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Background Variants in genes encoding voltage-gated potassium channels are associated with a broad spectrum of
neurological diseases including epilepsy, ataxia, and intellectual disability. Knowledge of the resulting functional
changes, characterized as overall ion channel gain- or loss-of-function, is essential to guide clinical management
including precision medicine therapies. However, for an increasing number of variants, little to no experimental
data is available. New tools are needed to evaluate variant functional effects.

Methods We catalogued a comprehensive dataset of 959 functional experiments across 19 voltage-gated potassium
channels, leveraging data from 782 unique disease-associated and synthetic variants. We used these data to train a
taxonomy-based multi-task learning support vector machine (MTL-SVM), and compared performance to several
baseline methods.

Findings MTL-SVM maintains channel family structure during model training, improving overall predictive perfor-
mance (mean balanced accuracy 0¢718 § 0¢041, AU-ROC 0¢761 § 0¢063) over baseline (mean balanced accuracy
0¢620 § 0¢045, AU-ROC 0¢711 § 0¢022). We can obtain meaningful predictions even for channels with few known
variants (KCNC1, KCNQ5).

Interpretation Our model enables functional variant prediction for voltage-gated potassium channels. It may assist
in tailoring current and future precision therapies for the increasing number of patients with ion channel disorders.
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Research in context

Evidence before this study

In the last few years, next-generation sequencing has
outpaced the ability of some traditional experimental
methods to generate causative evidence for variant
interpretation. At the same time, precision therapies
dependent on knowledge of variant functional effects
have become available. Predictive algorithms may
bridge this gap in translational research by providing
supportive in silico evidence. We conducted a literature
search using the PubMed database for articles pub-
lished between 01/12/2011 and 01/12/2021 using the
search terms (prediction OR machine learning) AND
(ion channel OR voltage-gated OR channelopathy) AND
(GOF OR gain-of-function) AND (LOF OR loss-of-func-
tion). This search yielded 31 results, which were filtered
for papers describing the implementation of machine-
learning based methods. This identified a single previ-
ous study, in which Heyne and colleagues demon-
strated the feasibility of functional variant prediction in
voltage-gated sodium and calcium channels.

Added value of this study

In the present study, we developed a machine-learning
based method that integrates experimental data from
heterogeneous sources to predict gain-of-function or
loss-of-function in voltage-gated potassium channel
variants. To this end, we curated a large and representa-
tive data set of electrophysiological experiments report-
ing variant effects, sequence- and structure-based
features, and expert annotation. Our multi-task learning
support-vector machine (MTL-SVM), which leverages
prior knowledge on the implicit relationship between
channels, presents a uniquely suited and scalable
framework for functional variant prediction. Model vali-
dation demonstrates the advantages over conventional
single-task algorithms.

Implications of all the available evidence

Our results indicate that functional variant prediction,
complementary to current methods of pathogenicity
prediction, is feasible. Model performance can be
improved by adopting multi-task learning algorithms
and integrating heterogeneous data sources. This
addresses a current issue in translational research, by
providing supportive evidence for variant interpretation
that may assist clinicians in tailoring current and future
precision therapies for the increasing number of
patients affected by ion channel disorders.
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Introduction
Genetic disorders caused by variants in genes encoding
voltage-gated ion channels are associated with a broad
and heterogeneous spectrum of hereditary neurological,
cardiac, nephrological, and other diseases.1 Among the
ion channels associated with human disease, voltage-
gated potassium channels (KV 1�12) constitute the larg-
est and most diverse super-family with regards to their
structure, gating kinetics, expression profiles, pharma-
cology, and associated phenotypes. Variants in these
channels are involved in developmental and epileptic
encephalopathy (KCNA2, KCNB1, KCNQ2, KCNQ3),
benign familial neonatal seizures (KCNQ2, KCNQ3),
episodic ataxia or paroxysmal dyskinesia (KCNA1), non-
syndromic hearing loss (KCNQ1, KCNE1, KCNQ4), and
long or short QT syndrome (KCNQ1).2�5 Many of these
disease associations have only very recently been
described, such as KCNQ5-associated intellectual dis-
ability, epileptic encephalopathy, or genetic generalized
epilepsy, as well as KCNC1-associated progressive myoc-
lonus epilepsy, intellectual disability, isolated myoclo-
nus, or ataxia.6�8

In channelopathies, genetic and clinical data are
inherently intertwined with the causative functional evi-
dence provided by electrophysiological experiments.
Voltage-clamp or patch-clamp studies in heterologous
or neuronal expression systems are currently the meth-
ods of choice to bridge the translational gap between
genetic diagnostics and clinical presentation, by estab-
lishing variant pathogenicity and elucidating the mecha-
nism of channel dysfunction at a molecular and cellular
level. For example, a variant may alter expression level,
membrane trafficking, or the gating properties of a vari-
ant channel. The functional outcome can, in most cases,
be characterized as an overall gain-of-function (GOF) or
loss-of-function (LOF) with respect to subunit and chan-
nel function, with potential downstream effects on neu-
ronal firing rate or network (dis)inhibition.9 However,
we have to consider that cases exist, in which a net gain-
or loss-of-function can be difficult to determine and
may even differ between the type of neurons
investigated.10,11 For clear net GOF or LOF cases, repre-
senting the majority of disease-associated variants, func-
tional studies contribute to variant classification and
inform clinical management, including genetic counsel-
ling and precision therapies.12 These cases often show
clear phenotype-genotype correlations, facilitating diag-
nosis and offering therapeutic and prognostic guidance.
But perhaps most interestingly, recent advances aim to
correct the underlying biophysical defects. For example,
retigabine selectively enhances the M-current in
KCNQ2-5 by stabilizing the open-pore conformation,
which reverses the effects of some LOF variants.13,14

Conversely, 4-aminopyridine acts as a non-selective
blocker of KV1.x channels and may be a safe and effec-
tive treatment option in patients with developmental
and epileptic encephalopathy due to GOF variants in
KCNA2.15

However, the unprecedented pace of genetic discov-
eries has surpassed the ability of traditional methods to
provide sufficient causal evidence for variant interpreta-
tion.16 Consequently, there is an increasing number of
www.thelancet.com Vol 81 Month , 2022
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variants for which no direct (i.e. specific variant studied
in the same channel), indirect, or no functional data at
all are available. Electrophysiological studies present a
bottleneck in translational research: they are laborious,
expensive and time-intensive, and therefore limited to
the analysis of just a few variants at a time. High-
throughput automated electrophysiology platforms for
large-scale functional studies are currently in develop-
ment and may ameliorate some of these disadvan-
tages.17 But this also presents an opportunity to develop
predictive frameworks that integrate computational, bio-
chemical, evolutionary, and experimental sources of
information.

Here, we present a machine learning-based model
that leverages data from electrophysiological experi-
ments to predict the functional effects of non-synony-
mous missense variants in voltage-gated potassium
channels. Our model efficiently integrates data from
two very different sources � synthetic variants from bio-
physical studies designed to understand channel func-
tion, as well as patient variants from clinical genetic
testing. We demonstrate that taxonomy-based multi-
task learning enables us to preserve information on the
relatedness of ion channels, improving predictive per-
formance. Our framework for functional variant predic-
tion is scalable and can easily be extended to other use
cases.
Methods

Data
Our dataset consisted of previously published, publicly
available data from patch-clamp or voltage-clamp experi-
ments, with each experiment describing the functional
effects of a non-synonymous missense variant in a volt-
age-gated potassium channel. Many of these variants
were previously found to be disease-causing in patients
and hence functionally characterized. Notably, we also
included data from non-human channels (Shaker,
KCNAS) and from experiments that studied synthetic
variants to understand biophysical channel function
and structure-function relationships. Although these
variants may not appear in disease context or in the gen-
eral population, they increase the sample size and con-
tain salient information which is useful for our model
to learn. For each experiment, we collected the biophysi-
cal properties of the mutant channels, including infor-
mation on the gating kinetics, peak current or
conductance, and expression level or trafficking defects,
if available. We used this information to assign one label
to each variant, the label categorizing the net overall
effect on ion channel function at subunit level: gain-of-
function (GOF), loss-of-function (LOF), and no func-
tional effect (neutral).

In total, we curated the results of 959 electro-
physiological experiments from 163 publications. 22
www.thelancet.com Vol 81 Month , 2022
experiments were excluded due to conflicting evidence,
where contradicting functional effects for the same vari-
ant were described in two or more independent publica-
tions. For 67 experiments, we were unable to ascertain
a label due to mixed or unclear functional effects with-
out clear net gain- or loss-of-function. These variants,
too, were excluded from the training set. Finally, 88
experiments were marked as duplicate and removed
from the data set if two or more experiments reported
the same functional effect for the same variant. The
final dataset used for model training included 782
unique non-synonymous missense variants across 19
voltage-gated potassium channels: 165 GOF, 544 LOF
and 73 neutral (Supplementary Figure 1). The dataset
was independently validated by two expert electrophysi-
ologists, and disagreements were resolved by consen-
sus-based discussion.
Features
Each variant was identified by its channel, sequence
position, and amino acid substitution. From there, we
extracted sequence- and structure-based features as fol-
lows: The residue-level properties of the original and
substituted amino acids were included as features by
physiochemical encoding, representing them in a
lower-dimensional property space.18 Hydrophobicity
was included as a separate feature, by principal compo-
nent analysis of 98 hydrophobicity scales from Simm
et al.19 Frequency and radicality of amino acid substitu-
tions were described by the BLOSUM62 substitution
matrix and Grantham score.20,21 Paralog conservation
scores were obtained from PER viewer.22 Predictions of
structural features were computed with PredictPro-
tein, NetSurfP-2.0, and IUPred2A.23�25 This included
information on secondary structure, residue accessi-
bility, conservation, disordered regions, and interac-
tion sites. We then annotated domains and motifs
through UniProt and expert knowledge, including
rich information on the position of gating charges,
pore helix, S4-S5 linker, selectivity filter, PVP motif,
and others.26 For preprocessing of our data, we used
one-hot encoding of categorical features and scaling
of numerical features. A list of features and the anno-
tated training data set are available as Supplementary
Tables 1 and 2.
Models
In the previous steps, we have obtained a data matrix X
with n observations (variants) by p dimensions (fea-
tures). Each observation n belonged to one of three
classes y1; . . . ; yn 2 fLOF;Neutral;GOFg and to one of
19 tasks (voltage-gated potassium channels) t1; . . . ; tn 2
fKCNA1; KCNA2; :::; KCNQ5g. For a previously unseen
variant x2X we wanted to predict the functional effect,
class label ŷ. Intuitively, if a new variant is similar to a
3
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known variant, it should receive the same class label.
We first considered several other methods including
logistic regression and tree-based models (Random for-
est, Gradient Boosting) which are reported as Supple-
mentary Figure 2. For this problem, we chose to
implement a support vector machine (C-SVM) with a
radial basis function (RBF) kernel Kn with kðxi; xjÞ ¼
exp � k xi�xj k 2

2s2

� �
8 xi; xj 2X.27 We constructed two

methods for baseline comparison. For the single
method, one SVM was trained for all observations
belonging to one task, which yields t task-specific
models. Each model was independently tuned and
assessed. We did not attempt to train a model if there
were less than 20 observations for the task, or if all
observations had been assigned the same class label (e.
g., channels for which only loss-of-function variants
are known). In both cases, the resulting models would
not have been meaningful. For the base method, one
SVM was trained on all observations, irrespective of
task membership.

We took measures to reduce overfitting with nested
k-fold cross validation, k ¼ 10, and the cost regulariza-
tion hyperparameter C. To correct for class imbalance,
we assigned class weights w inversely proportional to
the frequency of class t, wt ¼ nall=nt . The minority
class is assigned a largerwt and smaller C, thus increas-
ing the misclassification penalty. The optimal values for
the hyperparameters were estimated via grid search,
with s ¼ f1e� 5; 1e� 4; . . . ; 1e0g and C ¼ f1e� 4; 1e
�2; . . . ; 1e4g. We used Platt scaling to transform the
output of our non-probabilistic binary linear classifier
into a distribution of class probabilities, extended for
multi-class classification. The model performance esti-
mates, i.e. the expected generalization performance of
the model on previously unseen data, were obtained by
nested k-fold cross validation � a technique in which
the model is trained and tested on different random
(sub-)partitions of the data throughout multiple exhaus-
tive iterations. A pseudocode and graphical representa-
tion of this method are provided as Supplementary
Figures 3 and 4.

We report the following metrics: i) Balanced Accu-
racy (BA), defined as the average of sensitivity and speci-
ficity for each class; ii) Matthews correlation coefficient
(MCC), a symmetric correlation coefficient between
true and predicted classes; iii) Cohen’s Kappa, a mea-
sure of agreement between true and predicted classes;
iv) F1 score, the harmonic mean of precision and recall.
The multi-class extension of these metrics has been
described elsewhere.28 The area under the receiver oper-
ator characteristics (AU-ROC) curve was extended to the
multi-class case using the method described by Hand
and Till.29 We calculated the area under the precision-
recall curve (AU-PRC) by taking the average of a one-
versus-all approach. Further model information is avail-
able in our AIMe Registry report (https://aime.report/
IFtQVF).
Multi-task learning
To define our hierarchy of tasks T , we first created a multi-
ple sequence alignment of all tasks with MUSCLE.30 For
each observation, we noted the relative position on the con-
sensus sequence and included this as an additional feature
for all models. Each pairwise distance on the multiple
sequence alignment ds;t was transformed to a pairwise
similarity measure by gs;t ¼ a� ds;t=dmax to obtain our
task similarity matrix Kt . Here, a was a hyperparameter
controlling the baseline similarity between tasks and was
included in our grid search with a ¼ f1; 3; 5; 10; 100g,
while dmax was the maximum distance between two tasks
in hierarchy T . This approach to taxonomy-based multitask
learning is further detailed in Widmer et al. and is moti-
vated by the previous work of Jacob and Vert.31,32 The final
multi-task learning kernel matrix Km was obtained by ele-
ment-wise multiplication of the task kernel matrix Kt with
our RBF kernel matrix Kn. Intuitively, Km embeds informa-
tion on task similarity and instance similarity into the ker-
nel matrix. The task hierarchy T and kernel matrix Kt for
voltage-gated potassium channels are shown in Supple-
mentary Figure 5. For MTL-SVM, best performance was
seen with s ¼ 1e� 2, C ¼ 1; and a ¼ 1. A pre-trained
model object is available as part of our Data Sharing State-
ment.
Interpretation
Explainable model decisions improve transparency and
user trust. We carried out a feature correlation analysis
with Wilcoxon-Mann-Whitney two-sample tests to com-
pare group differences for each class in a one-versus-all
approach, adjusting the p-values for multiple testing
with the Benjamini-Hochberg method, thus highlight-
ing discriminative features (Supplementary Table 1).
We also implemented a model-agnostic fast approxima-
tion of Shapley values via the SHAP framework, which
offers additive feature importance methods.33 In short,
Shapley values express the contribution of a feature to a
prediction.
Software
This study was carried out in the R programming lan-
guage, version 4.1.0, with RStudio, version 1.4.1106.
Packages used include tidyverse (data preparation, pre-
processing and visualization), the Bioconductor collec-
tion (feature extraction and multiple sequence
alignment), kernlab and the e1071 interface for LIBSVM
(model training), yardstick and pROC (model assess-
ment), fastshap (model interpretation), and Shiny
(graphical user interface and web application). R Ses-
sion Information is included as part of our data avail-
ability statement.
Ethics statement
Not applicable.
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Results
For our first naïve baseline method, we trained one sep-
arate SVM for variants of each voltage-gated potassium
channel (single method). For tasks with sufficiently
large and balanced training data sets, these single chan-
nel-specific models were already feasible, such as for
variants in KCNA2 (BA 0¢711), KCNQ1 (BA 0¢784), or
KCNQ4 (BA 0.838). However, we did not obtain mean-
ingful models for 6/19 channels (Figure 1). For these
channels, either an insufficient sample size of variants
was available for training, or each variant had been
assigned the same label (e.g. only loss-of-function var-
iants). Notably, this included channels that have only
recently been associated with human disease, such as
KCNC1 or KCNQ5, for which little functional data are
available. The single method is thus limited to a few
common channels, but performs reasonably well on
average (Table 1).

Next, we trained one SVM on a pooled dataset of all
variants across the voltage-gated potassium channel
family (base method). This represents a conventional
single-task approach, for which data is shared between
all tasks without differentiation. Clearly, sharing data is
beneficial, enabling us to obtain predictions for variants
from all 19 channels in our dataset. However, predictive
performance was low for some channels, e.g. KCNA4,
KCND2, and KCNQ5 (Figure 1). We also observed that
Figure 1. Task-specific cross-validation model performance estima
given with their respective number of variants (n) included in the
one variant each and are not included in the performance estimate.

www.thelancet.com Vol 81 Month , 2022
the task-specific model performance estimate of the
base method was lower than that of some single SVMs,
and deteriorated further for some rare channels
(Table 1). Put in other words, adding data from other
channels generally caused the model to perform worse
than a single channel-specific model. It stands to reason
that one global model cannot fit all these channels
equally well, some of which are markedly different from
each other in structure and function.

Our multi-task learning approach (mtl method)
embeds structural and evolutionary pairwise similarity
between ion channels in the kernel matrix, efficiently
integrating prior knowledge across all channels and
channel sub-families. Intuitively, the model learns to
assign more weight to variants from the same or similar
channels, and less or no weight to variants from more
distantly related channels. At the same time, transfer
learning of a shared representation allows the model to
learn higher-level concepts that apply across all chan-
nels, such as the relative feature importance of substitu-
tion radicality or residue conservation. Thus, this
method allowed us to obtain meaningful predictions for
variants from every channel, while maintaining a good
overall performance (Figure 1). More importantly,
multi-task learning achieved strong performance even
for variants in rare channels (BA 0¢792 and AU-ROC
0¢857 versus BA 0¢558 and AU-ROC 0¢417, Table 1).
The superior performance of the multi-task learning
method over the base method is also shown as an over-
all gain in AU-ROC (mean AU-ROC 0¢761 § 0¢063 ver-
sus AU-ROC 0¢711 § 0¢022) (Figure 2).

Additionally, some new missense variants in voltage-
gated potassium channels have very recently been
te of mean Balanced Accuracy for each method. Channels are
training data set. Two tasks, KCNC2 and KCNH5, contained just
Abbreviation: BA � Balanced Accuracy.
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Single Base MTL

common tasks rare tasks common tasks rare tasks common tasks rare tasks

BA 0¢745 § 0¢042 � 0¢620 § 0¢045 0¢558 0¢718 § 0¢041 0¢792
AU-ROC 0¢758 § 0¢057 � 0¢711 § 0¢022 0¢417 0¢761 § 0¢063 0¢857
Cohen’s k 0¢298 § 0¢103 0¢192 § 0¢064 0¢310 § 0¢092
MCC 0¢303 § 0¢105 0¢224 § 0¢066 0¢328 § 0¢099
F1 score 0¢659 § 0¢056 0¢494 § 0¢065 0¢624 § 0¢055
AU-PRC 0¢557 § 0¢065 0¢498 § 0¢057 0¢555 § 0¢063

Table 1: Nested cross-validation model performance estimates for each method. Metrics are reported as mean § standard deviation,
where applicable. Metrics are reported for variants from common tasks, as well as for variants from rare tasks (KCNA4, KCNC1, KCNC2,
KCNC3, KCNH1, KCNQ3, KCNQ5), depending on variant frequency in the training data set (cut-off �20 variants for rare tasks). For the
subgroup of rare tasks, BA and AU-ROC are shown. The highest mean metrics over all methods and subgroups are shown in bold.
Abbreviations: AU-PRC � area under the precision-recall curve; AU-ROC � area under the receiver operator characteristic; BA � Balanced
Accuracy; MCC �Matthews correlation coefficient.
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described, which have not yet been included in the train-
ing set. These may not be sufficient for external valida-
tion, but they may serve as an example of the expected
model use case. Firstly, Miceli et al. described four het-
erozygous de novo variants in KCNA1: P403S, P405L,
P405S and A261T.34 Our MTL-SVM correctly predicted
three out of four variants with high confidence
(Figure 3a). The A261T variant, which resulted in a
hyperpolarizing shift of the voltage-dependence of acti-
vation (GOF), was incorrectly predicted as LOF. This is
expected behaviour: Gain-of-function in this channel,
previously only seen in some synthetic variants from
biophysical research, is very rare and has only now been
associated with disease-causing variants. Clearly, experi-
mental evidence still remains crucial to generate causa-
tive evidence. Secondly, Imbrici et al. described a
heterozygous de novo variant in KCNA2, E236K.35 This
variant caused a hyperpolarizing shift of the voltage-
dependence of activation and slowed kinetics of activa-
tion and deactivation, resulting in an overall mixed
GOF/LOF. Variants without a clear net overall
Figure 2. ROC of the baseline (“base”) versus multi-task learning (
nates between GOF and LOF variants. b: One-versus-one ROC curve
multi-task learning model. Abbreviations: AU-ROC � area under
LOF � loss-of-function.
functional effect were excluded from our model’s train-
ing set. Still, the model correctly recognized that E236K
is equally likely to result in a GOF or LOF (Figure 3).
For both use cases presented here (KCNA1, KCNA2),
possible precision therapies based on variant function
have been proposed.15,34,35

Explainable decisions contribute to user trust and
model transparency. We calculated Shapley values,
which are a model-agnostic approximation of a feature’s
marginal contribution (Figure 4). The feature names
are shown here in brackets, with additional feature
information available in Supplementary Table 1. Predic-
tions for gain-of-function variants are based on paralog-
conserved sites, low local protein disorder, and relative
sequence position or ‘hotspots’, among others. Features
contributing to predictions for loss-of-function variants
are secondary structure, protein-protein interaction
sites, and paralog-conserved sites. Variants are more
likely to be predicted as neutral based on their ortholog
conservation, protein-protein interaction sites, and local
protein disorder. Overall, the model also recognizes the
“mtl”) models. a: The multi-task learning model better discrimi-
s for the baseline model. c: One-versus-one ROC curves for the
the receiver operating characteristic; GOF � gain-of-function;

www.thelancet.com Vol 81 Month , 2022



Figure 3. Radar plots of class probability distributions for each variant, with class probabilities shown in the legend. a: KCNA1
p.P403S was correctly predicted as LOF (P405L and P405S are not shown). b: For KCNA2 p.E236K, a variant with mixed functional
effects, the model correctly predicted an equal probability of GOF and LOF. c: KCNA1 p.A261T was incorrectly predicted as LOF.

Figure 4. SHAP (SHapley Additive exPlanations) contribution plots and feature importance. Shapley values are the average expected
marginal contribution for each feature after all possible feature combinations have been considered. a: Mean Shapley values for
GOF variants. b: Mean Shapley values for LOF variants. c: Mean Shapley values for neutral variants. Contribution may either be posi-
tive (green) or negative (red). d:Mean absolute Shapley values for all classes. Feature abbreviations are shown in brackets, with addi-
tional information available in Supplementary Table 1.
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importance of domain and motif annotation including
variant position in the S6 segment, transmembrane
domains, or cytoplasmic domains.
Discussion
Next-generation sequencing continues to generate large
datasets of genetic variants at an ever-increasing pace,
driven by both clinical genetic diagnostics and the inter-
national cooperation of sequencing consortia. In silico
tools can aid in predicting the pathogenicity of missense
variants of unknown significance. Some of these predic-
tion models are tailored to specific genes, such as
Q1VarPred for KCNQ1, which outperforms other meth-
ods for pathogenicity prediction by incorporating some
functional data.36 A gene-family-specific tool, KvSNP,
outperforms other methods for pathogenicity prediction
across all voltage-gated potassium channels.37 These are
complementary to the method presented here. How-
ever, none of these tools are designed to provide infor-
mation on the alteration of biophysical function at a
molecular and cellular level: This is the difference
between traditional pathogenicity prediction and func-
tional variant prediction. In ion channel disorders, this
functional knowledge is crucial to guide diagnosis, treat-
ment, and prognosis.

Few studies have attempted to address this unmet
need. Recently, Heyne and colleagues presented funN-
Cion, a statistical method for functional variant predic-
tion of missense variants in voltage-gated sodium (NaV)
and calcium channels (CaV).

38 In these channel fami-
lies, de novo variants are enriched at paralog-conserved
sites. Heyne and colleagues hence pooled variants for
further analysis, under the assumption of similar
molecular mechanisms across individual channels.
Their training data set included 827 LOF and GOF var-
iants in NaV and CaV, where the functional label was
inferred from phenotype data alone (e.g., age at seizure
onset). Using a Gradient Boosting machine, they pre-
dicted an independent test set of 87 variants with an
estimated performance of BA 0¢73, AU-ROC 0¢73, and
MCC 0¢45. Interestingly, they reported a similar perfor-
mance when predicting NaV variants with a training set
of either NaV alone, or both NaV and CaV. Conversely,
the prediction on a test set of CaV was worse when the
training set contained just CaV alone, while perfor-
mance improved when training on just NaV, or both
NaV and CaV. They concluded that the increased power
obtained by combining NaVs and CaVs outweighs the
differences between these channel types. Evidently,
pooling data may be beneficial. But how do we formal-
ize the general notion of difference between ion chan-
nels, and how do we then decide to which variants in
the training data we want to assign more weight?

The answer lies in the notion of an implicit or latent
task relatedness. If we consider each member of the
family of voltage-gated potassium channels as a single
task, we can then employ multi-task learning, in which
information is shared between the tasks: We learn our
tasks in parallel using a shared representation, which
has been shown to outperform the conventional single-
task learning methods introduced above.39 Task related-
ness may be learnt from the data structure, but we may
also view this as an opportunity to introduce prior
domain knowledge. For example, Jacob and Vert used a
user-defined or supertype-based measure of similarity
to improve peptide-MHC-I binding models across dif-
ferent alleles.32 They demonstrated that the method can
be decomposed into two steps: i) Choosing an explicit
description or pairwise similarity kernel for our tasks
(channels) and observations (variants); ii) Applying an
SVM to the product kernel. For our task kernel, we
chose the taxonomy-based method by Widmer et al., for
which task relatedness is derived from the hierarchical
structure of a phylogeny tree, which is readily obtained
through multiple sequence alignment.31 This is the
same principle hierarchy that motivates the classifica-
tion of voltage-gated potassium channel families, and it
appropriately separates channels both according to their
function (i.e. different potassium currents) and their tis-
sue expression levels.40

Here, we have demonstrated the feasibility of func-
tional variant prediction in voltage-gated potassium
channels, supported by a considerable experimental
data set. We then introduced an MTL-SVM framework
which is uniquely suited to handle predictions across
large and diverse channel families. Our multi-task
learning method improves upon conventional single-
task learning baseline models. Notably, we achieved
good predictive performance even in channels for which
data from functional studies are sparse, such as KCNC1
or KCNQ5, which have only recently been associated
with human disease.6,7 Thus, our method may prospec-
tively enable predictions for emerging channels and
new disease-associated variants as they become relevant.
Another strength of our approach is that we can lever-
age data from non-human channels and synthetic var-
iants, making efficient use of prior information on
structure-function relationships from decades of bio-
physical research to improve model performance. This
tool may generate supportive evidence for in silico vari-
ant interpretation, and may assist clinicians and
researchers in generating new hypotheses about volt-
age-gated potassium channel disorders, including
potential new applications for precision therapies. The
tool and a web-based graphical user interface are avail-
able as part of our Data Sharing Statement.

Importantly, our model predicts functional changes
on a main/alpha subunit level and does not include
information on modifying subunits (KCNFx, KCNGx,
KCNVx, KCNSx, etc.) or experimental metadata (e.g.,
expression system, recording protocol). Care should be
taken when generalizing the results of the prediction to
a neuronal, network, or phenotype level. In silico
www.thelancet.com Vol 81 Month , 2022
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predictions should always be considered in concert with
other available sources of evidence. By themselves, in
silico predictions are not considered strong or causal
evidence by the genetic testing standards established by
the American College of Medical Genetics and Geno-
mics.41 We have assembled a large and representative
data set of variants across the superfamily of voltage-
gated potassium channels but, given their diversity and
the wealth of published literature, this data set is far
from complete. There is some concern for selection
bias, as electrophysiological experiments are more likely
to study either pathogenic variants, or those in locations
of structural and functional importance. Further work
is clearly required to improve model performance.
These methods will benefit from large homogeneous
data sets provided by high-throughput electrophysiol-
ogy, as well as standardized experimental and pheno-
type data curation and integration frameworks that are
currently in development. Additionally, static and
dynamic structural information from AlphaFold and
molecular dynamics may prove useful.
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