model.  We used the 974 DEPS from Analysis 1 to train a k-nearest 
neighbor (KNN) algorithm in ClassificaIO41. All 34 datasets (16 AML and 18 healthy) were used for training, 
and testing was performed on the 5 covariate reference datasets, which included both AML and healthy subjects 
(Table 1). The trained KNN algorithm was 97.9 ± 3% accurate, and 92% accurate in testing results (see Online 
Methods for parameters, Supplementary Table S1 and Fig. S4).

We also identified a minimum DEPS set that can have good predictive power and sensitivity: We first sorted 
the 974 disease-related DEPS based on the absolute value of their effect size (mean difference between AML 
and healthy patients). We then iteratively trained and tested a KNN model on the top n DEPS post sorting 
(Supplementary Fig. S5), incrementing n by one in each iteration. Based on the results, we picked the top 10 
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Figure 2.  Functional classification of DEPS from AML analysis and associated KEGG and GO enrichment 
analysis. For all panels, normalized values are represented in blue for down-regulation and red for up-
regulation, while light red/gray represents no reported specific direction. (a) Heatmap of 974 DEPS (rows) 
on 2,761 arrays (columns) including 2213 AML patients and 548 healthy individuals from AML analysis, 
using unsupervised hierarchical clustering and Euclidean distance for clustering. The age of each individual is 
illustrated in the color bar on the top (dark green for old and light blue for young). The disease state (AML vs 
healthy), sex of each subject and age-groups are also represented in color bars on the top. (b) Horizontal bar plot 
of the top 10 DEPS (gene symbols on vertical axis) from AML analysis with mean difference values between 
AML and healthy (horizontal axis). Enrichment analysis identified 4 KEGG signaling pathways (c) for our AML 
DEPS, also visualized as a heatmap (d) of DEPS mean difference values between AML and healthy DEPS (rows) 
identified in these 4 KEGG signaling pathways (columns). The GO enrichment analysis results are summarized 
in (e).

https://doi.org/10.1038/s41598-019-48872-0


7Scientific Reports |         (2019) 9:12413  | https://doi.org/10.1038/s41598-019-48872-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

effect-sorted DEPS as a minimum set, as the graphs showed stabilization/saturation, with no substantial increase 
in performance after n = 10. The KNN model using these 10 effect-sorted DEPS had 96.1 ± 4% accuracy in train-
ing, and 90.9% accuracy in testing. (Supplementary Table S1, Fig. S5). The top 10 effect-sorted DEPS corre-
sponded to the 10 top downregulated DEPS listed in Table 2.

Discussion
In the present study, we reanalyzed data aggregated from our curation of 34 publicly available microarray gene 
expression datasets covering 2,213 AML patients and 548 healthy individuals to identify changes in AML gene 
expression associated with disease state (AML compared to healthy), sex-linked (male compared to female), and 
age-dependent (across age-groups compared to baseline). We performed 3 differential probe set (gene) expres-
sion and gene enrichment analyses, as discussed below.

Analysis 1.  Gene expression analysis and associated signaling pathways of AML disease state compared to 
healthy individuals, was carried out to identify DEPS in AML disease state. The results from this analysis were then 
used as a baseline indicator for AML disease state. 974 DEPS (487 up- and 487 down-regulated) were identified 
as statistically significant differentially expressed between AML patients and healthy individuals (p-value < 0.01) 
and showing high effect size (5% 2-tailed quantile selection). Among these, 6 genes are known to be involved in 
AML functional pathways, including 4 up-regulated, JUP, CCNA1, FLT3, PIK3R1, and 2 down-regulated, CD14, 
CEBPE. The top 10 up- and down-regulated genes from this analysis are listed in Table 2. As shown in Fig. 2b 
of the top 10 up- and down-regulated DEPS and corresponding gene annotations, WT1 (Wilms tumor 1) was 
found to be the most expressed and CRISP3 (cysteine-rich secretory protein 3) was the most under-expressed 
gene. WT1 is a transcriptional regulatory protein essential for cellular development and cell survival, and it has 
been shown to be highly expressed with an oncogenic role in AML42,43, in agreement with our findings. However, 
CRISP3’s direct role in AML is still under investigation. CRISP3 is a member of the cysteine-rich secretory pro-
tein CRISP family with major role in female and male reproductive tract, and is mainly expressed in salivary 
glands and bone marrow44. Recently, 80 genes were reported as “extracellular matrix specific genes” in leukemia, 
and CRISP3 was among the downregulated DE genes reported45. CRISP3 associations with AML merit further 
investigation.

The enrichment analysis for GO terms of the 974 DE probe sets (Fig. 2c) resulted in 727 identifiers (335 
up- and 392 down-regulated) enriched for 21 GO terms. 592 of these (257 up- and 335 down-regulated) were 
enriched in the cellular component (CC) categories mainly associated with cytoplasm, extracellular exosome, 
cytosol, and extracellular space. These terms are rather generic, but may still reflect relevance to AML develop-
ment and progression46,47. GO terms in the Biological process (BP) category included inflammatory and immune 

Up-regulated*

DEG name
DEPS Gene 
Symbol

Tukey’s HSD 
Mean difference

p-adjusted value 
(HSD test in R)

Wilms tumor 1 WT1 0.255353 <4.11E-11

MAM domain containing 2 MAMDC2 0.248983 5.47E-09

X inactive specific transcript (non-protein coding) XIST 0.230331 <4.11E-11

homeobox A3 HOXA3 0.195790 1.1E-06

fms-related tyrosine kinase 3 FLT3 0.193420 <4.11E-11

cyclin A1 CCNA1 0.185050 1.35E-07

mex-3 RNA binding family member B MEX3B 0.181068 <4.11E-11

collagen, type IV, alpha 5 COL4A5 0.177721 1.7E-05

neurexin 2 NRXN2 0.166598 <4.11E-11

ATPase, Na+/K+ transporting, beta 1 polypeptide ATP1B1 0.165197 5.47E-09

Down-regulated

cysteine-rich secretory protein 3 CRISP3 −0.51965625 <4.11E-11

olfactomedin 4 OLFM4 −0.489845396 <4.11E-11

orosomucoid 1 ORM1 −0.465232864 <4.11E-11

cytochrome P450, family 4, subfamily F, polypeptide 3 CYP4F3 −0.453467442 <4.11E-11

chitinase 3-like 1 (cartilage glycoprotein-39) CHI3L1 −0.421520435 <4.11E-11

annexin A3 ANXA3 −0.390688999 <4.11E-11

oxidized low density lipoprotein (lectin-like) receptor 1 OLR1 −0.35525472 <4.11E-11

carcinoembryonic antigen-related cell adhesion molecule 8 CEACAM8 −0.351181264 <4.11E-11

orosomucoid 1 ORM1 −0.336303304 <4.11E-11

tumor-associated calcium signal transducer 2 TACSTD2 −0.323939961 <4.11E-11

Table 2.  Top 10 up- and down-regulated of DEPS in AML from disease state. From the Post-hoc Tukey’s 
test, gene expression means difference value < 5% or >95% between AML and healthy (AML - healthy) were 
selected for biological effect from the statistically significant differentially expressed genes for disease state 
- based on the analysis of variance of all 2,761 cases (2,213 AML patients and 548 healthy controls). *Significant 
DEPS (gene symbols) are listed in descending order of the mean difference value comparisons for disease state.
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responses, and cell proliferation, which are expected as AML is characterized by terminal differentiation of nor-
mal blood cells, and excessive proliferation and release of abnormally differentiated myeloid cells, which affects 
many biological processes associated with the immune system. The four statistically significant KEGG pathways 
identified in the pathway enrichment analysis encompassed 56 DEPS (Table 3). Transcriptional misregulation in 
cancer was the most up-regulated pathway in AML (13 up-regulated DE genes), while Hematopoietic cell lineage, 
and Cell cycle pathways were mostly down-regulated, and the p53 signaling pathway was balanced in terms of up/
downregulated DE genes (Fig. 2c). For the enriched pathways, Fig. 2d shows the mean difference values of the 56 
DE pathway-associated genes, including 27 up- and 29 down- regulated genes. These KEGG pathways are known 
to be involved in tumorigenesis. Additionally, the majority of the DE genes from the AML analysis associated with 
the identified signaling pathways are known to be abnormally expressed in AML. These findings are consistent 
with results from other studies, and our current understanding of AML pathogenesis.

The DEPS overlap with the 25 genes reported by Miller and Stamatoyannopoulos that were reported in at least 
8 studies25, namely HOXA10, CD34, MEIS1, VCAN, RBPMS and MN1. In terms of the genes reported in the 
same study for poor progression we also consistently identified as upregulated HOXA10, RBPMS, CD34, GNAI1, 
CLIP2, DAPK1, GUCY1A3, ANGPT1 and FLT3, and as downregulated UGCG. While these are known markers, 
with consistent expression differences, our additional results need to be investigated further and experimentally 
validated, including mechanistic considerations.

Analysis 2a.  Sex-dependent gene expression analysis and associated signaling pathways in AML compared to 
healthy individuals, was performed to explore the relevance of patients’ sex on gene expression and to iden-
tify sex-linked genes and associated signaling pathways in AML. A total of 266 DEPS were found statistically 
significant in this analysis, with 70 found to overlap with the DEPS from Analysis 1 (Fig. 3a,b). The top 10 
up- and down-regulated DE genes with respect to females include (Fig. 3c): (i) DDX3Y (DEAD-Box Helicase 
3 Y-Linked), EIF1AY (Eukaryotic Translation Initiation Factor 1 A Y-Linked), KDM5D (Lysine Demethylase 
5D), RPS4Y1 (Ribosomal Protein S4 Y-Linked 1) with higher expression in males compared to females, and (ii) 
XIST (X Inactive Specific Transcript), TSIX (TSIX Transcript, XIST Antisense RNA), and PRKX (Protein Kinase 
X-Linked) with higher expression in females. These genes are known to be sex-specific and show expression dif-
ferences and sex separation within the AML and the healthy groups respectively (Fig. 3d). The role of these genes 
as positive controls in studies with AML needs to be investigated further. We also reported sex and AML known 
genes that were statistically significant in our analysis, including FLT3 and MAL.

Analysis 2b.  Age-dependent gene expression analysis and associated signaling pathways in AML compared to 
healthy individuals, was carried out to identify common set of age-dependent gene expression and associated 
signaling pathways and to explore age-dependent trends in AML. The age-dependent analysis using ANOVA, 
identified 1,395 DEPS (p-value < 2.2 × 10−7). To identify age-related DEPS in AML we overlapped the 1,395 
DEPS to our findings of 974 DEPS in AML disease state (Analysis 1) (Fig. 4), and identified an overlap of 375 
DEPS (p-value < 2.2 × 10−7). The top 10 up and down DE age-associate genes in AML according to the mean 
difference values in seven age-groups are shown in Fig. 4a (including their corresponding values from AML 
disease state in column “AML - healthy” for comparisons). Interestingly, CRISP3 was among the down regulated 
genes in this analysis as well, specifically associated with differences in younger age groups, 20 to 49 years of age 
as compared to the 0 to 19 age group. Other genes showing age-specific differences included HOXA3, HOXA5 
and HOXA10-HOXA9, which belong to the homeobox genes (HOX) family of transcription factors, essential for 

AML Vs Healthy DEPS and associated signaling pathways

Pathway
No. of 
genes* Down-regulated Up-regulated p-value

p-value Benjamini 
adjusted

Hematopoietic cell lineage 11, 6 IL1R2, CD59, GYPA, MS4A1, EPOR, 
CD24, CD14, EPOR, IL1R1, MME, CR1

ITGA4, FLT3, CD34, IL3RA, 
ITGA5, CD44 2.3E-5 5.8E-3

Cell cycle 12, 6
CDC7, CDC6, CCNB1, CDC20, CCNA2, 
CCNE2, TTK, CDC14B’, CDK1, BUB1, 
CCNB2, BUB1B

RB1, CCNA1, CDK6, ATM, 
TFDP2, CDKN2A 1.4E-4 1.2E-2

p53 signaling pathway 6, 7 THBS1, CCNB1, CCNE2, CDK1, RRM2, 
CCNB2

SIAH1, CDK6, ATM, SERPINE1, 
CDKN2A, PMAIP1, ZMAT3 1.0E-4 1.3E-2

Transcriptional misregulation 
in cancer 7, 13 IL1R2, GZMB, CD14, ELANE, MMP9, 

CEBPE, PBX1
WT1, RUNX2, ETV5, MEIS1, JUP, 
EWSR1, ATM, HOXA10, MLF1, 
FLT3, CCNT2, MEF2C, SLC45A3

6.5E-4 4.1E-2

AML sex relevant (male - female) DEPS & associated signaling pathways

Pathway No. of 
genes* High in Females High in Males

Hematopoietic cell lineage 1, 2 — FLT3, CD34

p53 signaling pathway −, 1 — PMAIP1

Transcriptional misregulation 
in cancer −, 1 MS4A1 FLT3

Table 3.  KEGG pathway analysis of DEPS from meta-analysis of 34 gene expression datasets. Enrichment 
analysis was done using 974 DEPS, including KEGG enrichment analysis identified 4 statistically significant 
pathways from AML Vs Healthy analysis, shown with overlaps with sex-specific analysis. *Up and down 
regulated genes displayed.
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embryonic development and hematopoiesis, and associated with chromosomal abnormalities translocation and 
over-expression in AML48,49. Also identified with age-specific DE, was ORM1, which in Analysis 1 was among the 
top-10 under-expressed genes, and was also among the 70 DE genes in analysis 2a. ORM1’s direct role in AML 
also merits further investigation, given ORM1 involvement in immunosuppression and inflammation50. Finally, 
we have identified 75 DEPS that show association with only one age-group, exclusively from all other age-groups, 
suggestive of potential age-specific differential gene expression signature.

Figure 3.  Sex-related gene expression analysis in AML. (a) The heatmap of mean difference values comparison 
between the 70 DE overlapping genes between Analysis 1 and Analysis 2a. (b) Heatmap the 70 DEPS expression 
(rows) on 2,761 arrays (columns) including 2213 AML patients and 548 healthy individuals from Analysis 2a of 
sex-relevance in AML (using unsupervised hierarchical clustering and Euclidean distance for clustering). The 
disease state (AML vs healthy) and sex of each subject are indicated in color bars at the top. (c) Horizontal bar 
plot of the top 10 DEPS (gene symbols on vertical axis), with the mean difference values between male-female 
(horizontal axis). (d) Enrichment analysis for statistically significant overrepresented biological GO terms on 
the 70 DE genes.
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We further wanted to assess the interaction of age with disease state. From the 375 unique DEPS which inter-
sected between the age and disease analysis, 43 unique DEPS showed statistically significant interaction between 
age and disease in the linear model (p < 0.01, Supplementary Table S6). Among the 43 DEPS are 13 immune disease 
related genes37,38 such as SOCS5 and SOCS6 (suppressors of cytokine signaling, whose role in cancer is still under 
investigation51), EBF1 (early B-cell Factor 1), CD160, TCL1A (T-cell leukemia/lymphoma 1A), VPREB3 (pre-B 
lymphocyte 3), KLF10 (Kruppel-like factor 10), NTM (neurotrimin), PLXNA4 (plexin A4), SLC25A21, SYT4 (syn-
aptotagmin 4) and TCERG1 (transcription elongation regulator 1). While these genes/gene families have been asso-
ciated with cancer13,52, their potential role in AML is still under and merits further investigation. These 43 DEPS with 
statistically significant age-disease interactions may be important in AML development, particularly for detecting 
early markers of AML, potentially identifying preleukemic conditions, and using these markers as treatment targets.

Figure 4.  Age-related gene expression analysis in AML. (a) The top 10 up- and down- regulated DEPS 
overlapping AML and age-related analyses. (b) 75 DEPS specific to a single age-group comparison. (c) Overlaps 
over KEGG pathways of 17 DE genes identified in 4 KEGG pathways according to age groups. (d) The mean 
difference of 25 DEPS with respect to the 0–19 baseline across all other groups are plotted to illustrate changes 
with aging. The mean difference values between AML and healthy cohorts are shown in the right-most column 
of panes (a,b and d) for reference comparisons.
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Disease status classification.  Using the differential expression analysis results combined with various 
machine learning models, we were able to identify gene expression signatures for AML that we used for train-
ing a predictive KNN model of health status (AML/healthy) with 96.1 ± 4% training accuracy. The model uses 
a minimal set of 10 DEPS (determined through iteration using an increasing number of DEPS ranked by their 
absolute effect difference (mean differences between AML and healthy – see Online Methods and Results). The 
feature set coincides with the top 10 down-regulated DEPS for Analysis 1 (disease), Table 2. The trained KNN 
model was tested on the 5 covariate datasets, with high performance: 90% accuracy, 92.97% specificity, 84.81% 
sensitivity, 80.7% precision, and a receiver operating characteristic (ROC) area under the curver (AUC) of 88.89 
(Supplementary Fig. S5). The set of genes can have a diagnostic impact, but will need to be validated experimen-
tally, and additionally in same-tissue cohorts.

Our study identified multiple potentially significant DEPS, with age and sex related differences associated 
with AML. While our findings may generate further hypothesis-driven investigations, we need to also iden-
tify the study’s limitations: The primary limitation is that the analysis of AML and healthy subjects involved 
bone-marrow and blood samples respectively in each disease group. We tried to account for this utilizing tissue as 
an effect in our linear model, and including multiple interactions. Other limitations include an unbalanced AML/
healthy ratio, as well as the lack of in-study healthy controls. To address these we attempted to account for batch 
effects using a dataset-wise iterative batch correction transformation, as discussed in the methods. Finally, we also 
included binary interactions between the factors in the analysis to account for interaction-related confounding 
effects. Additionally, the study is limited by the available data, particularly for prognostic utility. The low numbers 
of PB data, as well as the lack of healthy BM data do not allow for an equal-footing comparison of differences 
in AML between PB and BM cell gene expression signatures. Furthermore, the prognostic utility of the study 
is limited by the lack of uniformly reported or sparse clinical data, including progression/relapse-free survival, 
(in-)effective therapeutic intervention, such as bone marrow transplantation or pharmaceutical treatment, or 

AML age-dependent (AML - healthy) DEPS & associated signaling pathways

Pathway
No. of 
genes*

Down-regulated
Age-group

Up-regulated
Age-group

Hematopoietic cell lineage 4, 1

CD14
(30 to 39)–(0 to 19)

FLT3
(20 to 29)–(0 to 19), (30 to 39)–(0 to 19),
(40 to 49)–(0 to 19), (50 to 59)–(0 to 19),
(60 to 69)–(0 to 19), (70 to 79)–(0 to 19),
(80 to 100)–(0 to 19)

MME
(30 to 39)–(0 to 19), (40 to 49)–(0 to 19),
(50 to 59)–(0 to 19)

CD24
(30 to 39)–(0 to 19), (40 to 49)–(0 to 19),
(50 to 59)–(0 to 19)

MS4A1
(40 to 49)–(0 to 19), (50 to 59)–(0 to 19),
(60 to 69)–(0 to 19), (70 to 79)–(0 to 19),
(80 to 100)–(0 to 19)

Cell cycle 3, 2

CCNA2
(50 to 59)–(0 to 19) CCNA1

(30 to 39)–(0 to 19), (40 to 49)–(0 to 19),
(50 to 59)–(0 to 19), (60 to 69)–(0 to 19)CDK6

(60 to 69)–(30 to 39)

CDC14B
(30 to 39)–(0 to 19), (40 to 49)–(0 to 19),
(50 to 59)–(0 to 19), (60 to 69)–(0 to 19),
(70 to 79)–(0 to 19)

CDKN2A
(40 to 49)–(0 to 19)

p53 signaling pathway 1, 1 CDK6
(60 to 69)–(30 to 39)

CDKN2A
(40 to 49)–(0 to 19)

Transcriptional misregulation in cancer 5, 4

CD14
(30 to 39)–(0 to 19) MEIS1

(50 to 59)–(0 to 19), (50 to 59)–(20 to 29), 
(60 to 69)–(0 to 19), (60 to 69)–(20 to 29),
(70 to 79)–(0 to 19)

MMP9
(20 to 29)–(0 to 19), (30 to 39)–(0 to 19),
(40 to 49)–(0 to 19), (50 to 59)–(0 to 19),
(60 to 69)–(0 to 19), (70 to 79)–(0 to 19)

EWSR1
(60 to 69)–(50 to 59),
(70 to 79)–(50 to 59)

WT1
(20 to 29)–(0 to 19), (30 to 39)–(0 to 19),
(40 to 49)–(0 to 19), (50 to 59)–(0 to 19),
(60 to 69)–(0 to 19), (70 to 79)–(0 to 19)

CEBPE
(20 to 29)–(0 to 19), (30 to 39)–(0 to 19),
(40 to 49)–(0 to 19), (50 to 59)–(0 to 19),
(50 to 59)–(20 to 29), (60 to 69)–(0 to19),
(70 to 79)–(0 to 19), (70 to 79)–(20 to29),
(80 to 100)–(0 to 19)

FLT3
(20 to 29)–(0 to 19), (30 to 39)–(0 to 19),
(40 to 49)–(0 to 19), (50 to 59)–(0 to 19),
(60 to 69)–(0 to 19), (70 to 79)–(0 to 19),
(80 to 100)–(0 to 19)

CCNT2
(60 to 69)–(30 to 39),
(70 to 79)–(30 to 39),
(60 to 69)–(50 to 59)

HOXA10
(40 to 49)–(0 to 19), (50 to 59)–(0 to 19), 
(50 to 59)–(20 to 29), (60 to 69)–(0 to 19), 
(60 to 69)–(20 to 29), (70 to 79)–(0 to 19)

Table 4.  KEGG pathway analysis of DEPS from analysis of 34 gene expression datasets overlap with age-specific 
findings. Enrichment analysis was done using 974 DEPS overlapped with age-specific analysis. *Up and down 
regulated genes displayed.
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mutational status. More uniform reporting of published metadata would greatly improve the utility of publicly 
available datasets. Additionally, more data would be necessary to fully evaluate mutational status and AML clas-
sifications. We anticipate that the use of sequencing data now being generated (e.g. RNA-sequencing data) as well 
as single cell level gene expression, will allow better concurrent determination of mutational status, global gene 
expression, and cell-type specific evaluation of patient samples.

In summary, our study successfully integrated multiple datasets to perform an analysis of gene expression in 
AML, across multiple factors that included disease, sex and age considerations, and identified interesting genes, 
both known and not previously reported as differentially expressed in each factor. We identified 974 DEPS and 4 
associated significant pathways involved in AML, and 70 sex- and 375 age-related DE signatures. Using the 10 of 
the 974 DEPS, a KNN model allowed AML classification with 90.9% accuracy. We hope that these findings may 
provide additional relevant targets for further experimental mechanistic studies, and to help identify new markers 
and therapeutic targets for AML.

Methods
The generalized workflow consisted of five main steps: i) Curation of microarray gene expression data, ii) 
Preprocessing of raw data files followed by batch effect correction, iii) Predictions of missing annotations using 
supervised machine learning, iv) Differential gene expression analysis, and v) Pathway analysis, that included 
gene annotation, and finally gene expression-based prediction of AML (Fig. 1a).

Gene expression data curation and screening criteria.  The datasets used in this study were selected 
from the GEO public repository, maintained by the National Center for Biotechnology Information (NCBI)53 
(https://www.ncbi.nlm.nih.gov/geo/). To facilitate speed of search and keep up-to-date with possible new and 
relevant datasets, as soon as they were released, a Python script was used that utilized functions from the Entrez 
Utilities from Biopython54. We used the script to navigate the GEO records, and downloaded microarray gene 
expression datasets up to October 2018. We additionally utilized Python packages, including Pandas, NumPy, 
and Matplotlib for data structure, numerical computing for data processing, and data visualization respectively. 
We used strict inclusion criteria to maintain consistency in each dataset selection, screening for availability of 
both raw and data annotation files provided, human samples used from untreated subjects, and that the sample 
source was from either BM or PB. Array platform was restricted to Affymetrix, which was found to have the most 
available data, and to avoid cross-platform normalization issues. Inclusion criteria and the data curation workflow 
are illustrated in Fig. 1a,b.

Gene expression datasets used in our analysis.  The curation method is summarized in the 
Supplementary File S3 flowchart and in the Results section. For our analysis we included 34 age-dependent 
datasets from 32 different studies, 16 included AML and 18 healthy subjects respectively. From the 34 data-
sets, 32 were produced from Affymetrix GeneChip Human Genome U133 Plus 2.0 (GPL570) and 2 conducted 
on Affymetrix GeneChip Human Genome U133 Array Set (GPL96 & GPL97) arrays. Table 1 provides detailed 
information about each dataset, including the number of samples used from each dataset, sample tissue source, 
as well as the total number of AML patients and healthy subjects. Two studies, GSE1241755 and GSE3764256–59, 
were originally conducted on two different Affymetrix array types (GPL570, and GPL96 & GPL97), so each was 
separated into two subgroups and each subgroup was considered as individual dataset in our analysis, dataset 
GSE12417: (i) subgroup 1 included 73 BM and 5 PB samples, and (ii) subgroup 2 included 160 BM and 2 PB. 
For dataset GSE37642: (i) subgroup 1 included 140 BM and (ii) subgroup 2 included 422 BM samples (Table 1).

Dataset annotation and pre-processing.  Figure 1b outlines the workflow of our preliminary data anal-
ysis including pre-processing. For each dataset used in our analysis, raw microarray CEL files were downloaded 
from GEO, metadata was reviewed, and the data was manually curated to guarantee that each array corresponded 
to either an AML patient or healthy individual, was verified as correctly annotated for sample source (BM or 
PB), platform technology used, age, sex, and disease state (AML or healthy). For each individual dataset, raw 
CEL files were grouped and pre-processed together using the RMA (Robust Multi-Array Average) algorithm60–62. 
Datasets with mixed sample source, i.e. both BM and PB, were pre-processed together irrespective of sample 
source. Pre-processing consisted of: correction for background noise using RMA background correction on per-
fect match (PM) raw intensities; quantile normalization to obtain the same empirical distribution of intensities 
for each array; median polish summarization of probes into probe sets to estimate gene-level expression value: 
and logarithm base-2 transformations of gene expression values to facilitate data interpretation (normal distribu-
tions) and comparisons between arrays. Additionally, the expression data were reduced to 44,754 probe sets that 
overlapped across all datasets. Finally, within each dataset we standardized across all probe sets, by subtracting 
the mean and dividing by the standard deviation to obtain a Z-score.

Prediction of missing sex and sample source annotations from curated datasets.  From the 
curated datasets, 805 arrays (802 AML patients and 3 healthy subjects) and 737 arrays (all AML patients) were 
missing sex or sample source annotations respectively. Without these metadata, we would have to discard the 
data, which in turn would limit the statistical power for the study, and our ability to correct for biases stemming 
from individual datasets26. To address this, we used supervised machine learning classifiers to predict both sex 
and sample annotations. For all predictions, we used ClassificaIO41, a machine learning for classification graphical 
user interface, which we recently developed, that utilizes the scikit-learn machine learning package in Python63.

To predict sex in pre-processed datasets, 1956 arrays (including both healthy and AML), that included 44,754 
probe sets and their annotated sex information, were used to train a logistic regression (LR) classification model, 
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and to predict 805 sex annotations. Additionally, 2,024 arrays were used to train for sample source, with predic-
tion performed on 737 arrays.

The supervised machine learning LR classifier we used had the following parameters (descriptions based on 
scikit-learn documentation63):

•	 random_state = None: specifies whether a seed should be used for the pseudorandom generator in selecting 
training and testing subsets.

•	 shuffle = True: determines that data will be shuffled before splitting for training and testing.
•	 penalty = l2: determines that an L2 norm should be used for penalization.
•	 multi_class = ovr: specifies that a binary problem is fit for each label.
•	 solver = liblinear: specifies that liblinear is the algorithm used in the optimization.
•	 max_iter = 100: maximum number of iterations for the solvers to converge.
•	 tol = 0.0001: tolerance for stopping criteria.
•	 fit_intercept = True: a constant (bias/intercept) is added to the decision function.
•	 intercept_scaling = 1.0: a “synthetic” feature with constant value equal to intercept_scaling is appended to the 

instance vector.
•	 Verbose = 0: turns off verbosity in evaluation.
•	 n_jobs = 1: number of CPU cores used.
•	 C = 1.0: inverse of regularization strength.
•	 dual = False: dual or primal formulation.
•	 warm_start = False: do not reuse the solution of the previous call to fit as initialization.
•	 class_weight = None: all classes assumed to have weight one.

Confusion matrix details, model accuracy and error for training and testing are presented in Supplementary 
Table S1, Fig. S1 and results in Supplementary Files S1 and S2. To account for training overfitting, we used 10-fold 
cross-validation on all 1,956 gene expression data arrays for training and validation, implemented automatically 
in scikit-learn.

Dataset-wise correction approach for batch effects correction.  Batch correction was done using 
a dataset-wise correction. Here we refer to the term “dataset-wise correction” to indicate performing batch cor-
rection iteratively on one dataset at a time, against a reference set of datasets chosen to account for variability. 
To account for the lack of within-study healthy controls in the curated gene expression datasets, we used 5 addi-
tional datasets that included within-study controls, with GEO accessions: GSE107968, GSE6817264, GSE1705465, 
GSE3322366, and GSE1506167 (Table 1). We refer to the latter datasets as “covariate” reference datasets, as they 
were used as the reference datasets in the batch correction. Our approach aimed to balance/distribute the weight 
of batch effects exerted by each dataset, as this is dependent on the number of observations within a given data-
set. Combined, the covariate reference datasets included 613 total arrays (455 AML and 158 healthy controls). 
We used ComBat27 to correct for study batch effects, as its empirical Bayes-based algorithm uses both scale and 
mean center based methods, providing an appropriate algorithm27. Covariate reference datasets were treated as 
the covariate for batch during batch correction, to improve performance in correcting for batch effects rather 
than biological variation. After batch correction, we used principal component analysis (PCA), visualizing com-
ponents in both 2 and 3 dimensions, to compare the clustering results for corrections (Supplementary Fig. S2). 
Covariate reference datasets were removed after the batch correction step and were not part of our downstream 
linear model analysis (as they lacked age annotations). The covariate datasets were used for testing of the AML 
prediction models discussed below.

Gene expression linear model analysis.  After the batch correction step, we performed differential gene 
expression analysis on the merged datasets (34 datasets, 16 AML and 18 healthy), using the expression values for 
all 44,754 common probe sets. The effects of patients’ age, sex, and sample source, including their pairwise inter-
actions were investigated using an analysis of variance (ANOVA)28,30. For each probe set i, where i = [1, 2, … 44, 
754], the expression Yi was modeled with a linear model:

ε∼ + + + + + + + + + +Y a s d t a s a d a t s d s t d t: : : : : : ,i

where d is the disease state (AML or healthy), a is age (between 0 to 100 years), s is sex (female or male), t is 
sample source (BM or PB), and ε is a random error term, and colons represent interactions between factors. 
We note that the model includes sample source and its interactions to address comparisons involving different 
tissues in AML and healthy subjects (BM or PB respectively). The selection of using a linear model was based 
on having multiple factors to capture in the analysis, and also having a large number of samples (by integrating 
multiple datasets) – in that the Central Limit theorem allows for the assumptions for F-test to hold for ANOVA. 
We also evaluated fit residuals’ distribution for normality by plotting Quantile-Quantile (QQ) plots and density 
distributions.

Based on the ANOVA we first identified statistically significant differences for the disease state factor 
(p-value < 0.01). To identify statistically significant level differences (between AML and healthy) we then carried 
out post-hoc analyses for each statistically significant probe set using Tukey’s HSD tests implemented in R, (select-
ing probe sets with Tukey HSD p-value < 0.01). Finally, to focus on biological effects, we filtered the results to 
have mean difference values (i.e. differences between the means of AML and healthy groups) in the <5% and/or  
>95% quantiles of the overall mean difference distribution across probe sets. The final set of the results are 
referred to as differentially expressed probesets (DEPS) with respect to the disease.
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Pathway enrichment analysis and functional annotation.  We carried out enrichment analy-
sis (overrepresentation) for DEPS using the database DAVID37,38 for KEGG signaling pathways32–34 and GO 
functional annotation terms35,36. Pathways and terms identified were deemed statistically significant based on 
Benjamini-Hochberg adjusted p-value < 0.05.

Using a k nearest neighbor model to predict AML.  To predict AML health status, normalized inten-
sities from DEPS (with respect to disease) were used as features for training a k-nearest neighbor (KNN) model 
(implemented in ClassificaIO41). All 34 datasets (16 AML and 18 healthy) were used as training data. Testing of 
the model was done independently of training on all 5 covariate datasets. The KNN model used the following 
parameters (please refer to scikit-learn documentation for further details63):

•	 random_state = None: specifies whether a seed should be used for the pseudorandom generator in selecting 
training and testing subsets.

•	 shuffle = True: determines whether or not data will be shuffled before splitting for training and testing.
•	 metric = minkowski and p = 2: define which metric to use. The minkowski metric is using the Minkowski dis-

tance of order p between two n-dimensional vectors X x x x{ , , },n1 2= …  and = …Y y y y{ , , }n1 2 , which is 
defined as d X Y x y( , ) ( )i i i

p p
1

= ∑ − .
•	 weights = uniform, defines that uniform weights will be used so that all points in each neighborhood are 

weighted equally.
•	 metric_params = None: additional metric parameters (none used in this case).
•	 algorithm = auto: automatically determines the algorithm to use for computing nearest neighbors, can inter-

nally use a BallTree or KDTree or brute force algorithm.
•	 n_neighbors = 30: number of nearest neighbors to be used.
•	 leaf_size = 30: leaf size passed to BallTree or KDTree algorithms.
•	 n_jobs = 1: number of parallel jobs to run for neighbors search.

Details of training and testing are given in Supplementary Table S1 and Fig. S4.
To identify a minimum set of DEPS with good predictive power and sensitivity, we first ranked the 974 

disease-related DEPS based on the absolute value of their effect size (mean difference between AML and healthy 
patients). We then iteratively trained and tested a KNN model on the top n DEPS (Supplementary Fig. S5), incre-
menting n by one in each iteration. Based on the results, we picked the top 10 effect-ranked DEPS as a mini-
mum set, as the graphs showed stabilization/saturation, with no substantial increase in performance after n = 10. 
We then trained a KNN model using these 10 effect-sorted DEPS, using the same parameters as listed above 
(Supplementary Table S1, Fig. S5).

Data Availability
The datasets generated in the study, supplementary data, tables, figures and files are available online at https://doi.
org/10.5281/zenodo.3257786.

Datasets re-analyzed in the study are publicly available on the Gene Expression Omnibus repository, at https://
www.ncbi.nlm.nih.gov/geo/ under the accessions summarized in Table 1.
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