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Abstract 54 

Why education is linked to higher cognitive function in aging is fiercely debated. Leading theories 55 

propose that education reduces brain decline in aging, enhances tolerance to brain pathology, or 56 

that it does not affect cognitive decline but rather reflects higher early-life cognitive function. To test 57 

these theories, we analyzed 407.356 episodic memory scores from 170.795 participants >50 years, 58 

alongside 15.157 brain MRIs from 6.472 participants across 33 Western countries. More education 59 

was associated with better memory, larger intracranial volume and slightly larger volume of 60 

memory-sensitive brain regions. However, education did not protect against age-related decline or 61 

weakened effects of brain decline on cognition. The most parsimonious explanation for the results is 62 

that the associations reflect factors present early in life, including propensity of individuals with 63 

certain traits to pursue more education. While education has numerous benefits, the notion that it 64 

provides protection against cognitive or brain decline is not supported. 65 

 66 

 67 

  68 
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Introduction 69 

While the total number of people with dementia will increase massively due to population growth 70 

and ageing 1, the incidence seems to be declining2,3, and older adults have better cognitive function 71 

today than 20 years ago 4. One hypothesis is that this reflects broad societal and individual lifestyle 72 

changes, and that dementia incidence can be further reduced by promoting these 1,5. Education has 73 

repeatedly been suggested to be one such potential protective factor 6,7, in line with observations of 74 

robust associations between education and higher cognitive function in aging, as well as declines in 75 

dementia incidence with increasing population educational attainment 8,9. However, results so far 76 

are heterogeneous and point in different directions, and the specific mechanisms that could explain 77 

such a causal link are widely debated 10. We therefore suggest addressing these questions by 78 

conducting a large mega-analysis of longitudinal brain and cognitive studies covering a wider 79 

geographical distribution of samples.  80 

 81 

Education could result in better cognition in aging by contributing to a lower rate of age-normative 82 

brain decline 11. Indeed, higher brain maintenance has been associated with better episodic 83 

memory12, and studies have found less brain pathology in older adults with higher education13, less 84 

brain decline in presymptomatic dementia 14, and less accumulation of cerebrovascular lesions 15. 85 

However, a recent longitudinal study investigating two independent samples did not find different 86 

rates of change in hippocampus and age-sensitive regions of the cerebral cortex in more educated 87 

participants 16. Alternatively, education could make people more resilient to underlying brain 88 

pathology by higher cognitive reserve 17. According to this theory, education leads to more efficient 89 

processing of cognitive tasks which in turn allows for higher performance despite age-normative 90 

levels of brain decline 18. Although a popular theory 5,19, a longitudinal study found that education 91 

did not weaken the link between hippocampal atrophy and memory change 20. Both the 92 

maintenance and the reserve accounts of education imply that education causally influences late-life 93 

cognition by reducing or postponing age-related decline. This is controversial, however, because 94 

even though education is associated with better cognitive function among older adults, it is not clear 95 

that more educated persons show less cognitive decline when measured longitudinally 21,22.  96 

 97 

An alternative perspective holds that the association between education and cognitive performance 98 

is persistent across the adult lifespan. This contrasts with the more aging-centered views presented 99 

above. Under this alternative view, if education has a positive causal effect on cognition in aging, it 100 

would be by permanently boosting cognitive function earlier in life, causing persistent differences 101 

between educational groups. Increased compulsory schooling has been shown to elevate scores on 102 
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tests of memory 23-25, intelligence 26,27 and general cognition 28, with effects detectable decades later 103 

29. This perspective could also be consistent with a lack of causal effects of education on cognitive 104 

function, however, as those with higher initial cognitive functioning would be expected to reach 105 

higher levels of education than their peers. Hence, the topic of the role of education in cognitive 106 

function and brain health in aging is riddled with controversies 30. 107 

 108 

Nonetheless, contrasting predictions can be derived from the different theories. If education 109 

improves memory in older age by shaping brain aging, we expect better preservation of memory-110 

sensitive brain regions among individuals with higher education. If education improves cognitive 111 

reserve, we expect more tolerance to brain pathology, indexed by a lower correlation between brain 112 

decline and cognitive decline. In contrast, if the education-memory-brain relationship reflects stable 113 

individual differences, education should not correlate with either memory or brain decline. In that 114 

case, we also would expect to see selection effects, in the sense that participants with specific traits, 115 

especially higher cognitive function, are more likely to pursue further education. It is also relevant to 116 

examine whether retest effect – the tendency for performance to increase as a function of previous 117 

tests taken – is exaggerated with higher education. If more education yields cognitive reserve, this 118 

may manifest as a greater ability to take advantage of previous testing experience and to develop 119 

more efficient test taking strategies.  120 

 121 

A major challenge in addressing these questions is that we need large, representative and 122 

heterogeneous longitudinal samples with sufficient statistical power. The geographic coverage is 123 

critical, because associations between brain, cognition, and education will vary both across time 31 124 

and societies 32-34. For example, the population attributable fraction (PAF) of dementia due to low 125 

education was reported to vary from 1.7% in Argentina to 10.8% in Bolivia in a study comparing 126 

seven Latin American countries 35. To alleviate this concern, we here compiled data from several 127 

large studies, including a total of 407.356 memory tests from 170.795 participants across 33 128 

countries across Europe, US and Israel, with up to seven follow-up sessions per person (see Figure 1). 129 

Although we do not have sufficient statistical power to systematically investigate effects of time, 130 

geography and societal differences, our approach ensures that the results are not confined to one 131 

specific time and place. Still, it is important to keep in mind that all samples come from WEIRD 132 

(Western, Educated, Industrialized, Rich, Democratic) countries, which limits generalizing 133 

conclusions to other societies. We focus on episodic memory because it is particularly sensitive to 134 

normal aging and neurodegenerative disease 36. To address brain mechanisms, we further analyzed 135 

15,157 brain MRIs and concurrent memory tests from 6.472 participants across seven countries. The 136 
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primary data sources were the population-based, multinational SHARE (Survey of Health, Ageing and 137 

Retirement in Europe) (https://share-eric.eu/) 37 and the Lifebrain consortium 38 138 

(https://www.lifebrain.uio.no/), enriched with several legacy databases. SHARE uses probability 139 

sampling to obtain sample representativity, using the best available sample frame resources in each 140 

country to achieve full probability sampling, including access to population registers for most. 141 

Although geographically spread, MRI populations will vary in representativity, and hence we chose 142 

as strategy to validate the memory-results from SHARE in the MRI samples before conducting the 143 

brain analyses. 144 

 145 

Figure 1 Geographical and age distribution of samples 146 

Left panel: Number of completed memory test sessions included across country across SHARE, 147 

Lifebrain and the other legacy datasets. The density plot shows sample age-distribution in SHARE. 148 

Right panel: Number of completed brain MRIs across countries. The plot shows the age-distribution 149 

for each dataset included. Note that the visual presentations of USA& Canada and Cyprus & Israel 150 

are not size-wise correct compared to the European map.  151 

 152 

Results 153 

SHARE cohort results 154 

Memory was assessed with a 10-word verbal recall test, with two conditions (immediate and 5 155 

minutes recall), using multiple versions across waves and participants 39. Each condition was 156 

separately included in the statistical models, yielding two observations per time point per 157 

participant. Generalized linear models with a binomial link were run using memory score as 158 

dependent variable, with the interaction between education and time since baseline as the critical 159 

term, using test type (immediate or 5-minute delay), a monotonic function of the number of 160 
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previous tests taken (to control for retest effects), education, sex, country, baseline age, time since 161 

baseline, and the age × time interaction as covariates (see Online Methods for the exact model 162 

specifications). Individual-specific intercepts per participant were nested within country. Z-163 

transformed values for age and time were used in the model fitting and converted back to natural 164 

units when showing the results. A smooth function for age allowed non-linear memory trajectories. 165 

The main outputs were the odds ratios (OR) of remembering a word compared to a reference group. 166 

 167 

Memory scores were lower with higher baseline age, showing slightly accelerating trajectories 168 

(smoothing parameter for the combined sample = 45.8, CI: 20.7-81.5). Figure 2 (top left panel) 169 

revealed a perfect ordering of scores according to education level, with more education associated 170 

with higher scores across age. Compared to the education level used as reference (“upper 171 

secondary”), “no education” yielded OR = 0.54 compared to 1.55 for the highest category (“tertiary 172 

second stage”, Figure 3 left panel; Table 1). 173 

 

  

 
 

Figure 2 Age, education and practice effects on memory. Top left: Memory score trajectory as a 174 

function of baseline age. The y-axis is on the logit scale, illustrating how the linear predictor changes 175 

with varying baseline age for each education category. The legend is organized from the highest 176 
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(“tertiary 2nd stage”) to the lowest (“none”) level of educational attainment. Top right: Retest effects, 177 

expressed as odds ratio (y-axis) with first test session as reference and number of previous tests at 178 

the x-axis. Bottom left: Retest effects plotted for each education group. Bottom right: Comparing 179 

retest effects for each education group to the reference group by calculating Odds ratio for the given 180 

education / Odds ratio for “Upper Secondary” illustrated by the dotted horizontal line. Shaded areas 181 

denote 95% CI.  182 

 183 

 184 

Figure 3 Associations between education, memory score and memory score decline. Left: 185 

Associations between education and memory offset scores. Right: Associations between education 186 

and decline in memory scores. ”Upper secondary” education (pink color) is used as reference, 187 

illustrated with the dashed line. Note that all memory scores are corrected for retest effects. Error 188 

bars denote 95% CI.  189 

 190 

Education level Memory offset 

Odds Ratio  

(CI low – high) 

Memory change 

Odds Ratio  

(CI low – high) 

None 0.54 0.53-0.55 1.004 1.001-1.007 

Primary 0.68 0.67-0.68 1.002 1.001-1.004 

Lower secondary 0.83 0.81-0.83 1.002 1.000-1.003 

Upper secondary 1  1  

Post secondary non-tertiary 1.07 1.05-1.08 1.001 0.998-1.003 
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Tertiary 1st stage 1.31 1.29-1.32 1.001 1.000-1.003 

Tertiary 2nd stage 1.55 1.49-1.60 1.004 0.999-1.010 

Table 1 Associations between education, memory score and memory score decline. Upper 191 

secondary education is used as reference. Note that all memory scores are corrected for retest 192 

effects. Memory change (OR per year) results are presented with three decimals to allow inspection 193 

of the very weak effects. CI is 95% 194 

 195 

Retest effects were substantial and thus essential to adjust for in analyses of change. ORs increased 196 

almost linearly, from 1.5 at the first follow-up to 2.5 at the fifth (Figure 2, top right panel). There was 197 

a small negative effect of time (one year) on memory scores (OR = 0.963, CI: 0.961-0.964), slightly 198 

increasing with age (age × time OR = 0.9981, CI: 0.9980-0.9982). We assessed whether higher 199 

education was associated with less memory decline over one year (Figure 3, right panel; Table 1). 200 

Effect sizes were negligible, with all ORs < 1.005. Further, if education is associated with the ability to 201 

benefit from previous testing experience to optimize performance, individuals with more education 202 

and cognitive reserve should be able to benefit more from repeated testing more efficiently. 203 

However, there were no systematic differences in retest effects by education (Figure 4, bottom row).  204 

 205 

We re-ran the analyses using education relative to birth cohort in bins of a decade (1900-1909, 206 

1910-1919, …, 1960-1969), sex, and country as measure of interest, yielding a percentile score for 207 

each participant, while controlling for absolute level of education. This provides a test of whether 208 

the education-memory associations reflect selection effects, in the sense that people are selected 209 

into education based on some unmeasured trait, that act as a common cause, and is correlated with 210 

late-life memory scores, and partially accounts for these selection effects varying between  men and 211 

women from different birth cohorts in countries with widely varying educational opportunities and 212 

experiences. As seen in Figure 4, including relative education in the model reduced the associations 213 

between absolute education and memory somewhat, while relative education showed an 214 

independent, positive association with memory. The effect of going from the lowest (0) to the 215 

highest (100) percentile was associated with an OR of 1.17 (CI: 1.14-1.20) compared to the reference 216 

group (“upper secondary”).   217 
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 218 

Figure 4 Associations between memory, absolute and relative education. Effects of each education 219 

category on memory compared to the reference group (“upper secondary”), illustrated with the 220 

dashed line. Models were run with (corrected) or without (base) relative education level included. 221 

Relative education was calculated as education relative to birth cohort, sex, and country, yielding a 222 

percentile score for each participant. The top row (yellow color) shows the effect of going from 0 to 223 

the 100th percentile in relative education, when controlling for the influence of absolute education. 224 

Error bars denote 95% CI. 225 

 226 

Brain MRI cohort results 227 

For the brain analyses, we included 13 datasets with longitudinal MRI, memory assessments, and 228 

information about education, from seven countries across North to South of Europe, US and Canada 229 

(see Figure 2). In addition to cohort-specific inclusion and exclusion criteria, participants >50 years 230 

without cognitive impairment, neurological or psychiatric disorders were included. The initial dataset 231 

included participants with 1 to 14 MRI acquisitions with follow-up intervals spanning up to 15.8 232 

years, and memory assessments ranging from 1 to 24 observations per participant with follow-up 233 

intervals up to 28 years. Sample characteristics are presented in Table 2, and cohort specific 234 

descriptions in Online Methods. 235 

 236 

First, we tested whether the main cognitive results from SHARE replicated in the MRI cohorts. As 237 

education coding varied across samples, we could not use the same coding scheme as in SHARE, and 238 
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education was hence dichotomized based on the median split for each sample, with post hoc 239 

analyses using tertiary vs. non-tertiary education as category (see Replication analyses). A 240 

generalized additive mixed model (GAMM) 40 was run using memory (z-normalized based on the first 241 

observation per each dataset) as dependent variable, with education, time since baseline, sex, a 242 

dummy for retest effects as fixed effects, and baseline age as smooth term. Random intercepts were 243 

included per participant and dataset while random slopes of retest and time were included for each 244 

dataset. To test memory change, an education × time interaction term was added to the model. 245 

Exact p-values are provided down to p < .001. 246 

247 

Table 2 Sample characteristics for samples with MRI. N: Number of unique participants. Obs: Total 248 

number of observations. Sex: M – Males/ F – females. Tertiary edu: Number of participants with 249 

tertiary or higher education. Above median edu: Number of participants with above median 250 

education. xObs: Obs per participant: Average number of test sessions per participant. eduT: Years of 251 

education. Time: Average maximum time in years from baseline to last follow-up. MRI: information 252 

for participants with available MRI only.  253 

 254 

Like the SHARE results, while high education was associated with better memory scores (β = 0.33, SE 255 

= 0.009, p < .001), the education groups showed close to parallel changes over time (Figure 5, panels 256 

D & E). Predicted change over 10 years was z = -0.20 for high education, compared to z = -0.26 for 257 

low education (effect of education group on memory z-score change/ year: β = 0.006, SE = 0.003, p = 258 

0.029) (for complete results, see SI). The analysis was repeated using the alternative categorization 259 

of education (tertiary vs. non-tertiary), yielding similar results.   260 
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 261 

Figure 5 Education, brain measures and episodic memory. A: Regions where brain changes and 262 

memory changes are related (FDR < .05) are color coded by loadings on the principal component 263 

(“brain PC”). Nucleus Accumbens and left inferior lateral ventricle are not shown. B: Age-plot of the 264 

memory-sensitive PC (residuals) after accounting for sample differences. Shaded areas depict 95% CI. 265 

C: Brain change as a function of education was calculated for each education group and plotted over 266 

3 years. Brain volumes are slightly larger for the high (green) than the low (orange) education group, 267 

but the slopes of decline are almost parallel. Shaded areas depict SE of the subject-level predictions. 268 

D: Age-plot of episodic memory (residuals) after accounting for sample differences. Shaded areas 269 
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depict 95% CI. E: Episodic memory change as a function of education was calculated for each 270 

education group and plotted over 3 years. Scores are higher for the high (green) than the low 271 

(orange) education group, but the slope lines are close to parallel. SE of the subject-level predictions 272 

 273 

We extracted a brain variable sensitive to memory change. For each participant, annual change in 274 

each of 166 brain regions was calculated and related to memory change by a series of linear mixed 275 

effects models, yielding 29 significant FDR-corrected significant regions (Figure 5, panel A). These 276 

were entered into a principal component analysis (PCA), yielding a memory-sensitive brain PC. For 277 

replication, we also used machine learning, i.e. a regularized regression model (LASSO: Least 278 

Absolute Shrinkage and Selection Operator), to predict memory based on an independent sample of 279 

28.114 cross-sectional MRIs from UKB (Replication analyses). 280 

 281 

To test the association between education and brain PC score (offset effects), a GAMM was run with 282 

education, time since baseline, sex, and estimated total intracranial volume (eTIV) as fixed effects, 283 

and baseline age and sex × baseline age as smooth terms. Random intercepts were included per 284 

participant, scanner, and dataset while random slopes of time were included for each dataset. The 285 

brain PC showed the expected negative relationship to age, slightly accelerating from about 70 years 286 

(Figure 5, panel B), and time (β = -0.07, se = 0.008, p < .001). Estimated loss in the high education 287 

group was z = -0.68 over a decade, compared to z = -0.74 for the low group (interaction effect of 288 

education × time on brain volume: β = 0.005, se = 0.002, p = .015). This means that the difference in 289 

10-year change was z = 0.06, and the slopes were close to parallel (Figure 5, panel C). Using the 290 

alternative education categorization (tertiary vs. non-tertiary) and the LASSO-derived brain measure 291 

yielded similar results. High education was also slightly positively associated with the brain PC (β = 292 

0.04, se = 0.02, p = .049), a relationship that was numerically stronger with the alternative education 293 

classification (β = 0.06, se = 0.02, p = .003) and weaker with the LASSO-derived brain measure (β = 294 

0.03, se = 0.04, p = .083). When removing eTIV from the model, the estimate increased to β = 0.05 295 

(se = 0.02, p = .019) using the median split, and to 0.07 (se = 0.02, p = .0007) using the tertiary/ non-296 

tertiary education categorization. We tested the relationship between education and eTIV which 297 

was numerically stronger for both education classifications (median split: β = 0.12, se = .002, p < 298 

.001; tertiary/non-tertiary: β = 0.13, se = 0.02, p < .001) (Figure 6, top left). 299 

 300 

Finally, we tested whether the brain-memory association varied as a function of education (see 301 

Table 3 for an overview). Higher brain PC was related to better memory (β = 0.073, se = 0.013, p < 302 

.001). As the brain PC was extracted from regions where brain change was related to memory 303 
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change, the change-change relationship was given, but is still reported for completeness: β = 0.01, se 304 

= 0.002. More importantly, there were no significant education × brain PC (β = 0.01, se =0.02, p = 305 

.60) or education × brain PC × time (β = 0.004, se = 0.004, p = .43) interactions. This means that the 306 

relationship between brain and memory, and between changes in the two, did not vary as a function 307 

of education (Figure 6, top middle & right panels). The same was found using the alternative 308 

education category and the LASSO-based brain measure. 309 

 310 

Figure 6 Relationships between brain, memory, and education 311 

Top row Left: Estimated total intracranial volume (eTiv) in the high vs. low education group. Mean 312 

eTiv was significantly larger in the high education group. Middle: Relationship between brain PC at 313 

baseline and memory score separately for the high and the low education group. The brain-memory 314 

relationships are positive, but did not differ between groups. Right: Change in memory over time as a 315 

function of brain PC. More memory decline is seen for lower values of brain PC, but this relationship 316 

did not differ between education groups. Shaded areas around the lines depict SE of the subject-level 317 

predictions. Bottom row: Testing whether including education in the statistical models reduced the 318 

coefficients for the brain variables in predicting memory, across two brain measures and two 319 

education categorizations. Error bars depict SE. Blue: Education not included in the model. Orange/ 320 

green: Education included in the model. 321 

 322 

Replication analyses  323 
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The main analyses were run using the alternative categorization of education (tertiary vs. non-324 

tertiary) and brain measure (LASSO), yielding four model specifications (Table 3). Controlling for 325 

eTIV, cross-sectional education-brain associations were relatively weak, although significant at p < 326 

.05 in three models. The education × time interaction showed small effect sizes in the same three 327 

specifications, but still significant. Effect size was largest for the PC brain measure and the tertiary/ 328 

non-tertiary categorization, with an interaction coefficient of 0.008 compared to 0.005 for the two 329 

other significant specifications. The brain × education × time interaction on memory was not 330 

significant in any specification.  331 

332 

Table 3 Replication and control analyses. Each of the main statistical models were run with two 333 

categorizations of education (median split, tertiary vs. non-tertiary) and two approaches to derive a 334 

brain component sensitive to memory (PCA based on memory-brain change-change relationship vs. 335 

LASSO applied to an independent dataset of cross-sectional MRIs). The main results are shown in the 336 

table, see SI for complete results. The random effect terms are not shown in the table (Random 337 

intercepts per participant and dataset, random slopes of time [and retest and for memory] for each 338 

dataset). P-values below .001 are written as ”<0.001”. 339 

 340 

As an additional set of control analyses, we tested whether the coefficients for the brain variables in 341 

predicting memory were affected by including education in the models (Figure 6, bottom panels). 342 

The coefficients changed only minimally, suggesting that the brain-memory relationships were 343 

largely independent of education (full results in SI). 344 

 345 

Discussion 346 

We found that education was only minimally associated with less age-related decline in episodic 347 

memory function, not associated with any substantial reduction in the rate of age-normative 348 
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structural brain decline in memory-sensitive regions, and did not increase cognitive resilience to the 349 

observed brain changes. The small magnitude of the differences in brain and memory change across 350 

educational groups contrast with the comparatively much larger differences in level. We found, in 351 

line with previous studies, that education was associated with better episodic memory scores across 352 

the age-range, slightly larger volume of the memory-sensitive brain regions, and larger intracranial 353 

volume. These associations are likely rooted in lifelong variation in brain structure and function that 354 

originate earlier in life 30. We also find evidence that selection effects may account for parts of the 355 

associations, in the sense that people with certain traits, such as larger brain volumes from early age 356 

as indicated by estimates of total intracranial volume and better episodic memory, tend to be 357 

selected into longer education. This selection likely varies across social and demographic dimensions 358 

as well as across features of the educational system, but it is important to note that clear patterns of 359 

associations resulted from analyses conducted on diverse samples covering a large number of 360 

WEIRD societies and age cohorts, indicating a certain degree of robustness across time and place. 361 

The implications of the results are discussed below. 362 

 363 

A role for education in brain and cognitive aging? 364 

The idea that age-related cognitive decline is reduced by higher education is based on two 365 

complementary hypotheses. According to the first, education can guard against memory decline by 366 

causally influencing lifestyle factors that preserve memory-sensitive brain regions, i.e. by increased 367 

brain maintenance. While we find support for the observation that relative absence of brain decline 368 

in terms of less atrophy is linked to better episodic memory 12, there were, however, only minor 369 

differences in the decline trajectories of memory-sensitive brain regions across educational groups. 370 

This aligns with and extends a previous finding that educational level is not associated with 371 

differences in age-change in the brain regions most vulnerable to normal aging 16. In sum, these 372 

results provide a neurobiological perspective for why people with different educational attainment 373 

and different levels of memory function may still show similar rates of age-related memory decline 374 

21,41 - simply put, brains change across middle- and older age in very similar ways across the entire 375 

spectrum of observed differences in education. 376 

 377 

The second hypothesis is that education protects cognitive function through increased resilience to 378 

brain decline by building a “cognitive reserve” 5,18,19. This hypothesis implies that people with more 379 

education should have higher cognitive performance than expected given their observed level of 380 

brain decline 19. We find little support for this idea: only very small differences in the aging 381 

trajectories for memory and the memory-sensitive brain regions were observed between 382 
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educational levels. Further, structural brain decline was associated with similar amounts of memory 383 

decline in more vs. less educated participants, consistent with previous research on hippocampal 20 384 

and cortical 42 atrophy. Finally, more education was not associated with larger retest effects, which 385 

suggests that education did not come with greater ability to benefit from the specific test experience 386 

43. Retest effects reflect the ability to take advantage of previous testing to improve test scores. 387 

More educated participants showed greater ability to encode new information, as reflected in their 388 

higher memory scores, but this did not increase their ability to benefit from previous testing. Similar 389 

results have been found for tests of mental speed and reasoning 44. Taken together, the results 390 

suggest that education was not associated with less decline in brain or episodic memory in aging, 391 

and that the positive associations consequently must have been established before the age of 50 392 

years. Although the present data do not include developmental information, we can speculate that 393 

the precursors of the differences in brain and cognition observed in aging were already present early 394 

in life, as discussed further in the next section.  395 

 396 

How do associations between brain volume, cognitive function and education arise? 397 

The results revealed a robust relationship between education, higher memory function, slightly 398 

larger volumes of memory-sensitive brain regions, and larger intracranial volume. Understanding the 399 

nature of these associations is important. The most obvious explanation is that they may reflect that 400 

persons with higher cognitive abilities and larger brain volumes are more likely to select and be 401 

selected to further education 45. Although there were unequal opportunities and clear limitations to 402 

access to education for many of the participants in the present study 46, likely reducing the 403 

relationship between cognitive abilities and educational attainment, the existence of selection 404 

effects is well documented in previous studies. The present results suggest that this may account for 405 

at least a part of the relationship between education and memory function. Regardless of absolute 406 

educational attainment, participants with high education relative to other participants of the same 407 

sex, birth cohort and country of residence demonstrated better memory function decades later, 408 

consistent with the expectation that selection effects contribute to the observed relationship. 409 

Earlier-life cognition predicts cognitive function and brain health in aging 47,48, suggesting limited 410 

opportunities for causal effects of education beyond adolescence. Instead, selection effects driven 411 

by early-life cognitive abilities and gross aspects of brain structure may explain the life-long 412 

associations between education and cognition, also consistent with recent genetic evidence 49,50. Our 413 

results are also in line with a systematic review of effects of education on dementia risk, which 414 

argued that low education has a stronger association with dementia when it reflects cognitive 415 

capacity rather than privilege, and when it is associated with other risk factors across the lifespan 51. 416 
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 417 

Furthermore, cognition-education relationships can in part be explained by neuroanatomical volume 418 

differences established in early childhood 34, also limiting the potential causal effects of later 419 

education. Brain structure may hence be a key phenotype along the causal pathway that leads from 420 

genetic variation to differences in cognitive function and educational attainment 52. 421 

 422 

While selection effects are real, natural experiments still suggest that increased education can 423 

positively impact cognitive function 26-28, including memory 23-25. The results showed that taking 424 

selection effects into account reduced the association between education and memory only to a 425 

modest extent. Importantly, positive effects of increased education are due to early schooling, not 426 

reduced decline in aging 29. Our finding of similar memory-education associations across the age-427 

range aligns with evidence that education enhances lifelong cognitive function without affecting 428 

age-related decline. Still, most cognitive intervention studies find that positive effects on cognitive 429 

scores diminish over time 21,53, so associations would be expected to be small when measured 430 

decades later. Thus, any early effect of education on cognition would likely need to be sustained by 431 

some mechanism that helps maintaining the initial effect, e.g. by increasing the likelihood of working 432 

in cognitively challenging occupations. According to the gravitational hypothesis, the stability of 433 

individual differences in cognition is caused by consistent exposure to the same environments over 434 

time, including social, educational, and economic contexts 54, see 21,55 for more in-depth discussions 435 

of this topic. This is in line with studies finding ‘cognitive stimulation’ at work to be associated with 436 

lower dementia risk 56, although this cannot explain the full association between education and less 437 

dementia 57. Nonetheless, individuals with higher cognitive function may pursue cognitively 438 

stimulating activities irrespective of their formal education, potentially leading to spurious 439 

associations when this is not accounted for.  440 

 441 

An interesting aspect of the present results was the linear association between memory 442 

performance and educational attainment. If education caused cognitive scores to increase, one 443 

could expect diminishing marginal benefits with increasing duration, although this question has not 444 

been properly addressed by quasi-experimental methods 29. Hence, this result could reflect that 445 

selection effects are additive across the range of educational levels, but definite evidence is 446 

currently lacking. It is also interesting that this clear pattern is identified across samples covering a 447 

large number of countries and cohorts, suggesting that this entails a certain degree of robustness to 448 

societal variations across different WEIRD societies.  449 

 450 
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We observed that individuals with higher education had slightly larger volumes in memory-sensitive 451 

brain regions. Experiments have showed effects of cognitive training on both memory and relevant 452 

brain structures even in older adults 58-60, and it is possible that early education could lead to 453 

increased brain volumes of a magnitude similar to that observed in the present study. However, 454 

training-induced effects on brain structure are generally even more transient than those on 455 

cognition 61,62, making it less likely that direct effects of youth education on brain volume would 456 

persist into old age. Consistent with this, a recent study found no evidence of structural brain 457 

differences resulting from the increase in mandatory schooling from 15 to 16 years in the UK 50 458 

years later 63. Instead, intracranial volume has been shown to be more strongly related to education 459 

than gray matter volume 34, which was also found in the current study. In fact, the association 460 

between education and intracranial volume was double the size of the association with the memory-461 

sensitive brain component, and removing intracranial volume from the models increased the 462 

relationship between memory scores and the memory-sensitive brain PC. Since intracranial volume 463 

reaches its maximum in childhood and is unlikely to be influenced by schooling, this relationship 464 

does not reflect a causal effect of education and is a further indication that selection effects indeed 465 

play a role. Although the relationship between brain volumes and education was found to exist also 466 

independently of intracranial volume, it is most likely that the education-brain association was 467 

present early in life. Therefore, we interpret the memory-brain-education relationships observed in 468 

the present study as partly reflecting selection effects, potentially complemented by some self-469 

reinforcing effects of early schooling. 470 

 471 

Considerations and future research 472 

First, the samples cover 33 countries, and the conclusions not confined to one specific time and 473 

place. Still, we did not attempt to detect variations in associations across time 31 and societies 32-35,64, 474 

but another a multi-cohort, multi-national aging-study found relatively consistent associations 475 

between cognition and education 65. Second, while SHARE used probability sampling to achieve 476 

representativity, the MRI samples are generally less representative of their respective populations 477 

(e.g. 66). It is difficult to estimate the influence of this, but we note that the memory-education 478 

results from SHARE were replicated in the brain imaging cohorts. Further, selective attrition and 479 

mortality may affect the longitudinal estimates, although studies addressing this have largely 480 

obtained similar estimates 21. 481 

 482 

Third, we used memory test scores as measures of cognition. While such scores correlate with 483 

important real-life indicators, e.g. work participation and capacity for independent living, it is not 484 
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clear to what extent changes in test scores imply similar changes in daily life cognitive function (for a 485 

broader discussion, see 67). It cannot be ruled out that education enhanced scores by increased test-486 

taking skills or cognitive strategies with little effect on the underlying cognitive construct. Such 487 

effects could be expected to be larger for crystallized or domain knowledge-based tests, such as 488 

vocabulary or calculus, and less for fluid tests, including list recall 21. Still, schooling can potentially 489 

increase fluid test performance by factors such as test-specific encoding strategies and test-taking 490 

skills, which may have little applicability to other aspects of life.  491 

 492 

Finally, we focused on episodic memory and structural brain changes. Causal effects of education 493 

have been identified for various cognitive measures, including fluid (such as memory), crystallized 494 

(e.g. language) and compound (e.g. the g-factor) measures of cognition 29. One study found that the 495 

association between education and cognitive scores, when controlling for childhood cognition, 496 

comprised direct effects on specific cognitive skills, including memory, and was not mediated by the 497 

g-factor 68. Therefore, a potential extension of the current work would be to include multiple 498 

cognitive functions and examine common versus unique associations with education and brain 499 

structure. Finally, although structural brain change is predictive of memory decline in aging 36, other 500 

brain measures, such as those related to brain connectomics 69, could potentially show different 501 

relationships to education. 502 

 503 

Conclusion 504 

In this large-scale, geographically spread longitudinal mega-analytic study, we find that education is 505 

robustly related to higher episodic memory function and intracranial volume, and modestly to a 506 

brain component optimized to be sensitive to memory change. However, the results do not indicate 507 

that this association is driven by slower brain aging or more resilience to structural brain change. 508 

Rather, we find evidence to suggest that the relationship is established early in life and partly is 509 

attributable to selection effects. Hence, to the extent that education may have a positive effect on 510 

episodic memory function in aging, this effect originates from earlier in life.  511 

 512 

Acknowledgement 513 

The Lifebrain consortium is funded by the EU Horizon 2020 grant agreement no. 732592 (Lifebrain). 514 

The different sub-studies are supported by different sources. LCBC is supported by the European 515 

Research Council under grant agreements no. 283634 and no. 725025 (to A.M.F.) and no. 313440 (to 516 

K.B.W.), as well as the Norwegian Research Council (325878, 262453 to A.M.F.; 325001, 301395, 517 

239889 to K.B.W.; 249931 to A.M.F & K.B.W.; 324882 to DVP; 325415 to HG), the National 518 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2025. ; https://doi.org/10.1101/2025.01.29.25321305doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.29.25321305
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Association for Public Health’s dementia research program, Norway (to A.M.F.), and the University 519 

of Oslo through the UiO:Life Science convergence environment (to A.M.F). Betula is supported by a 520 

scholar grant from the Knut and Alice Wallenberg foundation to L.N. Barcelona is partially supported 521 

by a Spanish Ministry of Economy and Competitiveness grant to D.B.-F. (grant no. PSI2015-64227-R 522 

(AEI/FEDER, UE)); and to and to G.C and J.S.-S (grant no. PID-2022-139298OA-C22 (MCIN /AEI 523 

/10.13039/501100011033 / FEDER, UE)); by the Walnuts and Healthy Aging study 524 

(http://www.clinicaltrials.gov; grant no. NCT01634841) funded by the California Walnut 525 

Commission, Sacramento, California; and by an ICREA Academia 2019 award. BASE-II has been 526 

supported by the German Federal Ministry of Education and Research under grant nos 16SV5537, 527 

16SV5837, 16SV5538, 16SV5536K, 01UW0808, 01UW0706, 01GL1716A and 01GL1716B and by the 528 

European Research Council under grant agreement no. 677804 (to S.K.). Dr. A. Pascual-Leone is 529 

partly supported by grants from the National Institutes of Health (R01AG076708), Jack Satter 530 

Foundation, and BrightFocus Foundation.  531 

Part of the research was conducted using the UKB resource under application no. 32048. The 532 

funders had no role in study design, data collection and analysis, decision to publish or preparation 533 

of the manuscript. LOW is funded by the South-Eastern Norway Regional Health Authorities (# 534 

2017095), the Norwegian Health Association (#19536, #1513) and by Wellcome Leap’s Dynamic 535 

Resilience Program (jointly funded by Temasek Trust) (#104617). 536 

Parts of the data used in preparation of this article were obtained from the Pre-Symptomatic 537 

Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD) program. 538 

Data were provided [in part] by OASIS-3” "OASIS-3: Principal Investigators: T. Benzinger, D. Marcus, 539 

J. Morris; NIH P50AG00561, P30NS09857781, P01AG026276, P01AG003991, R01AG043434, 540 

UL1TR000448, R01EB009352. 541 

Parts of the data collection and sharing for this project were provided by the Cambridge Centre for 542 

Ageing and Neuroscience (CamCAN). CamCAN funding was provided by the UK Biotechnology and 543 

Biological Sciences Research Council (grant number BB/H008217/1), together with support from the 544 

UK Medical Research Council and University of Cambridge, UK.  545 

Parts of the data are from VETSA, which is funded by the National Institute of Aging grants R01s 546 

AG018384, AG018386, AG050595, AG022381, AG076838. The content is the responsibility of the 547 

authors and does not necessarily represent official views of the NIA, NIH, or VA. U.S. Department of 548 

Veterans Affairs, Department of Defense; National Personnel Records Center, National Archives and 549 

Records Administration; Internal Revenue Service; National Opinion Research Center; National 550 

Research Council, National Academy of Sciences; and the Institute for Survey Research, Temple 551 

University provided invaluable assistance in the conduct of the VET Registry. The Cooperative 552 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2025. ; https://doi.org/10.1101/2025.01.29.25321305doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.29.25321305
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Studies Program of the U.S. Department of Veterans Affairs provided financial support for 553 

development and maintenance of the Vietnam Era Twin Registry. We would also like to acknowledge 554 

the continued cooperation and participation of the members of the VET 555 

Registry and their families.  556 

Part of the data collection and sharing was funded by the Alzheimer's Disease Neuroimaging 557 

Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of 558 

Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the 559 

National Institute of Biomedical Imaging and Bioengineering, and through generous contributions 560 

from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; 561 

Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; 562 

Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd 563 

and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer 564 

Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & 565 

Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx 566 

Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal 567 

Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian 568 

Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private 569 

sector contributions are facilitated by the Foundation for the National Institutes of Health ( 570 

www.fnih.org). The grantee organization is the Northern California Institute for Research and 571 

Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the 572 

University of Southern  California. ADNI data are disseminated by the Laboratory for Neuro Imaging 573 

at the University of Southern California.  574 

Parts of the data used in the preparation of this article were obtained from the Harvard Aging Brain 575 

Study (HABS - P01AG036694; https://habs.mgh.harvard.edu). The HABS study was launched in 2010, 576 

funded by the National Institute on Aging, and is led by principal investigators Reisa A. Sperling MD 577 

and Keith A. Johnson MD at Massachusetts General Hospital/Harvard Medical School in Boston, MA. 578 

 579 

The SHARE data collection has been funded by the European Commission, DG RTD through FP5 580 

(QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857, 581 

SHARELIFE: CIT4-CT-2006-028812), FP7 (SHARE-PREP: GA N°211909, SHARE-LEAP: GA N°227822, 582 

SHARE M4: GA N°261982, DASISH: GA N°283646) and Horizon 2020 (SHARE-DEV3: GA N°676536, 583 

SHARE-COHESION: GA N°870628, SERISS: GA N°654221, SSHOC: GA N°823782, SHARE-COVID19: GA 584 

N°101015924) and by DG Employment, Social Affairs & Inclusion through VS 2015/0195, VS 585 

2016/0135, VS 2018/0285, VS 2019/0332, VS 2020/0313, SHARE-EUCOV: GA N°101052589 and 586 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2025. ; https://doi.org/10.1101/2025.01.29.25321305doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.29.25321305
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

EUCOVII: GA N°101102412. Additional funding from the German Federal Ministry of Education and 587 

Research (01UW1301, 01UW1801, 01UW2202), the Max Planck Society for the Advancement of 588 

Science, the U.S. National Institute on Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, 589 

P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, BSR12-04, 590 

R01_AG052527-02, R01_AG056329-02, R01_AG063944, HHSN271201300071C, RAG052527A) and 591 

from various national funding sources is gratefully acknowledged (see www.share-eric.eu). 592 

 593 

Conflicts of interest 594 

Dr. A. Pascual-Leone serves as a paid member of the scientific advisory boards for Neuroelectrics, 595 

Magstim Inc., TetraNeuron, Skin2Neuron, MedRhythms, and AscenZion. He is co-founder of TI 596 

solutions and co-founder and chief medical officer of Linus Health. Dr. A Pascual-Leone is listed as an 597 

inventor on several issued and pending patents on the real-time integration of transcranial magnetic 598 

stimulation with electroencephalography and magnetic resonance imaging, and applications of 599 

noninvasive brain stimulation in various neurological disorders; as well as digital biomarkers of 600 

cognition and digital assessments for early diagnosis of dementia. 601 

 602 

Online Methods 603 

Samples 604 

SHARE cohort 605 

The Survey of Health, Ageing and Retirement in Europe is a research infrastructure for studying the 606 

effects of health, social, economic and environmental policies over the life-course of European 607 

citizens and beyond (https://share-eric.eu/) 37. SHARE contains observations of individuals from 50 608 

years of age from 28 countries, recruited to be representative of the population in each country. 609 

Data for the present analyses was extracted from easySHARE (release 8.0.0, February 10th 2022, 610 

doi:10.6103/SHARE.easy.800), see 70,71 for methodological details. The easySHARE release 8.8.0 is 611 

based on SHARE Waves 1, 2, 3, 4, 5, 6, 7, and 8 (DOIs:10.6103/SHARE.w1.800, 612 

10.6103/SHARE.w2.800, 10.6103/SHARE.w3.800, 10.6103/SHARE.w4.800, 10.6103/SHARE.w5.800, 613 

10.6103/SHARE.w6.800, 10.6103/SHARE.w7.800, 10.6103/SHARE.w8.800) 37,72. Participants included 614 

in the analyses participated in up to six waves of data collection. In total, we included data from 615 

130.880 participants (mean age 64.9 years at baseline, 50.1-112.0, 59.363 males/ 71.517 females), 616 

with an average of 2.7 (SD = 1.63) waves with a mean maximum follow-up interval of 6.53 years (0.9-617 

0-15.9, SD = 3.93).  In total, 352.953 memory test sessions were included, with two test results 618 

(immediate vs. delayed recollection) for each, i.e. 705.906 memory scores went into the analyses. 619 

Respondents aged below 50 years of age (individuals recruited due to being spouses of other 620 
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participants) were excluded from the sample. An overview of sample distribution as a function of 621 

timepoints, education category and age is provided in the figure below. 622 

 623 

A. Number of timepoints per participant 

 

B. Number of participants per education category 

 

C. Age-distribution of each education category 
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Online Figure: Sample descriptives. A: Number of participants for each test wave (not cumulative). B. 624 

Number of participants per education category. C. Age-distribution at baseline for each education 625 

category. 626 

 627 

Memory was assessed with a 10 word verbal recall test. The word list is read out load to the 628 

participants, and then recall is tested immediately after the presentation (Recall 1) and then after a 629 

delay of approximately 5 minutes (Recall 2). Multiple versions of the lists are assigned to the 630 

respondents 39. The response distribution is shown in Figure SI 2. As can be seen, there are no ceiling 631 

effects, which is important when assessing longitudinal change for the best-performing participants. 632 

There are some floor effects for recall 2, but less for recall 1, suggesting that we can estimate 633 

longitudinal chance well for most baseline levels of memory. Since education is association with 634 

differences in memory scores, ceiling and floor effects could potentially obscure real differences in 635 

change, but this is unlikely to have affected the current results given the response distribution 636 

below. Scores were lower for delayed than immediate recall (OR = 0.535, CI: 0.534 – 0.537) and 637 

females scored higher than males (OR = 1.160, CI: 1.153-1.168). 638 
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 639 

Online Figure: Response distribution for word recall. Number of participants (y-axis) as a function of 640 

number of words recalled (x-axis). Left: Immediate recall (Recall 1). Right: Delayed recall (Recall 2). 641 

 642 

In addition to the memory measures, we extracted the variables age, sex, birth year, education 643 

(based on the International Standard Classification of Education 1997), and country of current 644 

residency. 645 

 646 

Statistical analyses: SHARE 647 

Analyses were performed in R version 4.4.1 73 using the brms package’s 74 interface to the 648 

probabilistic programming language Stan 75. To assess effects of education on memory and memory 649 

change, we ran logistic regressions with memory recall as dependent variable, yielding odds ratios as 650 

the most relevant model parameter to interpret. An odds ratio of 1 corresponds to a regression 651 

coefficient of 0. The main model was: 652 

 653 

Each memory test was used as a separate response, yielding two observations per timepoint, and 654 

the variable test represents difficulty of condition 2 relative to condition 1. To control for practice 655 

effects, a monotonic function of the number of previous tests taken was included as covariate. We 656 

used a smooth function of age to allow non-linear relationships. Individual-specific intercepts per 657 

participant were nested within country. Default priors were used for all parameters, two parallel 658 

chains of Stan’s No-U-Turn Sampler 76 were run for 1500 iterations, discarding the first 1000 as 659 

warmup. This yielded 1000 post-warmup samples. For the offset/level analyses, education (edu) was 660 

the variable of interest, while for the slope/change analyses, edu × time since baseline was the 661 
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critical variable. Z-transformed variables were used in the model fitting for numerical stability, and 662 

results converted back to their natural units for easier interpretability, e.g., age and time in years. 663 

 664 

Brain cohorts   665 

We combined data from 13 datasets with longitudinal brain MRIs and memory assessments: LCBC 77, 666 

Betula 78,79, UB 80,81, BASE-II 82,83, and Cam-CAN 84 datasets (from the Lifebrain Consortium) 38 as well 667 

as the COGNORM 85, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 668 

(https://adni.loni.usc.edu) 86, BBHI 87, the Harvard Aging Brain Study (HABS) 88, the UKB 669 

(https://www.ukbiobank.ac.uk/) 89, PREVENT-AD 90,91, OASIS3 (https://sites.wustl.edu/oasisbrains/) 670 

92, and VETSA 93. Sample size was maximized for each analysis and hence varies due to data 671 

availability and missingness (see Table 1 for an overview). In addition to cohort-specific inclusion and 672 

exclusion criteria, participants >50 years without cognitive impairment, Alzheimer’s dementia or 673 

severe neurological or psychiatric disorders were included. Additionally, MRI data from scanners 674 

with fewer than 15 measurements were also excluded. The initial dataset included individuals with 1 675 

to 14 MRI acquisitions with longitudinal structural MRI data spanning up to 15.8 years. Similarly, 676 

memory assessments range from 1 to 24 observations per individual with a follow-up up to 28 years. 677 

For detailed descriptions of general characteristics of each dataset, please refer to the study-specific 678 

citations above. A general overview of each dataset is given in the table below. 679 

ADNI: The Alzheimer’s Disease Neuroimaging Initiative is a multi-site project led by Doctor 

Michael W. Weiner to assess the progression of mild cognitive impairment (MCI) and early 

Alzheimer’s Disease (AD). The present study includes participants from ADNI 1, ADNIGO, ADNI2, 

and ADNI 3, who were cognitively healthy at baseline (DX_bl variable). Only observations in which 

participants were still cognitively healthy were included as determined by the ADNI team (DX 

variable). Participants were required to have no evidence of ischemic stroke (Hachinski Ischemic 

Score ≤ 4), a Geriatric Depression scale score < 6, stable medications for 4 weeks before the 

screening, good auditory and visual acuity, good general health, no medical contraindications to 

MRI and at least 6 grades of education/work history. General inclusion and exclusion criteria are 

described elsewhere 94. All participants signed an informed consent form and the protocols were 

approved by the corresponding regional ethical committees in the US and Canada. Data was 

retrieved in April 2021. 

BASE-II: Participants of the Berlin Aging Study II were community-dwelling older adults recruited 

from the greater Berlin metropolitan area through advertisements in newspapers and public 

areas. The baseline sample comprised 2200 participants; 1600 older adults aged 61–88 years, and 

600 younger adults aged 24–40 years. Participants were invited to a medical exam and cognitive 
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testing sessions. After completion of the cognitive examination of BASE-II, eligible participants 

were invited to take part in one MRI session within a time window of 2–4 weeks after cognitive 

testing. The MRI sample consisted of 341 older adults aged 61–82 years and 103 younger adults. 

MR scans and cognitive scores were obtained 2012-2013. A subsample of the MR sample was 

later invited for follow-up. The different elements of the study were approved by the ethics 

committees of the Max Planck Institute for Human Development, the Charité University ethics 

committee and by the ethics committees of The German Association for Psychology (DGPs). 

Participants signed written informed consent and received monetary compensation for their 

participation in BASE-II and the MRI study. Exclusion criteria were untreated diabetes and 

hypertension; prior stroke, head injuries or brain surgery; psychiatric illness; major depression; 

dementia with a score < 24 on the Mini- Mental State Examination. None of the participants took 

medication that might affect memory function or had a history of head injuries, medical (e.g., 

heart attack), neurological (e.g., epilepsy), or psychiatric disorders (e.g., depression). All 

participants reported normal or corrected to normal vision. Observations with MMSE < 26 or no 

MMSE data were discarded.  

BBHI: Barcelona Brain Health Initiative study (https://bbhi.cat/en/) participants are community-

dwelling individuals between 40 and 65 years of age, without self-reported neurological or 

psychiatric diagnosis at the time of recruitment 95. BBHI is an ongoing longitudinal cohort study 

that investigates the determinants of brain and mental health in healthy middle-aged and older 

adults. Recruitment started in 2017, when multiple initiatives (including conferences, radio and 

television interviews, and social media advertisements) took place to encourage participants to 

join the study. It has enrolled 4,686 participants via a web-based application, who completed a 

first on–line questionnaire. Exclusion criteria included cognitive impairment and diagnosis of 

neurologic or psychiatric disorders, including Alzheimer’s disease, Parkinson’s disease, multiple 

sclerosis, amyotrophic lateral sclerosis, cerebral stroke, schizophrenia, and major depression. 

BBHI includes regular cognitive, medical, brain imaging, and biological assessments, and has 

several sub studies. A sample of 1,000 participants is undergoing a detailed clinical phenotyping 

through a multi-day in-person evaluation that includes cognitive, physical, and medical 

assessments, biological sample recollection, structural and functional magnetic resonance imaging 

(MRI), and electroencephalography (EEG). Participants of this study are invited biannually for 

repeated evaluations.  

BETULA: The BETULA project (Umeå. Sweden) is a prospective longitudinal study on aging, 

memory, and dementia, which used a population-based sampling of healthy middle-aged and 

older adults for recruitment. For the current analyses, the MRI subsample of the study is used. 
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Participation in the MRI study was offered to all participants who had remained in the study and 

completed cognitive testing at the 5th Betula test wave onwards. Exclusion criteria were severe 

visual or auditory handicaps, intellectual or developmental disabilities, suspected dementia, 

having a mother tongue other than Swedish, MRI contraindications, severe neurological disorders, 

or visual/motor deficits that could interfere with fMRI data collection, MMSE <24, brain or head 

surgery, and substantial brain anatomical deviations. Some participants were later excluded due 

to discovered neurological conditions, severe depression, and MRI anatomical abnormalities. All 

participants signed an informed consent, and the protocols were approved by the Regional Ethical 

Vetting Board at Umeå University. Data was retrieved in August 2022. 

Cam-CAN: The Cambridge Centre for Ageing and Neuroscience cohort study is a large-scale, multi-

modal, population-based adult lifespan (18–87 years old) investigation of the neural 

underpinnings of successful cognitive ageing. Recruitment was done by invitation letters based on 

the patient lists of general practitioners within the Cambridge City area. A population-based 

cohort of 2700 adults aged 18 or above was recruited to Stage 1 of the project, where they 

completed an interview including health and lifestyle questions, a core cognitive assessment, and 

a questionnaire of lifetime experiences and physical activity. Approximately 700 participants 

continued to Stage 2 where they underwent cognitive testing and provided measures of brain 

structure and function. In stage 3, a subset of approximately 250 adults returned for longitudinal 

follow-up MRI. The study is conducted in compliance with the Helsinki Declaration, and has been 

approved by the local ethics committee, Cambridgeshire 2. Exclusion criteria included term-time 

residents of colleges and universities, and participants whose Primary Care Physician judged as 

inappropriate to include. For phase-II, exclusion criteria additionally included cognitive 

impairment (MMSE < 24, memory deficit, consent difficulties), communication difficulties (hearing 

problems, insufficient English language, vision difficulties), medical problems by self-report of 

diagnosis (dementia diagnosis /Alzheimer’s Disease, Parkinson’s Disease, Motor Neuron disease, 

Multiple sclerosis, cancer, stroke, encephalitis, meningitis, epilepsy, head injury with serious 

results [coma, unconscious for >2 hours, skull fracture], recently diagnosed or uncontrolled high 

blood pressure, possible pregnancy, current psychiatric conditions [bipolar disorder, 

schizophrenia, psychosis]), mobility problems (restricted mobility which could prevent further 

participation, inability to walk 10 meters), substance abuse (past or current treatment for drug 

abuse, current drug usage), and MRI/ MEG safety and comfort exclusions.  

OUS/COGNORM: The OUS/COGNORM cohort is an ongoing, prospective study coordinated by the 

Oslo University Hospital and Diakonhjemmet Hospital, Oslo, Norway. Patients (age ≥ 65 years) 

scheduled for elective gynecological, urological, or orthopedic surgery under spinal anesthesia 
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were recruited. Participants were required to have no dementia and exclusion criteria included 

previous stroke with sequela, Parkinson’s disease, or other neurodegenerative diseases that are 

likely to affect cognition. Patients with suspected undiagnosed dementia at any time within the 

first five years of follow-up (n = 15), MMSE score <28 at baseline, and at least two abnormal 

cognitive test scores (-1.5 standard deviation [SD] below the mean normal value for age, sex, and 

education) were excluded. All other observations were included. All participants signed informed 

consent and the protocol was approved by the Norwegian Regional Committees for Medical and 

Health Research Ethics and the Data Protector Officer at Oslo University Hospital. Data was 

retrieved in March 2023. 

HABS: The Harvard Aging Brain Study is an ongoing, long-term observational study that aims to 

enhance our understanding of brain aging and the early stages of Alzheimer's disease. The study 

collects PET, MRI data, neuropsychological and clinical assessments. The age range was 50-90 

years at the time of baseline assessment and all patients were considered non-clinically impaired 

at the start of the study. Further, participants had a CDR score of 0, MMSE score ≥ 25, < 11 on the 

Geriatric Depression Scale, and scored above age- and education-adjusted cutoffs on the 30-

Minute Delayed Recall of the Logical Memory Story A, to be included in the study. Participants 

with a history of alcoholism, drug abuse, head trauma, or current serious medical/psychiatric 

illness were excluded. Observations with MCI or AD diagnostic (DX variable) were excluded. All 

participants signed informed consent and the protocol was approved by the Partners Healthcare 

Human Research Committee. HABS data release 2.20, retrieved in August 2022 via 

habs.mgh.harvard.edu. 

LCBC: The Center for Lifespan Changes in Brain and Cognition cohort (Oslo, Norway) consists of 

cognitively healthy, community-dwelling participants across the lifespan and is drawn from 

studies coordinated by the LCBC Research Center (LCBC www.lcbc.uio.no), approved by a 

Norwegian Regional Committee for Medical and Health Research Ethics. Written informed 

consent was obtained from all participants. The samples were recruited by a variety of methods 

such as newspapers and webpage ads. Most participants were recruited for observational studies, 

while a minority were recruited to cognitive training. All participants had to undergo a 

standardized health interview before being included in the study, and those with a history of 

neurological or psychiatric conditions or who reported concerns about their cognitive function 

were excluded. Additionally, all participants over the age of 40 years were required to score at 

least 25 on the Mini-Mental State Examination, and observations paired with MMSE ≤ 25 were 

excluded. Data was retrieved in November 2022.  
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OASIS3: The Open Access Series of Imaging Studies is a retrospective collection of multimodal 

data that focuses on aging and AD and is openly accessible to the scientific community. OASIS-3 

includes neuroimaging, clinical and neuropsychological data. Participants were recruited through 

the Washington University Knight Alzheimer Disease Research Center via flyers, word of mouth, 

and community engagements, and were between 42 and 95 years of age. Only participants 

deemed cognitively normal at baseline were included. Exclusion criteria included medical 

conditions that precluded longitudinal participation or medical contraindications for the different 

study arms. All participants consented to Knight ADRC-related projects following procedures 

approved by the Institutional Review Board of Washington University School of Medicine. 

Observations were included until the last observation in which a subject was deemed cognitively 

healthy as determined by the Clinical Dementia Rating Scale (CDR) 96.  

PreventAD: The Pre-symptomatic Evaluation of Experimental or Novel Treatments for AD is a 

retrospective, long-term study that follows cognitively healthy older individuals with a familiar 

history of AD. It includes participants enrolled either from an observational cohort or the clinical 

trial of PREVENT-AD. This study comprises MRI images, blood and CSF samples, and clinical and 

neuropsychological assessments. Participants had to be at least 60 years old with ≥6 years of 

education and be cognitively unimpaired at baseline. The Montreal Cognitive Assessment (MoCA) 

(≥ 26/30) and CDR (= 0) scales were used to assess cognitive abilities. Other exclusion criteria at 

baseline included medical conditions that prevented longitudinal participation or medical 

contraindications to MRI, use of acetylcholinesterase inhibitors, other approved prescription 

cognitive enhancers, hypertension, or substance abuse. The protocols, consent forms, and study 

procedures were approved by the McGill Institutional Review Board and the Douglas Mental 

Health University Institute Research Ethics Board. Observations with RBANS > 1SD below the 

mean and probable MCI, as evaluated by a clinician, were excluded. 

UB: The University of Barcelona cohort consisted of a series of retrospective sub studies, 

consisting of cognitively healthy, community-dwelling participants with normal visual function. 

Most were recruited for observational studies while a minority were recruited to cognitive 

training. Exclusion criteria varied across sub-studies, but included severe neurologic and 

psychiatric disorders, recent head trauma or brain surgery, cognitive deterioration, or dementia 

with a score < 24 on the Mini-Mental State Examination and additional neuropsychological criteria 

at baseline, other neurodegenerative disorders like Parkinson’s disease and chronic illness with a 

projected shortened lifespan. Further, observations with MMSE < 26 at later timepoints were 

excluded. All participants signed informed consent, and the protocols were approved by the 

ethical committees of the University of Barcelona and of the Hospital Clinic of Barcelona.  
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UKB: The UK Biobank is a major national and international health resource with the aim of 

improving the prevention, diagnosis and treatment of a wide range of illnesses. UKB recruited 

≈500,000 people between 40-69 years in 2006-2010 from across UK through National Health 

Service (NHS) registers, living within a reasonable traveling distance of an assessment center. 

Centers are in accessible and convenient locations with a large surrounding population. The study 

sample was drawn from the UKB neuroimaging branch and conducted under data application 

number 32048. Only individuals with longitudinal MRI data were included. Participants signed 

informed consent, and the protocols were approved by the North West Multi-Center Research 

Ethics Committee [MREC]; see also https://www.ukbiobank.ac.uk/the-ethics-and-governance-

council. 

VETSA: The Vietnam Era Twin Study of Aging is an ongoing large-scale investigation of cognitive 

and brain aging in men, investigating genetic and environmental influences on cognitive aging, 

brain structure and function, and health. VETSA involves over 1600 male twins from the Vietnam 

Era Twin Registry who served during the Vietnam War era, between 1965 and 1975, though 

approximately 80% report no combat experience. Assessments began when participants were in 

their 50s (in 2003) and follow-ups are conducted every 5-6 years. The age range is 52 to 60 at 

baseline. Assessments include extensive neurocognitive testing, genetics, brain MRI, and plasma 

samples. > 1200 twins participated in waves 1, 2 and 3. The sample is relatively representative of 

US men in their age range. Attrition-replacement procedures were taken in wave 2. For the VETSA 

MRI study, participants are screened for safety issues (e.g. MRI contraindications), and both 

members of a twin pair had to consent to participate. For MRI, twins had to additionally be able to 

travel to a scanning site. Other exclusion criteria were depended on exclusion criteria for serving 

in the military, e.g. participants scoring in the lowest 10 percentile ranks of the Armed Forced 

Qualification Test (AFQT) were excluded from the military. In addition, we further excluded data 

from participants with incidental radiological findings, history of seizure, and diagnostic of 

multiple sclerosis, and AIDS. 

Online Table: General characteristics of each sample 680 

 681 

The main sample descriptives are provided in Table 1 in the main manuscript. Since the exact sample 682 

size varies between analyses depending on data availability, the specific characteristics for the 683 

samples used to address the different research questions are provided in the table below and the 684 

sample distributions shown in the figure.  685 

 Obs.  N (male)  Education Sub. Obs. Baseline age   Time 
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   (mean:level) Mean 

(SD) 

Min - 

Max 

Mean 

(SD) 

Min - 

Max 

Mean 

(SD) 

Min - 

Max 

Association between education and memory function 

Total 

sample  

54383  39915  26111:25814 1.37 

(1.13) 

1 – 

15  

65.45 

(7.74) 

50.00 – 

97.39 

0.87 

(2.46) 

0 – 

15.84 

Association between education and brain structure 

Total 

sample 
15157  

6472 

(3369) 
3800:3787 

2.34 

(1.64)  
1 - 14 

65.95 

(8.63)  

50.05 – 

97.12 

2.81 

(3.20)  

0 – 

15.84 

Moderating effect of education on the association between brain and memory function 

Total 

sample 
13135  5523  3246:3192 

2.38 

(1.70) 
1 - 14 

65.75 

(8.54)  

50.05 – 

97.12 

2.86 

(3.14) 

0 – 

15.00 

Online table: Main characteristics for the total dataset used to address the different classes of 686 

research questions. 687 

 688 

Education – memory Education – brain Education – memory – 
brain 

   
Online figure: Sample distribution of the brain cohorts used for testing education-memory (left), 689 

education-brain (middle) and education-memory-brain relationships (right).  690 

 691 

Data availability 692 

Each dataset has different owners. Contact information to be used for data is specified in the table 693 

below.  694 

Sample Link PI and/or Admin Contact IRB 

 Longitudinal Aging Dataset 
ADNI https://adni.loni

.usc.edu/ (O) 
Weiner MW;  

michael.weiner@ucsf.edu 
(PI) 

ida@loni.usc.edu (AC) 

Approved by the 
Institutional 

Review Boards of 
all of the 

participating 
institutions 
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BASE-II https://www.ba
se2.mpg.de/en 

(R) 

Lindenberger U 
(lindenberger@mpib-

berlin.mpg.de), Düzel E 
(e.duzel@ucl.ac.uk), Kühn S ( 
kuehn@mpib-berlin.mpg.de) 

(PI); Ludmila Muller 
(lmueller@mpib-

berlin.mpg.de)   

Ethics Committee 
of the Max-Planck-

Institute 

BBHI https://bbhi.cat
/en (R) 

Alvaro Pascual-Leone 
(apleone@hsl.harvard.edu)(

PI);  bbhi@guttmann.com 
(AC) 

Research 
institutional review 

board of the 
Institut Guttmann 
and protocol was 
approved by CEIm 

– Unió Catalan 
d’Hospitals 

BETULA http://www.ufbi
.umu.se/english 

(R) 

Lars Nyberg; 
lars.nyberg@umu.se (PI) 

Regional Ethical 
Vetting Board at 
Umeå University 

CamCAN https://cam-
can.mrc-

cbu.cam.ac.uk/ 
(O) 

Richard N Henson ( 
rik.henson@mrc-

cbu.cam.ac.uk)(PI);  
https://camcan-archive.mrc-
cbu.cam.ac.uk/dataaccess/ 

(AC) 

Cambridgeshire 2 
Research Ethics 

Committee 
(reference: 

10/H0308/50). 

OUS/COGNORM https://www.m
ed.uio.no/klinm
ed/english/rese
arch/groups/del
irium/index.htm

l 

Leiv Otto Watne 
(l.o.watne@medisin.uio.no) 

(PI); Anders Martin Fjell; 
a.m.fjell@psykologi.uio.no 

(PI) 

Norwegian 
Regional 

Committees for 
Medical and Health 

Research Ethics 
and the Data 

Protector Officer at 
Oslo University 

Hospital 

HABS https://habs.mg
h.harvard.edu 

(O) 

Reisa Sperling; 
reisa@rics.bwh.harvard.edu 
(PI); habs@mgh.harvard.edu 

(AC) 

Partners 
Healthcare Human 

Research 
Committee 

LCBC http://lcbc.uio.n
o (R) 

Anders M Fjell; 
andersmf@psykologi.uio.no 

/ Kristine B. Walhovd; 
k.b.walhovd@psykologi.uio.

no (PI) 

Norwegian 
Regional 

Committee for 
Medical and Health 

Research Ethic; 
Regional Ethical 
Committee of 
South Norway 

OASIS3 https://www.oa
sis-brains.org/ 

(O) 

Pamela J. LaMontagne; 
pjlamontagne@wustl.edu 

(PI); Daniel Marcus; 
dmarcus@wustl.edu (PI); 

Institutional 
Review Board of 

Washington 
University School 

of Medicine 
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https://www.oasis-
brains.org/#contact (AC) 

preventAD https://prevent-
alzheimer.net; 

https://openpre
ventad.loris.ca/ 

(O) 

Jennifer Tremblay; 
jennifer.tremblay-

mercier@douglas.mcgill.ca 
(PI); 

https://openpreventad.loris.
ca/contact/ (AC) 

The McGill 
Institutional 

Review Board and 
the Douglas Mental 

Health University 
Institute Research 

Ethics Board 

UB http://www.ub.
edu/bbslab/bbsl

ab/ (R) 

David Bartrés-Faz; 
dbartres@ub.edu  (PI) 

Comisión de 
Bioética de la 

Universidad de 
Barcelona and 
Hospital Clinic 

UKB https://www.uk
biobank.ac.uk/ 

(O) 

Rory Collins 
(rory.collins@ndph.ox.ac.uk) 

(PI); 
access@ukbiobank.ac.uk 

(AC) 

Northwest Multi-
Center Research 

Ethics Committee 
[MREC]; 

https://www.ukbio
bank.ac.uk/the-

ethics-and-
governance-council 

VETSA https://www.ve
tsatwins.org/ (O 

William S. Kremen ( 
wkremen@ucsd.edu)(PI); 

https://www.vetsatwins.org/
for-researchers/ (AC) 

VETSA and VET 
Registry Data 

Security 
Policies, UCSD 
Human Subject 

Committee 

Online Table: Links, data owner and IRB approvals for each dataset 695 

Data availability, contact and principal investigator information, and ethical approval for the 696 

different datasets used. PI = Principal Investigator. AC = Administrative contact. IRB = Institutional 697 

Review Boards. O = Openly available. Automatic or semi-automatic data agreements. Fees may apply 698 

(e.g. UKB). R = Restricted. Ad-hoc permission is required. Contact PI or AC for specific details on 699 

access to data. 700 

 701 

Education in the brain imaging cohorts 702 

For each dataset, education was categorized as high or low using a mean split. We chose this 703 

approach because quantitative distributions of education were often highly non-gaussian and level-704 

based codifications were somewhat arbitrary due to idiosyncratic reporting of years of education, 705 

and variations in schooling systems across years and country. To ensure robustness, we conducted 706 

analyses with an alternative operationalization of education, categorizing individuals with or without 707 

tertiary education. When education data was provided as qualifications or categories, these were 708 

converted to years of education based on country-specific norms. Individuals were then grouped as 709 

having high or low education based on the median. For the tertiary education categorization, the 710 
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reverse process was applied, converting years of education into education qualifications. For 711 

reporting consistency, a lower cap of 6 years and an upper cap of 20 were applied to education 712 

years. An overview of education characteristics is provided in the table below and visualized in the 713 

figure. 714 

Sample N Years 
of edu 

(SD) 

Terti
ary 

Above 
mean 

Raw information Level to 
Years 

recoding 

Years to 
Tertiary 
recoding 

ADNI 
2298 

16.05 
(2.75) 

1519 962 
Years of education 

(PTEDUCAT)  
Range 3 – 20 years1 

--- > 16 
years 

BASE-II 
1647 

14.34 
(2.83) 

611 812 
Years of education 
Range 7 – 18 years 

--- > 16 
years 

BBHI 
950 

14.73 
(2.13) 

679 679 
1: Primary | 2: 

Secondary | 3: Tertiary 
1: 8; 2: 12; 
3: 16 years 

--- 

BETULA 
372 

12.27 
(3.81) 

88 185 
Years of Education  
Range 6 - 26 years2 

 > 16 
years 

CamCAN 

686 
14.21 
(2.65) 

425 425 

1: College, university 
degree or higher/ 2: 

A/AS levels/ 3: O 
levels/GCSEs 4: CSEs 5: 
NVQ, HND or HNC/ 6: 

Other professional 
qualifications / 0: None 

of the above 8: No 
answer 

1: 16, 2: 13, 
3: 11, 4: 11, 
5: 13, 6: 16, 
0: 7, 8: NaN 

years 

--- 

OUS/COG
NORM 

114 
14.56 
(3.46) 

48 55 
Years of Education 
Range 7 - 26 years2 

--- >= 16 
years 

HABS 
290 

15.77 
(3.09) 

186 186 
Years of education 

(YrsOfEd) 
Range 6 – 20 years2 

--- >= 16 
years 

LCBC 
296 

16.26 
(2.71) 

818 397 
Years of Education 

(Compiled)3  
Range 9 – 19 years 

--- >= 16 
years 

OASIS3 
686 

15.75 
(2.65) 

866 866 
Years of Education  

Range 6 – 29 years3 
--- >= 16 

years 

Prevent-
AD 

1033 
15.25 
(2.97) 

152 152 
Years of Education 

Range 7 – 29 years4 
--- >= 

152years 

UB 
493438 

11.32 
(3.86) 

101 143 
Years of Education 

 Range 2 – 20 years2 
--- >= 155 

years 

UKB 

372 
13.08 
(3.34) 

2366
70 

23667
0 

1: College,University 
degree, 2: A/AS levels, 

3: O 
levels/GCSEs 4: CSEs, 5: 

NVQ, HND or HNC, 
5: Other professional 

qualifications, -7: None 
of the above and -3:No 

answer. 

1: 16, 2: 13, 
3: 11, 4: 11, 
5: 16, -7: 7, 

-3: NaN 
years 

--- 
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VETSA 

1608 
13.85 
(2.09) 

455 844 

Years of education 
(Years of school 

completed).  
Range 8 – 20 years 

--- > 16 

Total 
504454 

13.12 
(3.34) 

2426
18 

24237
6 

--- --- --- 

Online Table: Overview of education variables and recoding 715 

Education data from the MRI sample.  1Lower cap at 6 years. 2Capped at 20 years. 3Different sources. 716 

Converted to semi-quantitative values with 9, 12, 16, and 19 years of education corresponding to 717 

basic, secondary, tertiary, and upper tertiary education. 4Based on Quebec norms 718 

(https://www.quebec.ca/en/education/study-quebec/education-system). 5Education system changes 719 

throughout through the 20th century in Spain varies the minimum years of education required to 720 

acquire tertiary education. 721 

 722 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2025. ; https://doi.org/10.1101/2025.01.29.25321305doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.29.25321305
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

723 

Online figure: Distribution of education in each sample 724 

 725 

Memory function in the brain imaging cohorts 726 

For each sample, we operationalized memory performance as a z-normalized score based on the 727 

first time point and the different available memory tests. When multiple scores were available, we 728 

used the first component of a Principal Component Analysis (PCA) with all measures as inputs. For 729 

each dataset, we regressed out age (as a smoothing term), sex, and one or two dummy test-retest 730 

regressors using generalized additive mixed models (gamm4 R-package) 40. Individual identifiers 731 

were used as random intercepts and the number of dummy test-retest regressors depended on 732 

whether the dataset had 2 or >=3 waves with memory function data. The residuals were used as an 733 

estimate of memory function in each observation. An overview of tests included in the memory 734 

performance score for each dataset is provided in the table. 735 
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Dataset Participants (Obs.) Memory Tests 

ADNI 904 (3824) ADNI-MEM1 

BASE-II 1894 (3110) VLMT short delay recall 
VLMT long delay recall 
VLMT learning (sum across trials) 

BBHI 966 (1266) RAVLT learning (sum across trials) 
RAVLT long delay recall 
RAVLT short delay recall 

BETULA 337 (1563) Recall of sentences2 

CamCAN 89 (172) Story short delay recall3  
Story long delay recall 

OUS/COGNORM 114 (667) CERAD short delay recall 
CERAD long delay recall 

HABS 287 (1289) Logical memory short delay recall 
Logical memory long delay recall 
SRT delayed recall 
SRT total recall 

LCBC 938 (1440) CVLT short delay recall 
CVLT long delay recall 
CVLT learning (sum across trials) 

OASIS3 648 (3170) Logical memory immediate 

preventAD 306 (1057) RBANS list recall 
RBANS list learning (sum across trials) 
RBANS story immediate memory 
RBANS story delayed recall 

UB 161 (298) RAVLT learning (sum across trials) 
RAVLT long delay recall 

UKB 33,890 (36,520) PAL4 

VETSA 1592 (3617) CVLT short delay recall 
CVLT long delay recall 
CVLT learning (sum across trials) 

Online table: Tests related to episodic memory included in the analyses for each sample. A PC was 736 

estimated based on the first time point for which multiple memory measures were available. 737 

Participants (Obs.). Participants and Observations with memory from the initial mri sample. MMSE = 738 

Mini-mental State Examination. RAVLT = Rey Auditory Verbal Learning Test; CVLT = California Verbal 739 

Learning Test; PAL = Paired associate learning (#20197 UKB field); Logical memory = Memory subtest 740 

of the Wechsler Memory Scale. CERAD = Consortium to Establish a Registry for Alzheimer's Disease 741 

(CERAD) Word List Memory test. ADAS = Alzheimer Disease Assessment Scale. VMLT = Verbal 742 

Learning and Memory test. SRT = Buschke Selective Reminding Task. RBANS = Repeatable Battery for 743 

Assessment of Neuropsychological Status. Story recall = Story recall and recognition task of episodic 744 

memory from Wechsler Neuropsychological Battery. 1ADNI-MEM score was computed developed by 745 

97 and consists of a composite score of memory which includes measures from RAVLT (learning trials, 746 

list, recognition and recalls), ADAS (learning trials, recall, and recognitions), MMSE words, and 747 

Logical memory. 2See Nilsson et al98 3Second wave was administered online. Calibration data (not 748 
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shown here) shows in person vs. online data is comparable.  4See 749 

https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=2561 for more information on PAL. 750 

 751 

Magnetic Resonance Imaging acquisition and preprocessing 752 

Structural T1-weighted (T1w) MPRAGE and FSPGR scans were collected using 1.5 and 3T MRI 753 

scanners. Information regarding scanners and scanner parameters across datasets are presented in 754 

the table below.  755 

Dataset Scanner Field Sequence parameters 

ADNI Multisite 
(n > 50) 

1.5/ 
3.0 

See https://adni.loni.usc.edu/methods/documents/mri-
protocols/ 

BASE-II Tim Trio 
Siemens 

3.0 MPRAGE. TR: 2500 ms; TE: 4.77 ms, TI: 1100 ms; flip angle 7°, 
slice thickness: 1.0 mm, FoV 256 x 256, 176 slices. 

 

BBHI MAGNETOM 
Prisma 

Siemens 

3.0 MPRAGE.  TR: 2400 ms; TE: 2.22 ms, TI: 1000 ms; flip angle 8°, 
slice thickness: 1.0 mm, FoV 250 x 250, 208 slices.  

BETULA Discovery 
GE 

3.0 3D FSPGR. TR: 8.19 ms; TE: 3.2ms, TI: 450 ms; flip angle 12°, 
slice thickness: 1 mm, FoV: 250 x 250, 180 slices. 

CanCAM Tim Trio 
Siemens 

3.0 MPRAGE. TR: 2250 ms; TE: 2.98 ms, TI: 900 ms; flip angle 9°, 
slice thickness: 1.0 mm, FoV 256 x 240, 192 slices. 

COGNORM Siemens 
Avanto 

 MPRAGE. TR: 2400 ms; TE: 3.79 ms, TI: 1000 ms; flip angle 8°, 
slice thickness: 1.2 mm, FoV 240 x 240, 160 slices. 

 Siemens 
Prisma 

3.0 MPRAGE. TR: 2400 ms; TE: 2.22 ms, TI: 1000 ms; flip angle 8°, 
slice thickness: 0.8 mm, FoV 240 x 256, 208 slices, iPat = 2. 

HABSc Tim Trio 
Siemens 

3.0 MPRAGE. TR: 2300 ms; TE: 2.98 ms, TI: 900 ms; flip angle 9°, 
slice thickness: 1.2 mm, FoV 240 x 256, 160 slices. 

MPRAGE. TR: 2200 ms; TE: 1.5/3.4/5.2/7.0 ms, TI: 1100 ms; 
flip angle 7°, slice thickness: 1.2 mm, FoV: 228 x 228, 144 

slices, Multi-echo = x4. 

LCBC Siemens 
Avanto  

1.5 MPRAGE. TR: 2400 ms; TE: 3.79 ms, TI: 1000 ms; flip angle 8°, 
slice thickness: 1.2 mm, FoV 240 x 240, 160 slices. 

 Siemens 
Skyra 

3.0 MPRAGE. TR: 2300 ms; TE: 2.98 ms, TI: 850 ms; flip angle 8°, 
slice thickness: 1 mm, FoV: 256 x 256, 176 slices. 

 Siemens 
Prisma 

3.0 MPRAGE. TR: 2400 ms; TE: 2.22 ms, TI: 1000 ms; flip angle 8°, 
slice thickness: 0.8 mm, FoV 240 x 256, 208 slices, iPat = 2. 

OASIS3 Siemens 
Vision 

1.5 MPRAGE. TR: 9,7 ms; TE: 4.0 ms, TI: 20 ms; flip angle 10°, slice 
thickness: 1.25 mm, FoV: 256 x 256, 160 slices. 

 Siemens 
Sonata 

1.5 MPRAGE. TR: 9,7 ms; TE: 3.9 ms, TI: 20 ms; flip angle 15°, slice 
thickness: 1 mm, FoV: 224 x 256, 160 slices. 

 Siemens Tim 
Trio  

3.0 MPRAGE. TR: 2400 ms; TE: 3.1 ms, TI: 1000 ms; flip angle 8°, 
slice thickness: 1 mm, FoV 256 x 256, 176 slices. 

 Siemens 
Magnetom 

Vida  

3.0 MPRAGE. TR: 2300 ms; TE: 2.3 ms, TI: 900 ms; flip angle 9°, 
slice thickness: 1.2 mm, FoV 240 x 256, 176 slices. 

 Siemens 
BioGraph 

mMR 

3.0 MPRAGE. TR: 2300 ms; TE: 2.3 ms, TI: 900 ms; flip angle 9°, 
slice thickness: 1.2 mm, FoV 240 x 256, 176 slices. 
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Online table: Scanner acquisition parameters. TR = Repetition Time; TE = Echo Time; TI = inversion 756 

time; FoV = Field of View, iPat = in-plane acceleration. a,c,dTwo matched scanners. bSeveral matched 757 

scanners. 758 

 759 

For datasets not provided in Brain Imaging Data Structure (BIDS) format, data was converted to BIDS  760 

99. BIDS transformation of ADNI, OASIS3, and HABS data were performed with Clinica software 100,101. 761 

We used the longitudinal FreeSurfer v.7.1.0 stream 102 for cortical reconstruction and volumetric 762 

segmentation of the structural T1w scans 103-105. For sessions with multiple scans, data from the 763 

scanners were averaged. Briefly, the images were processed using the cross-sectional stream, which 764 

includes the removal of nonbrain tissues, Talairach transformation, intensity correction, tissue and 765 

volumetric segmentation, cortical surface reconstruction, and cortical parcellation. Next, an 766 

unbiased within-subject template space based on all cross-sectional images was created for each 767 

participant, using robust, inverse-consistent registration  (Reuter et al., 2010). The processing of 768 

each time point was then reinitialized with common information from the within-subject template, 769 

to increase reliability and statistical power. Except for the BETULA dataset, all data was preprocessed 770 

on the Colossus processing cluster, part of the Services for Sensitive Data (TSD) 771 

(https://www.uio.no/tjenester/it/forskning/sensitiv/), University of Oslo. Memory-sensitive brain 772 

measures for each observation were derived using regional loadings based on the Destrieux (cortical) 773 

106 and aseg (subcortical) atlases 107.  774 

 775 

Memory-sensitive brain measures 776 

We computed two complimentary measures of brain structure sensitive to memory, capturing 777 

different aspects of memory function in older age. The primary measure was defined as a 778 

longitudinal brain component sensitive to memory changes inspired by Vidal-Pineiro et al. (in 779 

preparation). The second measure, for the purpose of assessing the robustness of the results, was 780 

preventAD Tim Trio 
Siemens 

3.0 MPRAGE. TR: 2300 ms; TE: 2.98 ms, TI: 900 ms; flip angle 9°, 
slice thickness: 1 mm, FoV 240 x 256, 176 slices. 

UB Tim trio 
Siemens 

3.0 MPRAGE. TR: 2400 ms; TE: 2.98 ms, TI: 900 ms; flip angle 9°, 
slice thickness: 1 mm, FoV: 256 x 256, 240 slices. 

UKB Siemens 
Skyraa 

3.0 MPRAGE. TR: 2000 ms; TE: - ms, TI: 880 ms; flip angle -, slice 
thickness: 1 mm, FoV: 208 x 256, 256 slices. 

 Siemens 
Avanto 

1.5 MPRAGE.  TR: 1000 ms; TE: 3.31 ms, TI: 1000 ms; flip angle 7°, 
slice thickness: 1.33 mm, FoV 256 x 256, 128 slices 

 Siemens 
Symphony 

1.5 MPRAGE.  TR: 1000 ms; TE: 3.31 ms, TI: 1000 ms; flip angle 7°, 
slice thickness: 1.33 mm, FoV 256 x 256, 128 slices 

VETSA Discovery 
750× GEd 

3.0 3D FSPGR. TR: 8.084 ms; TE: 3.164ms, TI: 600 ms; flip angle 8°, 
slice thickness: 1.2 mm, FoV: 256 x 256, 176 slices. 

 Tim Trio 
Siemens 

3.0 MPRAGE. TR: 2170 ms; TE: 4.33 ms, TI: 1100 ms; flip angle 7°, 
slice thickness: 1.2 mm, FoV 256 x 256, 160 slices. 
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trained on independent scans to detect cross-sectional brain-memory relationships in aging. The 781 

components were highly correlated (r = .71), both decrease with age (r = -.67, r = -.64, respectively) 782 

and include partially overlapping set of brain regions. The first measure (brain PC) is optimized to be 783 

sensitive to memory changes in aging, while the second (brain LASSO) is optimized to detect also 784 

offset, i.e. baseline, associations. See below for a full description of both methods.  785 

 786 

Brain PC: Change based, memory-sensitive measure: This measure was derived from a sample 787 

largely overlapping with that used for the statistical analyses and the AIBL in the present work but 788 

included participants down to age > 18 years. Brain PC is based on a principal component (PC) of 789 

longitudinal change in 20 cortical thickness and 9 subcortical volume regions. Brain regions were 790 

harmonized using a normative modelling framework 108,109 with the PCNtoolkit (0.30.post2), in 791 

Python3 environment  110 (version 3.9.5). This framework offers several advantages as i) it is run 792 

independently across sites, ii) can isolate site-effects from other sources of variance associated with 793 

it, and iii) produces site-agnostic deviation scores (z-statistics) adjusted for age, and sex. PCNtoolkit 794 

uses a Hierarchical Bayesian Regression (HBR) technique 111 and pretrained models from 82 different 795 

datasets, including UKB and CamCan data. To avoid losing longitudinal observations, we performed 796 

this step recursively by iteratively (n = 100) holding out a calibrating sample and computing the 797 

estimates on the remaining data. The average scores of all iterations were used as the standardized 798 

scores for each observation. Scanners contributing with < 12 unique individuals or < 25 observations 799 

were excluded. For scanners contributing > 12 and < 32 unique individuals, we used a calibration 800 

sample consisting of all but 2 participants and estimate the harmonized scores in these two. For 801 

scanners with >= 32 unique individuals, we used, in each iteration, a held-out sample of 30 802 

individuals while estimates were applied on the rest.  803 

 804 

Next, we selected individuals with at least 2 observations and a minimum follow-up of 1.5 years. For 805 

both MRI and memory preprocessed data, we estimated yearly change for each subject, by 806 

regressing data on follow-up time. Change data was then fed into separate linear mixed models as 807 

implemented in lme4, lmerTest 112,113, one per brain region. Note that here we used estimates of 808 

change, and there was only one observation per individual. For each region, we predicted memory 809 

change by brain change, using dataset as random intercepts. Additionally, we used weights to 810 

account for potential heteroskedasticity. That is, individuals with short follow-up periods and less 811 

observations contribute with more unreliable, high-variance data and thus should produce an 812 

unequal spread of residuals. We used the square of reliability as weights as estimated in 114. 813 

Longitudinal reliability is a function of variance in change and mean measurement error for a given 814 
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region, and number of observations and total follow-up time for a given individual. After False 815 

Discovery Rate (FDR)-correction (p < .05), 29 regions showed significant associations between brain 816 

change and memory change, including 9 volumetric subcortical (bilateral amygdala, hippocampus, 817 

and thalamus, left lateral and inferior lateral ventricle, right accumbens area) and 20 cortical 818 

thickness regions (left G cingul-Post-dorsal, G cingul-Post-ventral, G insular_short, G oc-temp_med-819 

Parahip, G front_inf-Opercular, G front_inf-Triangul, G subcallosal, S temporal_sup; right G Ins lg&S 820 

cent_ins, S circular_insula_ant, S oc-temp_med&Lingual, S suborbital; bilateral G temp_sup-821 

Plan_polar, S orbital-H_Shaped, S front_middle, S circular_insula_inf). These regions were entered 822 

into the PCA to extract the PC of the memory-sensitive brain regions, yielding a brain measure 823 

sensitive to episodic memory change in aging. All regions except the ventricles showed positive 824 

loadings with the brain PC. 825 

 826 

Brain LASSO: Cross-sectional-based, memory-sensitive measure: The alternative brain measure was 827 

derived by predicting cross-sectional memory function by cross-sectional brain structure features on 828 

an independent sample of UKB individuals not included in other brain analyses. Prediction was 829 

performed with a Least Absolute Shrinkage and Selection Operator (LASSO) machine learning 830 

algorithm as implemented in the glmnet package 115. LASSO is a regression technique that performs 831 

variable selection and regularization by adding a penalty term, reducing overfitting, and simplifying 832 

the model. Lambda was selected as the maximum value within one standard error from minimum 833 

lambda, using a cross-validated approach with K = 10 folds (λ = .0143; MSE = .943). LASSO 834 

coefficients are provided in the table below. The sample consisted of 28,114 individuals from UKB 835 

aged 65.05 years (SD = 7.60) (range 47.32 – 82.78), without longitudinal MRI data, and not included 836 

in the main brain analyses. Age was not regressed out allowing prediction to capture both offset and 837 

level effects of brain structure on memory function as well as indirect effects due to the 838 

unaccounted correlation of age with both MRI features and memory function. We used the Paired 839 

associate learning (PAL) (#20197 UKB field) at the first MRI timepoint as index of memory function. 840 

MRI data included 337 features; subcortical regions and global brain measures from the aseg atlas 841 

and cortical area, and thickness regions from the Destrieux atlas. Both brain and memory indices 842 

were z-standardized, and outliers were considered as values >5 SD apart from the mean. Individuals 843 

with outlier values for memory were excluded while brain outlier values were recoded as 0.  844 

Region β (x1e3) 

lh_G&S_frontomargin_thickness -4.20 

lh_G_Ins_lg&S_cent_ins_thickness 9.71 

lh_G_insular_short_thickness 7.76 

lh_G_oc-temp_med-Parahip_thickness 4.18 

lh_G_postcentral_thickness 3.60 
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lh_G_precentral_thickness 21.02 

lh_G_temp_sup-Plan_tempo_thickness 1.04 

lh_Pole_occipital_thickness -44.97 

lh_Pole_temporal_thickness 13.12 

lh_S_circular_insula_ant_thickness 15.11 

lh_S_interm_prim-Jensen_thickness 0.04 

lh_S_oc-temp_lat_thickness -2.01 

lh_S_oc-temp_med&Lingual_thickness 10.74 

lh_S_orbital_med-olfact_thickness -10.29 

lh_S_postcentral_thickness 27.20 

lh_S_precentral-sup-part_thickness 8.70 

lh_S_suborbital_thickness -1.32 

rh_G&S_cingul-Ant_thickness -7.13 

rh_G_oc-temp_med-Lingual_thickness -4.10 

rh_G_postcentral_thickness 8.74 

rh_G_temp_sup-Lateral_thickness 7.73 

rh_Pole_occipital_thickness -9.24 

rh_S_circular_insula_sup_thickness -12.83 

rh_S_oc-temp_med&Lingual_thickness 17.41 

rh_S_orbital_med-olfact_thickness -6.19 

rh_S_postcentral_thickness 16.23 

rh_S_temporal_sup_thickness 0.04 

lh_G_and_S_transv_frontopol_area 7.91 

lh_G_cingul-Post-ventral_area -2.15 

lh_G_occipital_middle_area 7.85 

lh_G_temp_sup-G_T_transv_area 4.10 

lh_S_central_area -1.61 

rh_G_and_S_subcentral_area -1.89 

rh_G_subcallosal_area -13.09 

rh_S_central_area -5.28 

rh_S_occipital_ant_area 4.50 

rh_S_orbital-H_Shaped_area 1.08 

rh_S_precentral-sup-part_area -3.99 

rh_S_temporal_sup_area 4.95 

Left-Inf-Lat-Vent -16.18 

Left-Cerebellum-White-Matter 37.93 

Left-Cerebellum-Cortex 11.86 

3rd-Ventricle -68.60 

Brain-Stem -23.74 

Left-Hippocampus 17.57 

Left-vessel -2.40 

Right-Inf-Lat-Vent -31.91 

Right-choroid-plexus -27.22 

Online table: LASSO coefficients 845 

Coefficients for the brain measure sensitive to memory derived with a LASSO algorithm using cross-846 

sectional UKB brain structural data predicting memory function as indexed by paired associate learning 847 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2025. ; https://doi.org/10.1101/2025.01.29.25321305doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.29.25321305
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 
 

(PAL; #20197 UKB field). See https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=2561 for more 848 

information on PAL. 849 

 850 

Statistical analyses: Brain cohorts 851 

All the analyses were performed using the R environment (version 4.2.1) 73. Visualizations were 852 

made with ggplot2 116 and ggseg 117 R-packages. Memory, brain variables, and estimated intracranial 853 

volume (eTiv) were Z-standardized before inclusion in the models. Outlier values defined as values 854 

>5 SD from the mean, were removed from the analyses. Analyses were run using gamm models as 855 

implemented in the gamm4 R-package 40, unless otherwise specified. 856 

 857 

Memory score was modeled as a function of education, time since baseline, sex, and a dummy 858 

regressor for test-retest effects as fixed effects. Baseline age by sex was included as a smooth term. 859 

Random intercepts were modeled per participant and dataset, with random slopes of retest effects 860 

and time from baseline at a dataset level. To test the effects on memory change, the model was re-861 

run with an additional education × time interaction term. Education was operationalized either as 862 

mean-split or based on tertiary education in separate models. 863 

 864 

Brain structure was modeled as a function of education, time since baseline, sex, and eTiv as fixed 865 

effects. Baseline age by sex was included as a smooth term. Random intercepts were modeled per 866 

participant, scanner, and dataset with random slopes of time included at a dataset level. To test 867 

effects on brain change, the model was re-run with an additional education × time interaction term. 868 

As control analyses, we reran the gamm models without eTiv as covariate. Additionally, we ran a 869 

linear mixed model as implemented in lme4, with eTiv being modeled as a function of education, 870 

sex, and baseline age as fixed effects, while site and dataset were included as random intercepts. 871 

Only the first observation of each participant was included, as eTiv and education are time-invariant 872 

variables. Alternative operationalizations of education and brain structure were tested in separate, 873 

but otherwise identical, models.   874 

 875 

We used a fuzzy join algorithm, as implemented in fuzzyjoin 118 to link pairwise MRI and cognitive 876 

observations as these were not necessarily collected on the same day. MRI observations were 877 

matched with the closest cognitive observations within a maximum time gap of 1 year. Unlinked 878 

observations were excluded from the analyses. The relationship between brain, memory level, and 879 

education was assessed with several models. Brain level and memory level: Memory was modeled by 880 

brain structure, sex, time, eTiv, and a dummy regressor for test-retest effects as fixed effects. 881 
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Baseline age by sex was introduced as a smooth term. Random intercepts were modeled per 882 

participant, scanner, and dataset with random slopes of retest and time modeled at a dataset level. 883 

Brain change and memory change: An additional brain × time term was added to the model. 884 

Moderating effect of education on level – level associations: Additional terms for education and 885 

education × brain were added in the first model. Moderating effect of education on change – change 886 

associations: A triple interaction term (brain × time × education) as well as its lower order 887 

components were added in the first model. Control analyses: A main education term – without any 888 

interaction – was added to the models to assess level – level and change – change associations 889 

between brain and memory, to test whether the strength of these associations was affected by 890 

education level. As with other analyses, alternative operationalizations of education and memory-891 

sensitive brain structure were tested in separate but comparable models. 892 

  893 
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