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Abstract

The Multi-Transmitting Formula (MTF) proposed by Liao et al. is a local artificial boundary

condition widely used in numerical simulations of wave propagation in an infinite medium,

while the drift instability is usually caused in its numerical implementation. In view of a physi-

cal interpretation of the Gustafsson, Kreiss and Sundström criterion on numerical solutions

of initial-boundary value problems in the hyperbolic partial differential equations, the mecha-

nism of the drift instability of MTF was discussed, and a simple measure for eliminating the

drift instability was proposed by introducing a modified operator into the MTF. Based on the

theory of spherical wave propagation and damping effect of medium, the physical implica-

tion on modified operator was interpreted. And the effect of the modified operator on the

reflection coefficient of MTF was discussed. Finally, the validity of the proposed stable

implementation measure was verified by numerical tests of wave source problem and scat-

tering problem.

Introduction

For the numerical simulations of near-field wave motions and the response of geological struc-

tures, the control equations of different media should be determined to obtain the reliable

wave propagation characteristics [1–5]. Moreover, we need to truncate models of media in a

finite-computational domain by introducing artificial boundaries. Inappropriately set artificial

boundary conditions might incur spurious reflections, which not only affect the computational

precision at inner grid nodes and boundary nodes and the resolution of wave-field simulation,

but also interfere with the response of geological structure [6–8]. Numerous studies have been

conducted on artificial boundary conditions since the late 1960s [6, 9–19]. Specifically, the

Multi-Transmitting Formula (MTF), which is a local artificial boundary condition proposed

by Liao, et al. [20, 21], has been favored because of its simple physical concept, wide adaptabil-

ity, as well as easy implementation of decoupled high-precision numerical simulations of wave

motions and for the wave scattering problem, its unique advantages are more obvious [20, 22–

26].

Similar to other local artificial boundary conditions, the MTF is subjected to numerical

instability problems in implementation of MTF into the numerical simulation by time-step
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integration, such as the high-frequency oscillation instability and drift instability. In regards to

the high-frequency instability, its mechanism has been clarified, and measures that attempt to

eliminate this instability have been proposed [27–30]. For drift instability, the mechanism of

high-order drift instability has been explored by using numerical experiments, and a measure

has been suggested to suppress it [31]. By reducing the order of MTF to order 1, the drift insta-

bility can be suppressed to a certain extent. However, the precision of MTF-1 is not enough to

meet the needs of engineering application. Especially, a small computational domain which

brings a relatively large incident angle between artificial boundary and input will amplify the

drift instability. Therefore, it is worthwhile to further elaborate on the mechanism of drifting

instability and to propose corresponding elimination measures. The numerical stability of

local artificial boundary conditions is mathematically equivalent to that of the initial-boundary

value problems of the hyperbolic partial differential equations. Moreover, for the latter the nec-

essary and sufficient condition for one-dimensional numerical stability, known as the Gustafs-

son, Kreiss and Sundström (GKS) criterion [32], has been identified. To increase the

applicability of this criterion to multi-dimensional case and simplify this complex mathemati-

cal theorem, the existing study interprets physical implication of this criterion, i.e., the internal

traveling waves which satisfy both artificial boundary conditions and internal motion equa-

tions are not allowed [32–34].

In this study, based on above interpretation and combined with decoupled numerical simu-

lations [21, 35], the mechanism of drift instability was clarified, and a simple measure for elim-

inating drift instability in the numerical simulation of wave motions was proposed, which is to

introduce a modified operator gB0
0

into the MTF. Moreover, the physical implication of gB0
0

was explained by the spherical wave propagation principle and the medium damping effect;

then, the effect of the gB0
0

on numerical simulation accuracy was analyzed. Finally, the validity

of the proposed stability measure was verified by numerical experiments of wave source prob-

lem and scattering problem.

Mechanism of and eliminating measure for MTF drift instability

The x-axis is set to be the outer normal of the artificial boundary, and the origin, o, coincides

with a boundary node, as shown in Fig 1. The displacement of a one-way wave motion propa-

gating forward along the x-axis, denoted as u(t,x), is a function of time t and coordinate x.

Based on the simulation of wave motion, the MTF can be expressed as [24]:

upþ1

0 ¼
XN

j¼1

ð� 1Þ
jþ1CN

j u
pþ1� j
j ð1Þ

where N is the MTF order, up
j ¼ uðpDt; � jcaDtÞ, p and j are arbitrary integers, Δt is the time

step, ca is the artificial wave velocity, and CN
j ¼ N!=½ðN � jÞ!j!�.

The backward moving operator Bn
m is defined as [24]:

Bn
mu

p
j ¼ up� n

jþm ð2Þ

The operator satisfies the following operation rules:

Bn
mB

r
s ¼ Bnþr

mþs ð3Þ

Using the backward moving operator, the MTF can be expressed as:

ðB0

0
� B1

1
Þ
Nupþ1

0 ¼ 0 ð4Þ

where B0
0

is the unit operator.
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In the discrete model, the harmonic form of the interior node solution that satisfies the

numerical integral stability condition of the nodal motion equation in the computational

domain of x< 0 can be expressed as [33]:

up
j ¼ ðexpðioDtÞÞ

p
ðexpðikDxÞÞ� j ð5Þ

where ω and k are the circular frequency of the steady-state one-way wave and the apparent

wavenumber along the x-axis, respectively, and they are real numbers with the same signs.

The numerical stability of local artificial boundary conditions is mathematically equivalent

to that of the initial-boundary value problems of the hyperbolic partial differential equations.

The necessary and sufficient condition for one-dimensional numerical stability of the latter is

known as the GKS criterion. According to the GKS criterion, in order to achieve the stability

of MTF against any wave motions and prevent internal traveling waves from entering the

computational domain, the MTF boundary conditions (Eq (4) should be not satisfied for the

internal traveling wave solution (Eq (5)) [33, 34]. Substituting Eq (5) into Eq (4) and combin-

ing it with moving operator Bn
m, the stability requirement of MTF for numerical integration

can be expressed as:

½1 � expð� iðoDt þ kDxÞÞ�N 6¼ 0 ð6Þ

Because Δt and Δx are positive real numbers, ω and k are real numbers with the same signs,

the condition (Eq (6)) holds for all non-zero wavenumbers and non-zero frequencies, with the

exception of zero frequency and zero wavenumber. In the case of zero frequency and zero

wavenumber, the components of the numerical solution enter the computational domain

through the boundary, which caused the violation of GKS criterion and leads to the drift insta-

bility. Based on this explanation, we proposed to introduce a small positive parameter into the

boundary conditions in the numerical implementation of MTF, and Eq (4) should be rewritten

as:

½ð1þ gÞB0

0
� B1

1
�
Nupþ1

0 ¼ 0 ð7Þ

where γ is a small positive value close to 0. It is easy to understand that this measure of numeri-

cal implementation in the MTF guarantees that the GKS criterion is met in the case with a

zero frequency and zero wavenumbers. At the same time, the small value of γ incurs only a

slight effect on the computational precision of the numerical simulations over the entire

computational domain.

In the next section, the spherical wave propagation principle and the medium damping

effect were utilized to analyze the physical implication of the modified operator, gB0
0
.

Fig 1. Schematic diagram of the artificial boundary node o and MTF computational points.

https://doi.org/10.1371/journal.pone.0243979.g001
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Physical implication of γB0
0

The spherical wave generated by the point source S is assumed to propagate outward at a wave

velocity c (as shown in Fig 2). The distance between the observation point A and point source

S is r0, and the distance between the observation point o and point source S is r0+Δr. Assuming

the displacement of point A is known to be uA(t), the displacement of point o can be obtained

according to the spherical wave propagation principle:

uoðtÞ ¼ auAðt � Dr=cÞ ð8Þ

where α is the medium geometry diffusion factor, and α = r0/(r0+Δr) = 1/(1+Δr/r0). Assuming

�g ¼ Dr=r, then we had a ¼ 1=ð1þ �gÞ. According to operation rules of the moving operator

Bn
m, Eq (7) can be expanded as:

upþ1

0 ¼
XN

j¼1

ð� 1Þ
jþ1CN

j

upþ1� j
j

ð1þ gÞ
j ð9Þ

It is known through comparison with the MTF that according to the MTF with gB0
0
, the dis-

placements of the inner nodes should be multiplied by the corresponding factor when extrapo-

lating the displacement of the artificial boundary nodes with the displacements of the inner

nodes.

For the sake of simplicity but without a loss of generality, let the MTF order N = 2 in Eq (9),

and thus:

upþ1

0 ¼
2

1þ g
up

1 �
1

ð1þ gÞ
2
up� 1

2 ð10Þ

Eq (10) can be rewritten as:

upþ1

0 ¼
1

1þ g
up

1 þ
1

1þ g
up

1 �
1

1þ g
up� 1

2

� �

ð11Þ

After simplification, Eq (11) can also be expressed as:

upþ1

0 ¼ ~up
1 þ D~upþ1

0 ð12Þ

where:

~up
1 ¼

1

1þ g
up

1; D~upþ1

0 ¼
1

1þ g
D~up

1

and

D~up
1 ¼ up

1 � ~up� 1

2 ; ~up� 1

2 ¼
1

1þ g
up� 1

2

Eq (12) is another expression of the second-order MTF with gB0
0
, which is equivalent to “Eq

(22)” on page 178 of Reference [25]. It can be seen that both the incident wave and the error

Fig 2. Schematic diagram of the source and observation points.

https://doi.org/10.1371/journal.pone.0243979.g002
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wave propagate in the form of spherical waves with α = 1/1+γ. Therefore, it can be concluded

that the MTF with gB0
0

considers the geometric diffusion characteristics of the medium in the

numerical simulation of wave motion.

In the following, the second-order MTF is still used as an example to provide another physi-

cal explanation of the MTF with gB0
0
. For the condition of N = 2, we can obtain [6]:

upþ1

0 ¼ 2up
1 � up� 1

2 ð13Þ

assuming

~up
j ¼ expð� mpÞup

j ð14Þ

where exp(−μp) is the introduced damping factor. According to the assumption in Eq (14),

Equation (13) can be rewritten as:

~upþ1

0 ¼ 2expð� mÞ~up
1 � expð� 2mÞ~up� 1

2 ð15Þ

For the condition μ = ln(1+γ), we can obtain:

~upþ1

0 ¼ 2
1

1þ g
~up

1 �
1

ð1þ gÞ
2

~up� 1

2 ð16Þ

Through comparison of Eqs (16) and (10), it is easy to recognize that they are equivalent.

Accordingly, it is explained that the MTF with gB0
0

also introduces damping characteristics of

the medium in the numerical simulation of wave motion.

Based on the two explanations of physical of the MTF with gB0
0

described above, the MTF

with gB0
0

either consider the geometric diffusion characteristics of the medium or introduce

the damping characteristics of the medium, thereby the two explanations of physical implica-

tions indicate that the MTF with gB0
0

introduces the absorption mechanism of the medium to

wave motion. Moreover, inspired by the introduction of the damping characteristics of the

medium, it is worthwhile to explore how much damping that is proportional to the velocity of

the particle motion should be introduced to eliminate the drift instability of the MTF, which is

an issue that will be studied in the future.

Accuracy analysis of modified operator γB0
0

The accuracy of the artificial boundary is usually expressed by the reflection coefficient. In the

steady-state case, the reflection coefficient of the artificial boundary is generally defined as [24,

25]:

R ¼ j
UR

0

UI
0

j ð17Þ

where UI
0

and UR
0

are the amplitudes of the incident plane harmonic wave and the reflected

plane harmonic wave, respectively, at the boundary node. If the total displacement of the

boundary node, U0, is expressed as U0 ¼ UI
0
þ UR

0
, we can obtain:

R ¼ j
U0

UI
0

� 1j ð18Þ

Next, the reflection coefficients of the MTF with gB0
0

are discussed in two limit cases, Case

A and Case B, in which the total wave field is composed only of incident waves in Case A and

total wave field is composed of both incident waves and fully developed reflected waves in

Case B.
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Case A
For steady-state wave motions, Eq (9) can be expressed as:

U0 ¼
XN

j¼1

ð� 1Þ
jþ1CN

j a
� jUj=ð1þ gÞ

j
ð19Þ

where Uj(j = 0,1,2,3,. . .) denotes the amplitude of motion at the computational point j (Fig 1),

a = exp(iωΔt), i ¼
ffiffiffiffiffiffiffi
� 1
p

, and ω is the circular frequency.

In the calculation of the reflection coefficient, the term related to time appears in expression

of the total displacement and the incident displacement at the same time, which can be elimi-

nated finally during the calculation progress. Considering that the time factor has no influence

on the result of reflection coefficient in this case, the time factor (exp(iωpΔt)) in the discrete

form of the incident plane harmonic wave is ignored (here and hereinafter), and the discrete

form can be expressed as:

UI
j ¼ UI

0
aj
x ð20Þ

where UI
j and UI

0
are amplitudes of the incident harmonic wave at the discrete nodes, x = jcaΔt,

and the artificial boundary node, x = 0, respectively. Moreover:

ax ¼ expðiocaDt=cxÞ ð21Þ

where cx is the apparent wave velocity propagating along the x-axis, and ax represents the

phase change of displacement when the traveling distance of incident plane wave is caΔt on the

x-axis. Assuming the wave velocity of the incident plane wave to be c and the incident angle to

be θ, thus cx = c/cosθ. Assuming ca = c, we can obtain:

ax ¼ expðioDtcosyÞ ð22Þ

In this case, Uj ¼ UI
j . According to Eq (20), we can have:

Uj ¼ UI
0
aj
x ð23Þ

Substituting Eq (23) into Eq (19) results in:

U0 ¼ bIU
I
0

ð24Þ

where bI ¼
XN

j¼1

ð� 1Þ
jþ1CN

j a
� jaj

x=ð1þ gÞ
j
. Using the binomial Equation

ð1þ xÞN ¼ 1þ
XN

j¼1

CN
j x

j, bI can be expressed as:

bI ¼ 1 � ½1 � a� 1ax=ð1þ gÞ�
N

ð25Þ

Substitution of Eq (24) into Eq (18) results in:

R ¼ j1 � a� 1ax=ð1þ gÞj
N

ð26Þ

Substitution of a and ax into Eq (26) leads to:

R ¼ 1 �
exp i2p Dt

T ðcosy � 1Þ
� �

1þ g

�
�
�
�
�

�
�
�
�
�

N

ð27Þ

where period T = 2π/ω.
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Case B
For Case B, the incidence of a plane scalar wave is discussed here. ca is assumed to be equal to

the scalar wave velocity c, and the incident angle is θ. Therefore, cx = c/cosθ. Because the total

displacement at the discrete node, x = −jcaΔt, on the x-axis, is composed of the incident wave

and the fully developed reflected wave, we can derive:

Uj ¼ UI
j þ UR

j ð28Þ

where UI
j is the incident wave displacement, given by Eq (20), and UR

j is the reflected wave dis-

placement, which can be determined according to:

UR
j ¼ UR

0
a� jx ð29Þ

Substituting Eqs (28), (20) and (29) into Eq (19) results in:

U0 ¼ bIU
I
0
þ bRU

R
0

ð30Þ

where bI is determined by Eq (25), and bR is determined by:

bR ¼ 1 � ð1 � a� 1a� 1

x =1þ gÞ
N

Substituting U0 ¼ UI
0
þ UR

0
into Eq (30) results in:

UR
0

UI
0

¼ �
1 � bI

1 � bR
ð31Þ

According to the definition of the reflection coefficient, namely Eq (17), substituting bI and

bR into Eq (31) results in:

R ¼
1 �

a� 1ax
1þg

1 �
a� 1a� 1

x
1þg

�
�
�
�
�
�

�
�
�
�
�
�

N

ð32Þ

Substituting a and ax into Eq (32) results in:

R ¼
1 �

exp i2pDtT ðcosy� 1Þ½ �
1þg

1 �
exp � i2pDtT ðcosyþ1Þ½ �

1þg

�
�
�
�
�
�
�

�
�
�
�
�
�
�

N

ð33Þ

To more intuitively explain the effect of gB0
0

on the MTF reflection coefficient, we plot the

relationship curves between the reflection coefficient and the incident angle corresponding to

different γ, according to Eqs (27) and (33) for N = 2 and Δt/T = 1/10 and Δt/T = 1/20. As

shown in Fig 3, when Δt/T was 1/10 or 1/20, the reflection coefficients with the modified oper-

ator γ of 0.02 became similar to the result that without γ, which demonstrated that the modi-

fied operator γ could have little influence on the computational precision if its value is small.

However, with the increase of γ to 0.05, the error of the reflection coefficient after adding the γ
became larger. Moreover, it was seen that when γwas 0.05, the overall error of reflection coeffi-

cients was larger with the decrease of Δt/T from 1/10 to 1/20. As for the case B shown in Fig 4,

the effect of different value of modified operator on the reflection coefficient is consistent with

that shown in case A (shown in Fig 3), which indicated that if the added modified operator is

small enough, its effect on MTF can be almost ignored.
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Numerical experiments

The decoupling method for the numerical simulation of wave motion [21, 35], which is a com-

bination of the MTF and Lumped mass explicit finite element method, is used to verify the

proposed measure of the MTF stably implementation by numerical experiments. Typical

examples of the three-dimensional wave source problem and scattering problem are used to

examine how this measure effectively eliminates drift instability and ensures the computa-

tional precision of numerical simulation.

Fig 3. Reflection coefficient in case A: (a) Δt/T = 1/10; (b) Δt/T = 1/20.

https://doi.org/10.1371/journal.pone.0243979.g003

Fig 4. Reflection coefficient in case B: (a) Δt/T = 1/10; (b) Δt/T = 1/20.

https://doi.org/10.1371/journal.pone.0243979.g004
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Wave source problem

Wave motions generated by a concentrated source of force in a homogeneous, isotropic linear

elastic infinite medium are considered. With a Cartesian coordinate system ox1x2x3, the origin

of the coordinate system is the same as the action point of the concentrated force. Assumed to

act in the direction along the x3 axis, the concentrated force, p(t), has a time function of an

approximate δ-pulse [25] (Fig 5). The numerical simulation of wave motion is performed in

the homogeneous box domain, and all of boundaries are the artificial boundary, the sizes of

which are represented by B1, B2 and B3 (Fig 6). The computational domain is discretized by

the cubic finite elements with a spatial step size of Δx, whose value is determined by the

computational precision of the finite element numerical simulation of the wave motion [25],

and a system of ordinary differential equations relative to inner nodes can be formed on this

basis. The numerical integration of ordinary differential equations is carried out by the central

difference method, and the time step Δt of numerical integration is determined by the stability

criterion of the central difference method. The discrete equation of nodes on the artificial

boundary is a second-order MTF, in which the displacements of the computational points are

obtained by the three-point interpolation method with second-order precision based on dis-

placements of finite element nodes [25], the expression is as follows:

upþ1

0 ¼ 2upþ1

1 =ð1þ gÞ � up� 1

2 =ð1þ gÞ
2

up
1 ¼ t1;1�up

0 þ t1;2�up
1 þ t1;3�up

2

up� 1

2 ¼ t2;1�up� 1

0 þ t2;2�up� 1

1 þ t2;3�up� 1

2

where

t1;1 ¼ ðS � 2ÞðS � 1Þ=2; t1;2 ¼ Sð2 � SÞ; t1;3 ¼ SðS � 1Þ=2

t2;1 ¼ ð2S � 1ÞðS � 1Þ; t2;2 ¼ 4Sð1 � SÞ; t2;3 ¼ Sð2S � 1Þ

S ¼ caDt=Dx

Fig 5. Time function of the concentrated force.

https://doi.org/10.1371/journal.pone.0243979.g005

PLOS ONE A stable implementation measure of multi-transmitting formula

PLOS ONE | https://doi.org/10.1371/journal.pone.0243979 December 15, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0243979.g005
https://doi.org/10.1371/journal.pone.0243979


in which �up
j and �up� 1

j ðj ¼ 0; 1; 2Þ represent the displacement responses of the finite element

nodes at the times of pΔt and (p−1)Δt, respectively.

The calculation performed in the wave source problem with dimensionless parameters and

numerical simulation results of wave motion corresponded to the case of B1 = B2 = B3 = 0.4,

medium mass density ρ = 1, longitudinal wave velocity c1 ¼
ffiffiffi
3
p

, shear wave velocity c2 = 1,

Δx = 0.02, Δt = 0.01, and artificial wave velocity ca = 1. The displacements of inner observation

point A (0.2, 0.2, 0.2) and boundary observation point B (0.4, 0.4, 0.4) under different values of

γ were shown in Figs 7 and 8 and compared with the analytical solution [36] respectively.

As shown in the Fig 7, all three components of displacement responses of the observation

point A which is inside the computational domain showed significant drift instability when

the MTF is without the modified operator. After the addition of the modified operator, the

drift instability was effectively suppressed, and as the value of γ increased from 0.005 to 0.02,

the suppression effect seemed to become better. However, when the value of γ continues to

increase to 0.05, the error by the addition of modified operator appeared. In the Fig 7C, it can

be seen that when the value of γ was 0.05, the trough of the component of displacement

response in the numerical simulation was obviously deviated from the exact solution, which

means that the suppression effect of drift instability became poor at this time. As shown in the

Fig 8, it was found that the influence of the value of γ on the displacement response of the

boundary point B was similar to the influence on the inner point A. Besides, the addition γ had

a worse suppression effect on the component of Z-direction of displacement response, which

was due to the fact that the incident angle of the vertical component is larger than that of the

horizontal component. In summary, in the wave source problem, a small value of modified

operator γ can produce a good suppression effect on the drift instability. Whereas, there was

Fig 6. Computational domain in the wave source problem (Quadrant I).

https://doi.org/10.1371/journal.pone.0243979.g006
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an optimal value of γ, and the optimal solution of this numerical case seemed to be around

0.02 and less than 0.05.

Scattering problem

The validity of the proposed measure for the elimination of MTF drift instability is examined

by numerical simulation of wave motion on the scattering problem. Scattering problem corre-

sponds to scattering field generated by a concave domain (as shown in Fig 9) under vertical

incidence plane S-wave, which is located on the free surface of a homogeneous, isotropic semi-

infinite elastic space with a medium density ρ = 2000 kg/m3, shear wave velocity cs = 1000 m/s,
and Poisson’s ratio ν = 0.25. The size of the concave domain is 250 m by 250 m by 250 m, and

incidence plane S-wave with vibration direction of particles along the x-axis of the Cartesian

coordinate system oxyz is an approximate δ-pulse (Fig 5) with 1 s pulse width. The numerical

simulation of wave motion is carried out in a computational domain of the homogeneous

box with top free surface (Fig 9), and both side and bottom boundaries of the box domain are

the artificial boundary, and the solution method is the decoupling numerical simulation

method used for solving the wave source problem. The computational domain is discretized

by cubic finite elements with a spatial step size of Δx, and a system of ordinary differential

equations relative to inner nodes can be formed on this basis. The numerical integration of

ordinary differential equations is carried out by the central difference method, and the time

Fig 7. Displacement time-histories of observation point A.

https://doi.org/10.1371/journal.pone.0243979.g007

Fig 8. Displacement time-histories of observation point B.

https://doi.org/10.1371/journal.pone.0243979.g008
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step Δt of numerical integration is determined by the stability criterion of the central difference

method. The discrete equation of nodes on the artificial boundaries is a second-order MTF. In

numerical simulation of wave motion, the space step Δx is 12.5 m, the time step Δt is 0.005 s,

and the artificial wave velocity ca is cs.
Figs 10 and 11 showed the displacement responses at observation points A and B in Fig 9

respectively, and the comparison with the numerical analytical solution, i.e. artificial bound-

aries are far enough from the domain of interest so that the numerical solution of this domain

is not affected by artificial boundaries during whole analytical time. In the scattering problem,

all three components of displacement responses of the observation point A and point B
showed obvious drift instability when the MTF is without the modified operator. As the value

of γ increased from 0.001 to 0.01, the displacement responses of the observation point A and

point B become closer to the solution of extended computational domain. However, when the

values of γ exceeded 0.01, it showed a worse suppression effect on the drift instability for obser-

vation point A and point B, especially in the peak of the displacement responses. The variation

of the suppression effect with the change of the value of γ in scattering problem showed the

same trend as that of the wave source problem. But the optimal value of γ in the scattering

Fig 9. Computational domain in the scattering problem.

https://doi.org/10.1371/journal.pone.0243979.g009

Fig 10. Displacement time-histories of observation point A.

https://doi.org/10.1371/journal.pone.0243979.g010
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problem seemed to be around 0.01, which was different with that in the source wave problem.

From the numerical results of the wave source problem and the scattering problem, it can be

seen that the addition of γ can effectively suppress the drift instability of MTF, but the value of

γ should not be too small or too large.

It can be seen from the results of two numerical experiments that the proposed measure is

effective in eliminating the drift instability of MTF. The curves in the smaller time windows of

Figs 7, 8, 10 and 11 also show that introducing gB0
0

into MTF has no influence on the computa-

tional precision of numerical simulation of wave motion before the drift instability of MTF

appears. Theoretically, γ can be any small positive number, but it should not be too small

when considering the existence of error noise in numerical simulation, and neither should it

be too large considering the computational precision of the numerical simulation. It can be

seen that the addition of γ can effectively suppress the drift instability of MTF, and the range of

which is recommend from 0.01 to 0.05 referring to the calculation cases of our work. Though

there is no further study on the optimal value of γ, the optimal value should be related to the

scale of the model computational domain. The general principle is to minimize the value of γ
under the premise of stable implementation of the MTF in numerical simulations of the wave

motions.

Conclusions

The Mechanism of drift instability in the numerical implementation of MTF is theoretically

analyzed, and it reveals that drift instability is caused by the reason that the GKS criterion is

violated in the MTF with a zero frequency and zero wavenumber. To eliminate this instability,

a simple measure in the numerical simulation of wave motions, introducing a modified opera-

tor gB0
0

into the MTF, was proposed. Due to introduction of the modified operator gB0
0
, the

absorption mechanism of the medium to the wave in the numerical simulation of wave motion

is drawn into the MTF. In addition, through the accuracy analysis based on the calculation of

the reflection coefficient and the verification of numerical experiments, the proposed measure

is effective in eliminating drift instability of MTF and has slight influence on the accuracy of

numerical simulation under the appropriate small value of γ. It is recommended that the value

of γ should not be too large or too small, the optimal value varies according to the different cal-

culation models. Based on the numerical simulations we have carried, the trial range of value

of is suggested to be in 0.01 to 0.05. Besides, our strategy for eliminating the drift instability of

MTF is also suitable for all versions of MTF.

Fig 11. Displacement time-histories of observation point B.

https://doi.org/10.1371/journal.pone.0243979.g011
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