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Abstract

The pathogenesis of chronic inflammatory joint diseases such as
adult and juvenile rheumatoid arthritis and Lyme arthritis is still
poorly understood. Central to the various hypotheses in this
respect is the notable involvement of T and B cells. Here we
develop the premise that the nominal antigen-independent,
polyclonal activation of preactivated T cells via Toll-like receptor
(TLR)-2 has a pivotal role in the initiation and perpetuation of
pathogen-induced chronic inflammatory joint disease. We
support this with the following evidence. Both naive and effector
T cells express TLR-2. A prototypic lipoprotein, Lip-OspA, from
the etiological agent of Lyme disease, namely Borrelia

burgdorferi, but not its delipidated form or lipopolysaccharide,
was able to provide direct antigen-nonspecific co-stimulatory
signals to both antigen-sensitized naive T cells and cytotoxic T
lymphocyte (CTL) lines via TLR-2. Lip-OspA induced the
proliferation and interferon (IFN)-γ secretion of purified, anti-
CD3-sensitized, naive T cells from C57BL/6 mice but not from
TLR-2-deficient mice. Induction of proliferation and IFN-γ
secretion of CTL lines by Lip-OspA was independent of T cell
receptor (TCR) engagement but was considerably enhanced
after suboptimal TCR activation and was inhibitable by
monoclonal antibodies against TLR-2.

Keywords: co-stimulation, lipoproteins, rheumatoid arthritis, T lymphocytes, Toll-like receptor

Introduction
Chronic inflammatory joint diseases (CIJDs) such as adult
and juvenile rheumatoid arthritis and Lyme arthritis were
first considered to be diseases caused and perpetuated by
autoimmune processes, including the production of
autoantibodies, immune complexes and/or autoreactive T
cells [1,2]. Recently, T cells have attracted most attention,
and their activities, together with an autonomous role for
the synovial lining cells, are now thought to be responsible
for initiating and sustaining the inflammation. The re-emer-
gence of the notion that cells of the innate immune system
are essential in generating and perpetuating an immune
response has focused attention on the involvement of these
cells in chronic inflammatory disorders too [3].

The question of how the immunopathological processes
are set off remains controversial. One leading cause seems
to be microbial infection [3,4]. Microbes are recognized not
only by T and B cells of the adaptive immune system with
their highly specific, monospecific receptors, but also by
other cell types that use germline-encoded receptors to
interact with microbes. For instance, conserved structural
features of molecular determinants on pathogens, termed
pathogen-associated molecular patterns, such as lipopoly-
saccharide (LPS), flagellin, peptidoglycans, microbial DNA
and bacterial lipoproteins, are recognized by a set of germ-
line-encoded receptors on host cells, the Toll-like receptor
(TLR) family [5-8]. These TLRs are crucial in sensing infec-
tions, in the induction of antimicrobial genes and for the
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control of innate and adaptive immunity [7]. Recent obser-
vations have shown that TLRs are expressed not only by
cells of the innate immune system but also by cells of the
adaptive immune system, including B cells and T cells
[9,10]. Ligands for TLRs are found in rheumatoid synovium
[11] and are involved in the pathogenesis and severity of
inflammatory arthritis [12,13].

T cells of multiple specificities, including self-specificities,
are a frequent finding in inflammatory joint diseases such as
Lyme arthritis and rheumatoid arthritis [14-17]. At present,
two mechanisms by which individual microbes induce dis-
ease-promoting T cells are in vogue: one is antigen-spe-
cific, the other antigen-nonspecific [18].

Antigen-specific activation, termed epitope mimicry, pre-
dicts that during infection T cells are activated that recog-
nize both a microbial antigen and a related self peptide,
with the consequence that these T cells would eventually
crossreact with host tissue and result in its destruction. The
antigen-nonspecific theory predicts that during infection T
cells with any specificity, including non-crossreactive auto-
reactive T cells, can develop into effector cells in inflamma-
tory microenvironments, thereby contributing to tissue
destruction. These normally quiescent T cells need to be
activated (that is, made competent) by processes that are
independent of particular classical (that is, MHC-I-defined)
microbial antigenic determinants and that can be elicited
via a multitude of mechanisms, termed bystander
activation.

In the two-signal model of lymphocyte activation, optimal
activation requires a specific interaction of the antigen
(peptide–MHC complex for T cells, antigen as such for B
cells) with the T cell receptor (TCR) and B cell receptor
complex, respectively (signal 1) and additional co-stimula-
tory signals (signal 2) [19]. For T cells, signal 2 is normally
delivered by a dedicated set of receptor–ligand interac-
tions between the antigen-presenting cell (APC) and the T
cell, but it can apparently also be delivered by other cell-
surface receptor types such as cytokine receptors and
extracellular matrix receptors [20,21] and by receptors that
recognize microbial (cell wall) products [22-24]. Of partic-
ular relevance is co-stimulation in B cell physiology: LPS, a
constituent of the outer cell wall of Gram-negative bacteria,
has long been known as a polyclonal B cell stimulator and,
in the presence of interleukin (IL)-4, as an inducer of differ-
entiation. In this function, LPS can replace a CD40-derived
signal and induce class switch recombination [25,26]. The
receptor for LPS is TLR-4 [27].

Here we have investigated whether a prototype outer sur-
face lipoprotein, namely OspA of Borrelia burgdorferi, the
causative agent of Lyme arthritis, is able to directly activate
antigen-sensitized naive and/or effector T cells from mice

by binding to its nominal receptor, TLR-2. For this purpose
we used mouse strains with deficiencies for either TLR-2
(TLR-2-/-) or TLR-4 (TLR-4def).

Materials and methods
Mouse strains
C57BL/6 (B6) mice and mouse strains deficient for TLR-2
(129Sv/C57BL/6.TLR-2-/- [28,29]) or TLR-4 (C57BL/
10ScNCr, homozygous for a null mutation of TLR-4, TLR-
4def [27,30]) were maintained under pathogen-free condi-
tions in the animal facilities of the Max-Planck-Institut für
Immunbiologie, Freiburg, Germany. Male and female mice
between 7 and 9 weeks of age were used in all experi-
ments, which were conducted in accordance with the ethi-
cal guidelines of the Federation of European Laboratory
Animal Science Associations.

Enrichment/purification of cells
Purified T cells from spleen
Splenocytes from age- and sex-matched B6, TLR-2-/- and
TLR-4def mice (two mice per group) were pooled and
stained with fluorescein isothiocyanate (FITC)-labelled anti-
B220 (RA3-6B2), anti-Mac-1 (M1/70), anti-Gr-1 (RB6-
8C5), anti-CD11c (HL3) and anti-I-Ab (25-9-17) mono-
clonal antibodies (mAbs) (Pharmingen, Heidelberg, Ger-
many) and anti-NK1.1 (PK136; Caltag, Hamburg,
Germany). T cells from these populations were then nega-
tively sorted by fluorescence-activated cell sorting (FACS)
(MoFlo; Cytomation, Freiburg, Germany). Sorted T cells
were re-analysed for purity by staining with allophycocy-
anin-labelled anti-B220, anti-NK1.1, anti-Mac-1 or anti-Gr-
1, with anti-I-A/anti-I-E-PE (M5/114.15.2;), anti-CD11c-
FITC or anti-Thy1.2-biotin (CD90.2, 53-2.1), all purchased
from Pharmingen. Analysis was made with a FACSCalibur
flow cytometer (Becton Dickinson, Heidelberg, Germany)
and CellQuest software.

CD4+/CD8+ T cells from spleen
Spleen cells from B6 mice were labelled with biotinylated
antibodies against Thy1.2 (53-2.1; Pharmingen), followed
by labelling with streptavidin-conjugated paramagnetic
microbeads (Miltenyi Biotec, Bergisch Gladbach, Ger-
many). Labelled cells were positively selected on magnetic
cell separation (MACS) columns (Miltenyi Biotec) and sub-
sequently labelled with antibodies against CD4 (GK1.5;
Pharmingen) and CD8 (53-6.7; Southern Biotechnology
Associates, Eching, Germany). CD4 and CD8 single-posi-
tive cells were then isolated by FACS (MoFlo; Cytomation).
The purity of the cells was greater than 99%.

Macrophages from bone marrow
Bone marrow macrophages were cultivated as described
elsewhere [31]. In brief, bone marrow cells were harvested
from B6 mice and cultured for 7 days in Dulbecco's modi-
fied Eagle's medium (Gibco BRL, Karlsruhe, Germany)
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supplemented with 2 mM L-glutamine (Gibco), 50 µM 2-
mercaptoethanol (Roth, Karlsruhe, Germany), 1 mM
sodium pyruvate (Gibco), 1 × non-essential amino acids
(Gibco), 5% heat-inactivated horse serum (Cell Concepts,
Umkirch, Germany), 10% heat-inactivated fetal calf serum
(PAA Laboratories, Cölbe, Germany) and 15–20% L-con-
ditioned medium (sterile filtered supernatant of L929 cells,
cultured for 7 days in Dulbecco's modified Eagle's medium
and supplemented with 2 mM L-glutamine, 50 µM 2-mer-
captoethanol, 1 mM sodium pyruvate, 1 × non-essential
amino acids and 10% heat-inactivated fetal calf serum).

Isolation of mature B cells and marginal-zone B cells from 
spleen
Spleen cells from B6 mice were labelled with biotinylated
antibodies against CD4 (GK1.5; Pharmingen) and CD8
(53-6.7; Pharmingen) followed by labelling with streptavi-
din-conjugated paramagnetic microbeads (Miltenyi Bio-
tec). Labelled cells were negatively depleted on MACS
columns (Miltenyi Biotec). Negative cells were labelled with
antibodies against B220 (RA3-6B2; Pharmingen), IgM
(Jackson Immuno Research, via Dianova, Hamburg, Ger-
many), CD23 (B3B4; Pharmingen) and CD21 (7G6;
Pharmingen). Mature B cells (CD23+, B220++ and IgM+)
and marginal-zone B cells (CD23-, B220++, CD21++ and
IgM++) were then isolated by FACS (MoFlo; Cytomation).
The purity of the cells was greater than 99%.

Generation of cytotoxic T lymphocyte lines (mixed 
lymphocyte culture)
Generation of primary alloreactive cytotoxic T lymphocytes
(CTLs) and restimulation of these cell lines was performed
as described [32]. In brief, for the generation of primary
alloreactive CTLs in vitro (primary mixed lymphocyte culture
[MLC]), responder splenocytes (one spleen, isolated from
B6, TLR-2-/- or TLR-4def mice) were co-cultured with irradi-
ated (3000 rad) allogeneic stimulator splenocytes from
BALB/c mice (H-2d, 3/4 spleen) in 40 ml of complete cell
culture medium (minimal essential medium [Pan Biotech,
Aidenbach, Germany] supplemented with 10% fetal calf
serum [Sigma-Aldrich, Taufkirchen, Germany], 100 µg/ml
kanamycin [Gibco], 10 µg/ml tylosin [ICN, Eschwege, Ger-
many] and 50 µM 2-mercaptoethanol). CTLs were used on
day 6 for cytotoxicity assays and restimulated on day 7.
Restimulation for secondary MLC was performed by incu-
bating CTLs derived in vitro (5 × 104/ml) with irradiated
BALB/c stimulator cells (2.5 × 106/ml) in complete cell cul-
ture medium supplemented with IL-2 (10% of supernatant
of rat splenocytes, stimulated with concanavalin A [ConA;
Amersham Pharmacia Biotech, Freiburg, Germany] plus 20
mg/ml α-methyl-D-mannopyranoside [Roth]). Cells were
used for experiments on day 4 or 5 and restimulated on day
7.

For analysis of the composition of these CTL lines, cells
were stained with anti-CD4-FITC (H129.19), anti-CD8a-
allophycocyanin (53.6.7), anti-B220-PE (RA3-6B2), anti-
NK1.1-PE (PK136), anti-CD19-PE (1D3), anti-CD3ε-biotin
(500A2), anti-Thy1.2-biotin (53-2.1) (all purchased from
Pharmingen) and anti-F4/80-FITC (Cl:A3-1; Serotec, Ech-
ing, Germany).

Functional analysis and proliferation assay of purified T 
cells or CTL lines
Unselected and purified T cells or CTL lines from MLC
were incubated in complete cell culture medium for 72 h (T
cells) or 24–48 h (CTLs) in 96-well flat-bottomed plates
(Nunc, via Multimed, Kirchheim/Teck, Germany; 4 × 104

cells; 200 µl per well) either coated with rabbit anti-hamster
(ha) IgG (Dianova, Hamburg, Germany, 0.5 µg per well)
and anti-CD3 (145-2C11; cell culture supernatant purified
with Protein A–Sepharose; T cells, 3 ng per well; CTLs,
0.03 or 0.3 ng per well) or with rabbit anti-haIgG alone. The
cultures were supplemented or not with recombinant Lip-
OspA (strain ZS7, S&K, lot OPA152; GlaxoSmithKline, Rix-
ensart, Belgium), recombinant Met-Asp-Pro (MDP)-OspA
(delipidated form, ZS7, S&K, lot 46C33; GlaxoSmithKline;
10 µg/ml maximal concentration of each), human recom-
binant IL-2 (Sandoz, Basel, Switzerland; 50 U/ml), LPS (S.
minnesota, R595; C Galanos, Max-Planck-Institut für
Immunbiologie, Freiburg, Germany; 1 µg/ml) or ConA
(Amersham Pharmacia Biotech; 5 µg/ml). Anti-TLR-2 mAb
(clone mT2.5 [33], at 25, 2.5 or 0.25 µg/ml) or the respec-
tive isotype control (mouse IgG; Dianova) was added at
various concentrations to cell cultures to analyse their
inhibitory potential. For the last 20 h of incubation, 1 µCi of
[3H]thymidine (Perkin Elmer, Boston, MA, USA) was added
to each well. Incorporation of [3H]thymidine was deter-
mined by scintillation counting (cell harvester, Inotech
[Dunn Labortechnik, Asbach, Germany]; counting system,
TRACE 96 [Dunn Labortechnik]). Means ± SEM for three
to six individual wells are given.

Isolation of RNA and analysis by LightCycler®

Purified T cells from B6 mice (ex vivo, purified by cell sort-
ing for Thy1.2-positive cells), whole splenocytes from TLR-
2-/- mice or alloreactive CTLs from B6 or TLR-2-/- anti-
BALB/c derived from in vitro MLC (purified by cell sorting
for CD8+ cells) were stimulated for 24 h with phorbol 12-
myristate 13-acetate (PMA; Calbiochem, Schwalbach,
Germany; 2.5 ng/ml) and ionomycin (Calbiochem; 500 ng/
ml) or frozen directly in TriReagent (Sigma, Taufkirchen,
Germany) for RNA isolation. RNA was isolated with a mod-
ified guanidine thiocyanate/acid phenol method [34] with
TriReagent in accordance with the manufacturer's instruc-
tions. After treatment with DNAse I (Ambion, Huntingdon,
Cambridgeshire, UK), up to 2 µg of RNA was incubated
with Random Hexamer primers (Promega, Mannheim,
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Germany; 1 µM) and Omniscript RT (Qiagen, Hilden, Ger-
many; 4 U).

The cDNA obtained was used as a template for real-time
quantitative polymerase chain reaction, which was per-
formed with the LC FastStart DNA Master SYBR GreenI®
(Roche Diagnostics, Mannheim, Germany) in a LightCy-
cler® instrument (Roche). Cycling conditions were 95°C for
10 min followed by 40 cycles of 95°C for 15 s, a primer-
dependent temperature for 10 s and 72°C depending on
the length of the polymerase chain reaction product (one
second per 25 base pairs), all with a temperature transition
rate of 20°C/s. Copy numbers were calculated on the basis
of amplification of DNA in a 10-fold dilution series. The
resulting calculation curves showed an error rate of less
than 0.05. Moreover, fluorescence was measured at 2°C
below the melting temperature of the amplified DNA,
thereby excluding irrelevant amplification products. The
numbers of copies of the mRNA under study were com-
pared, assuming constancy in the number of 18S rRNA
copies per cell (about 3 × 106 per cell [35]). The primers
used are listed in Table 1.

As a control for plausibility the copy number of mRNA for
the low-abundance housekeeping gene TBP (TATA-box
binding protein) was also determined and was expected to
be between 20 and 40 copies per normal resting cell (data
not shown).

Measurement of cytokine secretion
Purified T cells (ex vivo) or CTLs from MLC were cultured
in 96-well plates as described above, and supernatants
were harvested after 60 h (purified T cells) or 6 h (CTLs),
pooled (from six wells per group) and frozen at -20°C until
analysed. The concentrations of interferon (IFN)-γ, tumor
necrosis factor-α, IL-4 and IL-6 in the supernatants were
measured in duplicate with enzyme-linked immunosorbent
assay (ELISA) kits from Pharmingen; measurements were
performed in accordance with the manufacturer's instruc-
tions (IFN-γ, tumor necrosis factor-α and IL-6, cytokine
sandwich ELISA; IL-4, OptEIA mouse IL-4 set).

Statistical analysis
Statistical significance was calculated with the two-tailed
Student's t-test for comparison of means with unequal var-
iances. P < 0.05 was considered statistically significant.

Results
Recombinant Lip-OspA provides co-stimulatory signals 
to T cells via TLR-2
To determine a direct co-stimulatory effect of bacterial lipo-
proteins on T cell proliferation, the preparation of T cell
populations of high purity and free from B cells and APCs
is critical. Accordingly, T cells were enriched from spleens
of B6, TLR-2-/- and TLR-4def mice by negative selection via

FACS sorting, by using a panel of mAbs against surface
markers of B cells (B220), NK cells (NK1.1), dendritic cells
(DCs) (CD11c/I-A) and macrophages (Mac-1). Sorted cell
populations of B6 and TLR-2-/- mice contained more than
97% T cells and those of TLR-4def mice more than 93% T
cells (Fig. 1c). The percentages of cells positive for the
markers B220, Mac-1, NK1.1 and CD11c/I-A were variable
between the three selected T cell populations and ranged
between 0% and 0.7%.

Subsequently, the enriched T cell populations were incu-
bated in the presence of plate-bound anti-CD3 mAb, at
concentrations known to be insufficient for the induction of
proliferation [23], together with either Lip-OspA, its
delipidated form MDP-OspA, LPS or recombinant IL-2;
anti-haIgG served as negative control. Figure 1 shows one
representative experiment (out of three with similar results).
The successful depletion of APCs, including B cells and
macrophages/DCs, was revealed by comparing prolifera-
tive responses of the enriched T cell populations to the var-
ious stimuli with those of unselected spleen cells.
Unselected spleen cells responded as expected [23]:
when incubated on plates coated with anti-haIgG, B6
spleen cells proliferated in the presence of both Lip-OspA
and LPS, but not in the presence of MDP-OspA or recom-
binant IL-2, indicating that most responding cells are B
cells (Fig. 1a, upper left panel). As expected, proliferation of
unselected TLR-2-/- and TLR-4def spleen cells was seen
only after incubation with either LPS or Lip-OspA, respec-
tively, under similar conditions.

When unselected spleen cells were incubated in the pres-
ence of plate-bound anti-CD3 mAb, all three genotypes
responded to recombinant IL-2, indicating the expansion of
IL-2-responsive TCR-sensitized T cells, in addition to B
cells (Fig. 1a, lower left panel) [23,24]. In contrast, prolifer-

Table 1

Primers used

Primer Sequence

18S rRNA upper 5'-GCC CGA GCC GCC TGG ATA C-3'

18S rRNA lower 5'-CCG GCG GGT CAT GGG AAT AAC-3'

mTLR1 upper 5'-GGC ATA CGC CAG TCA AAT A-3'

mTLR1 lower 5'-ATG CAG AAA TGG GCT AAC TT-3'

mTLR2 upper 5'-TCT GCT GTG CCC TTC TCC TGT TGA-3'

mTLR2 lower 5'-GGC CGC GTC GTT GTT CTC GT-3'

mTLR4 upper 5'-AGC CGG AAG GTT ATT GTG GTA GT-3'

mTLR4 lower 5'-TGC CGT TTC TTG TTC TTC CTC T-3'

mTLR6 upper 5'-ATA CCA CCG TTC TCC ATT T-3'

mTLR6 lower 5'-GAC GTG CTC TAT CAT CAG TG-3'
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ative responses were not observed in enriched T cell pop-
ulations of all three genotypes when cells were incubated
on plate-bound anti-haIgG, independently of the presence
or absence of additional stimuli (Fig. 1a, upper right panel).
This finding indicates that the enriched T cell populations
were devoid of Lip-OspA and/or LPS-sensitive target cells,
particularly B cells, macrophages and DCs. As expected
from previous studies [23], all three anti-CD3-stimulated T
cell populations proliferated in response to recombinant IL-
2. However, after anti-CD3 stimulation only T cells from B6
and TLR-4def mice, but not those from TLR-2-/- mice,
responded to Lip-OspA. Under these conditions the three
cell populations did not proliferate in response to MDP-
OspA (Fig. 1a, lower right panel). Most importantly, the

three T-cell populations also did not respond to LPS in the
presence of anti-CD3, indicating that the T cell populations
were devoid of APCs, like macrophages and DCs [23].

Together with the fact that unselected spleen cells from B6
and TLR-2-/- mice that were sensitized with anti-CD3 were
responsive to LPS under similar conditions (Fig. 1a, lower
left panel), the data support the notion that co-stimulatory
signals provided by LPS to T cells are mediated indirectly,
most probably via APCs [23,24]. The co-stimulatory effect
of Lip-OspA for anti-CD3-sensitized T cells from B6 and
TLR-4def mice is dose dependent, whereas T cells from
TLR-2-/- mice are again unresponsive to Lip-OspA at any
concentration tested (Fig. 1b).

Figure 1

Direct co-stimulation of pre-sensitized T cells via Toll-like receptor (TLR)-2Direct co-stimulation of pre-sensitized T cells via Toll-like receptor (TLR)-2. (a) Unselected splenocytes or fluorescence-activated cell sorting 
(FACS)-sorted T cells were cultivated on anti-hamster (ha)IgG plus anti-CD3 (3 ng per well) or anti-haIgG coated plates (control) in the presence or 
absence of Lip-OspA, Met-Asp-Pro (MDP)-OspA (10 µg/ml each), recombinant interleukin-2 (rec. IL-2; 50 U/ml) or lipopolysaccharide (LPS; 1 µg/
ml) for 72 h. Proliferation of cells was measured by [3H]thymidine incorporation. Means ± SEM for six different wells are given. Asterisk denotes sig-
nificant difference (P < 0.05) from control (anti-haIgG or anti-CD3 without supplements). One representative experiment is shown. (b) FACS-sorted 
T cells were stimulated with anti-CD3 (3 ng per well) and different amounts of Lip-OspA or MDP-OspA (10, 1 or 0.1 µg/ml each) or with 50 U/ml 
recombinant IL-2. Proliferation of cells was measured by [3H]thymidine incorporation. Means ± SEM for six different wells are given. Asterisk denotes 
significant difference (P < 0.05) from control (anti-CD3 without supplements). (c) Analysis of splenocytes from C57BL/6 (B6; wild-type), TLR-2-/- 

and TLR-4def C57BL/10ScNCr mice for different cell populations before and after FACS sorting for T cells (re-analysis). CD11c+ and I-A+ are, in 
combination, characteristic markers for dendritic cells. Data are given in percentages.
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To determine the functional potential of T cells that were
stimulated with plate-bound anti-CD3 mAb in the presence
of Lip-OspA, supernatants of the respective cultures from
B6 T cells were analysed for cytokine activities. From four
cytokines analysed (IFN-γ, tumor necrosis factor, IL-4 and
IL-6), only IFN-γ was detectable in the range 0.9–1.4 ng/ml
in independent experiments. Levels of IFN-γ production
were similar when T cell populations from B6 mice were co-
stimulated with anti-CD3 in the presence of Lip-OspA or
recombinant IL-2. Cytokine activity was not detectable at all
when enriched B6 T cell populations were cultured solely
on anti-CD3 mAb or incubated in the presence of either
Lip-OspA, MDP-OspA or LPS alone (data not shown).
Taken together, these data suggest that TLR-2 functions as
a co-stimulatory signal for the maturation of TCR-sensitized
T cells.

Recombinant Lip-OspA induces proliferation and IFN-γ 
secretion in CD8+ cytolytic T effector cell lines via TLR-2 
in the absence of TCR engagement
To determine whether Lip-OspA is also stimulatory for T
effector cells, alloreactive (anti-H-2d) CD8+ CTL lines
derived in vitro from B6, TLR-2-/- and TLR-4def mice were
analysed. Figure 2 shows one representative experiment
(out of three with similar results). After the third restimula-
tion in vitro, the three CTL lines consisted of more than
99% T cells (Thy-1.2+), including 93.1–97.4% CD8+ and
0.7–2.0% CD4+ T cells (Fig. 2 legend). When incubated
on plate-bound control anti-haIgG, proliferative responses
of CTL lines from B6 and TLR-4def mice, but not TLR-2-/-

mice, were significantly increased in the presence of either
Lip-OspA or recombinant IL-2 alone (Fig. 2, left panels).
When the same CTL populations were seeded on anti-
CD3 mAb-coated plates at a concentration insufficient to
induce cell growth on its own, again only the addition of Lip-
OspA and recombinant IL-2, but not of MDP-OspA or LPS,
led to proliferative responses of CTL lines of B6 and TLR-
4def mice but not TLR-2-/- mice (0.03 ng per well; Fig 2, mid-
dle panels). When the CTL lines were stimulated with 0.3
ng of anti-CD3 mAb per well (Fig. 2, right panels) the pro-
liferative responses were increased about 5-10-fold com-
pared with those plated on anti-haIgG or on 0.03 ng of anti-
CD3 per well. The three CTL populations did not show pro-
liferative responses to MDP-OspA, ConA or LPS above
background, independently of whether they were cultivated
on plate-bound anti-haIgG or anti-CD3 mAb. Note that the
proliferative response of TLR-2-/- CTLs with anti-CD3 mAb
alone was higher than that of B6 and TLR-4def CTLs, but
that it was not altered by the addition of Lip-OspA.

In general, T cells from TLR-2-/- mice were more reactive to
appropriate stimuli (compare the stimulation indices with
recombinant IL-2 in the left and middle panels of Fig. 2) but
also seemed to function at an accelerated pace (compare
absolute counts in the right panels of Fig. 2). When a mAb

against mouse TLR-2 with inhibitory potential [33] was
included in the cell culture, a significant and dose-depend-
ent decrease in the proliferative response of anti-CD3 (both
0.3 and 0.03 ng per well) plus Lip-OspA-stimulated B6
CTL lines compared with control cultures (without anti-
TLR-2 mAb or in the presence of the isotype control anti-
body) was observed (Fig. 3).

In addition to proliferative responses, the production of IFN-
γ by CTL lines was tested. The result of one representative
ELISA (out of three with similar results) is shown in Table 2.
When cultured on anti-haIgG, Lip-OspA, but not MDP-
OspA or LPS, was able to induce IFN-γ production in B6-
derived, but not in TLR-2-/- -derived, CTL lines (Table 2).
IFN-γ release was similar to or even higher than that
obtained with recombinant IL-2 and significantly (about 11-
fold) exceeded those in the presence of MDP-OspA or in
the absence of any stimulus (Table 2). When cultured on
anti-CD3, Lip-OspA, but not MDP-OspA, further increased
IFN-γ secretion in B6-derived, but not in TLR-2-/- -derived,
CTL lines. These stimuli, including Lip-OspA, did not have
any effect on the cytotoxic activities of the three CTL pop-
ulations, as measured by specific target cell lysis or by the
level of TCR-induced exocytosis of granzyme A (data not
shown).

Quantitative analysis of TLR expression on resting and 
activated T cell populations
To support these functional data, the expression of mRNA
for TLRs on T cells was analysed. As shown in Table 3,
enriched naive resting splenic B6 T cells do express TLR-2
and TLR-1 but not (or only at marginal levels) TLR-4.
However, the latter transcripts were readily found in unse-
lected spleen cells from TLR-2-/- mice, isolated mature rest-
ing B cells, marginal-zone B cells and, above all,
macrophages. In addition, these data strongly argue
against a contamination of the purified T cells with B cells
or macrophages (Table 3). TLR-1, which is known to form
heterodimers with TLR-2 and to modify its ligand-binding
specificity [36-38], is expressed at considerable levels in
naive and PMA/ionomycin-activated T cells. Expression of
TLR-6, which is also able to modify the ligand-binding spe-
cificity of TLR-2 by heterodimerization [38-41], was
detected at low levels in naive CD4+ and CD8+ T cell pop-
ulations. CTLs expressed higher levels of TLR-2 and TLR-6
transcripts, but not of TLR-1 transcripts, than resting T
cells. Activation of CTLs with PMA and ionomycin exhibited
a dual effect in that TLR-2 expression increased but TLR-1
and TLR-6 expression decreased. In addition, CTLs from
B6 and TLR-2-/- mice expressed low levels of TLR-4. For
comparison, expression levels are given for two B cell sub-
sets and for bone marrow-derived macrophages.
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These data demonstrate that naive resting and effector T
cells express TLRs appropriate for binding pathogen-asso-
ciated molecular patterns of B. burgdorferi and are fully
compatible with the results shown in Figs 1, 2 and 3.

Discussion
Our present findings show that a microbe-derived lipopro-
tein, Lip-OspA from B. burgdorferi, can function as co-stim-

ulator for both antigen-sensitized naive T cells and effector
T cells, namely CTLs, and that this co-stimulatory signal is
directly mediated via TLR-2. These data stress the crucial
role of TLRs not only as sensors of the innate immune
responses against microbial pathogens [42] but also as co-
stimulators of cells of the adaptive immune system. TLR-2
engagement therefore influences the differentiation of T
cells not only by the activation of DCs (indirect pathway

Figure 2

Direct co-stimulation of cytotoxic T lymphocyte (CTL) lines via Toll-like receptor (TLR)-2Direct co-stimulation of cytotoxic T lymphocyte (CTL) lines via Toll-like receptor (TLR)-2. CD8+ T cells from CTL lines (generated against BALB/c, 
sixth stimulation, day 4) were cultivated on anti-hamster (ha)IgG plus anti-CD3 (0.3 or 0.03 ng per well) or anti-haIgG coated plates (control) in the 
presence or absence of Lip-OspA, Met-Asp-Pro (MDP)-OspA (10, 1 or 0.1 µg/ml each), recombinant interleukin-2 (rec. IL-2; 50 U/ml), concanavalin 
A (ConA; 5 µg/ml) or lipopolysaccharide (LPS; 1 µg/ml) for 48 h. Proliferation of cells was measured by [3H]thymidine incorporation. Means ± SEM 
for six different wells are given. Asterisk denotes significant difference (P < 0.05) from control (anti-haIgG or anti-CD3 without supplements). One 
representative experiment is shown. Phenotypic analysis (fluorescence-activated cell sorting) of C57BL/6 (B6), TLR-2-/- and TLR-4def anti-BALB/c 
CTL lines (third stimulation, day 4): Thy1.2+, 99.0–99.5%; CD8+, 93–95%, CD4+, 0.7–2%; CD19+ (B cells), F4/80+ (macrophages), NK1.1+ (NK 
cells) ≤ 0.2%. SI, stimulation index (calculated based on results with anti-haIgG plus anti-CD3 or with anti-haIgG alone, without the addition of 
supplements).
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[23,43]) but also directly via co-stimulation. In the latter
function TLRs can sustain ongoing specifically induced
immune responses in a polyclonal manner. In this respect,
the activity of Lip-OspA is comparable to the action of LPS,
a polyclonal B cell activator that engages TLR-4 [27].

Specificity of the interaction
The present finding that Lip-OspA directly co-stimulates
anti-CD3-sensitized T cells from B6 and TLR-4def mice, but
not from TLR-2-/- mice, to proliferate and to develop into
effector cells explains our previous findings that Lip-OspA
augments proliferative and cytokine responses of mouse
and human T cells [23,24]. Here we describe a direct
involvement of TLR-2 expressed on T cells as the underly-
ing molecular mechanism. This conclusion is supported by
the fact that naive and presensitized T cells are shown to
express the respective receptor, although at low levels, in
line with previous reports on TLR expression in murine T
cell lines [44] and in thymic and splenic T cells [9]. We
found that after polyclonal activation with PMA and ionomy-
cin, the expression of TLR-2 increased in CTLs but not in
freshly isolated splenic T cells. Whereas the expression of
TLR-4 transcripts was not seen in naive T cells, TLR-4
mRNA could be detected after stimulation and was even
higher in CTLs.

These findings extend reported data [9] in which an
increase in TLR-2 but not in TLR-4 transcripts was
observed after stimulation of splenic and thymic T cells. The

expression of TLRs that have been described as partners in
a heterodimeric complex with TLR-2, namely TLR-1 and
TLR-6 [36-38,41], are also regulated rather markedly: a
more than 10-fold decrease in TLR-1 was found in PMA/
ionomycin-treated freshly isolated B6 cells, as well as in
CTL lines. Whether this TLR modulation would translate
into a change of susceptibility for activation by these spe-
cific ligands has not been studied.

However, the differential effect of Lip-OspA on B6, TLR-
4def and TLR-2-/- T cell populations suggests the surface
expression of the respective lipoprotein receptor on
presensitized T cells and CD8+ T effector cells. This
assumption is furthered by the fact that co-stimulation of
B6 CTL lines by Lip-OspA was inhibited by a mAb against
TLR-2, known to interfere with ligand–receptor interaction
[33]. It is not yet clear which level of (protein) expression of
TLRs in general is necessary for efficient signaling of the
target cell, but all evidence points to a low expression of
most TLRs [45]; however, this does not seem to interfere
with an efficient biological response to a stimulus. In this
regard it is significant that TLR-4, which is the receptor for
LPS, a polyclonal B-cell activator and inducer of
differentiation, is expressed at comparable levels in B cells
(Table 3) [25,26].

Neither naive splenic T cells nor CTL lines responded to
LPS. This finding is remarkable for two reasons: first, in
view of the fact that the co-stimulatory activity of LPS for T

Figure 3

Direct co-stimulation of cytotoxic T lymphocyte (CTL) lines by Lip-OspA can be inhibited by anti-Toll-like receptor (TLR)-2 monoclonal antibodyDirect co-stimulation of cytotoxic T lymphocyte (CTL) lines by Lip-OspA can be inhibited by anti-Toll-like receptor (TLR)-2 monoclonal antibody. 
CD8+ T cells from C57BL/6 (B6) CTL lines (generated against BALB/c, fifth stimulation, day 4) were cultivated on anti-hamster IgG plus anti-CD3 
(0.3 or 0.03 ng per well) in the presence or absence of Lip-OspA (10 µg/ml) with or without varying concentrations of anti-TLR-2 monoclonal anti-
body (25, 2.5 or 0.25 µg/ml) or the respective isotype control antibody (25 µg/ml) for 24 hours. Proliferation of cells was measured by [3H]thymidine 
incorporation. Means ± SEM for three to six different wells are given. Asterisk denotes significant difference (P < 0.05) from control (plus Lip-OspA 
without the addition of anti-TLR-2 monoclonal antibody). One representative experiment (out of two with similar results) is shown. SI, stimulation 
index (calculated based on results with anti-CD3 without the addition of supplements; white bars).
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cells is strictly dependent on APCs [23] it verifies the suc-
cessful enrichment of the responder populations; second,
it conflicts with the (albeit low) expression of TLR-4 on
CTLs and the reported responsiveness of TLR-4-positive
regulatory T cells to LPS [46]. Optimal signaling by LPS
requires, besides TLR-4, several accessory molecules such
as LBP, MD-2 and CD14 [47,48]. We do not yet know
whether the absence of a response to LPS by T lym-
phocytes that do express TLR-4 is due to qualitative or
quantitative aspects of signal transduction by TLR-4 on T
lymphocytes.

Biological effects
The biological effects of TLR engagement on target cells
are poorly understood, which is partly due to insufficient
knowledge about the signal transduction pathways. Recent
evidence indicates that subgroups of TLRs use specific
signaling pathways [49-51] aside from common pathways
employed by all TLRs, IL-1 receptors and other surface
receptors. Evidently CD28, the prototype co-stimulator of T
lymphocytes, shares certain signaling pathways with TLRs
[52]. Thus, the distinct outcome of a T cell response, such
as differential cytokine production, as seen with human T
cells co-stimulated by either Lip-OspA or CD28 [24], can

be understood by implicating non-overlapping parts of dis-
tinct signaling pathways. Additional levels of sophistication
seem to derive from a differential expression of TLRs on dif-
ferent T effector cells ([46], and this study) and the depend-
ence of recognition on the physical state of the pathogen-
associated molecular patterns. For example, the recogni-
tion of OspA by TLR-2/TLR-6 or TLR-2/TLR-1 heterodim-
ers depends on the acylation state of the lipoprotein [36-
41,53,54]. In addition, little is known about feedback regu-
lation after engagement of TLRs and the consequences of
the absence of particular TLRs on effector cells. The
increased excitability of TLR-2-/- CTL lines should be con-
sidered in this context.

Current concepts of T cell activation imply that co-stimula-
tory molecules are necessary to initiate antigen-specific
responses from naive T cells but are dispensable for
triggering functions in effector T cells, including exocytosis
and cytokine release [55]. The present finding that bacterial
lipoproteins directly stimulate alloreactive CTLs to prolifer-
ate and to secrete IFN-γ via TLR-2 adds another facet to the
functional potential of T effector cells. The fact that the
same stimulatory signal leads neither to the release of cyto-
toxic effector molecules from CTLs, such as perforin and

Table 2

Interferon-γ production by cytotoxic T lymphocyte lines after incubation on anti-hamster IgG or anti-CD3 in the presence or absence 
of Lip-OspA, Met-Asp-Pro-OspA, recombinant interleukin-2 or lipopolysaccharide

Addition B6 anti-BALB/c, ng/ml (SI) TLR-2-/- anti-BALB/c, ng/ml (SI)

Anti-haIgG 0.2 0.3

+ Lip-OspA 2.3a (11.5) 0.2 (<1)

+ MDP-OspA 0.3 (1.5) 0.2 (<1)

+ rec. IL-2 0.5 (2.5) 0.4 (1.3)

+ LPS 0.2 (1.0) 0.4 (1.3)

0.03 ng per well anti-CD3 0.2 0.3

+ anti-CD3 + Lip-OspA 5.4a (27) 0.2 (<1)

+ anti-CD3 + MDP-OspA 0.2 (1.0) 0.3 (1.0)

+ anti-CD3 + rec. IL-2 0.8a (4.0) 0.6 (2.0)

+ anti-CD3 + LPS 0.3 (1.5) 0.1 (<1)

0.3 ng per well anti-CD3 4.9 7.2

+ anti-CD3 + Lip-OspA 29.1a (5.9) 6.8 (<1)

+ anti-CD3 + MDP-OspA 6.0 (1.2) 9.5 (1.3)

+ anti-CD3 + rec. IL-2 10.9a (2.2) 10.2 (1.4)

+ anti-CD3 + LPS 2.7 (<1) 7.2 (1.0)

aSignificant difference (P < 0.05) from control (anti-haIgG or anti-CD3 without supplements). C57BL/6 (B6) and Toll-like receptor (TLR)-2-/- 

cytotoxic T lymphocyte lines (generated against BALB/c, fourth stimulation, day 4) were incubated for 6 h on anti-haIgG (control) with or without 
anti-CD3 (0.03 ng per well or 0.3 ng per well) in the presence or absence of Lip-OspA, Met-Asp-Pro (MDP)-OspA (10 µg/ml each), recombinant 
interleukin-2 (rec. Il-2; 50 U/ml) or lipopolysaccharide (LPS; 1 µg/ml). The amount of the secreted interferon-γ in the supernatant was then tested 
in duplicate using the enzyme-linked immunosorbent assay technique. One representative experiment is shown. The detection limit was 0.1 ng/ml. 
SI, stimulation index (calculated based on results with anti-hamster (ha)IgG plus anti-CD3 or anti-haIgG alone, without the addition of 
supplements).
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granzymes, nor to an enhancement of their cytotoxic poten-
tial in the presence of appropriate target cells or anti-CD3
mAb indicates that TCR-induced granula exocytosis is
independent of TLR-2 signaling. These findings not only
emphasize the differential signal requirements for the
induction effector function in T cells [56], including CTLs,
such as granula exocytosis and cytokine release [57]; they
will certainly also contribute to a better understanding of T
cell-driven pathological processes in inflamed tissues, even
in situations where causal agents are elusive.

Relevance of the findings
The question of whether our findings are of any significance
for the understanding of CIJD is justified and needs
answering.

1. Involving microbial infections as a leading cause for CIJD
would reconcile years of research in this area and numer-
ous hypotheses on its pathogenesis [4,14,58,59].

2. Recent research implicates synovial lining cells, B cells
and T cells in the pathogenesis of CIJD (for a recent review
on this, see [2]).

3. The receptor system, implied by our findings, is present
on synovial lining cells, B cells and T cells as is shown by
our own data and published results [8,10].

4. TLR ligands have long been known as polyclonal activa-
tors of lymphocytes, in particular of B cells [27,60,61].

5. TLR ligands have been implicated by other groups as a
cause of CIJD or as enhancing factors in the disease, for
example hypomethylated bacterial DNA [12], LPS [13] and
heat shock protein 60 [62].

6. TLR ligands are found in the synovia of patients with
CIJD [11].

7. The cytokine profile in the serum of patients with inflam-
matory joint disease or produced by T cells isolated from
synovia is congruent with that produced by the T cells in
our experiments [63-66].

8. In our hypothesis a specific antigen is not required, leav-
ing room for a multicausal hypothesis on the pathogenesis,
including T cells of any specificity.

Table 3

Expression of TLRs on resting and activated T cells in comparison with macrophages and B cells

Cell population Molecules per cell

TLR-1 TLR-2 TLR-4 TLR-6

Spleen Thy1.2+ (ex vivo) 611 46 n.d. n.d.

Spleen Thy1.2+ + PMA/ionomycin 40 24 6 n.d.

Spleen CD4+ T cells 1874 30 7 47

Spleen CD8+ T cells 602 31 0 39

CTLs 248 219 43 56

CTLs + PMA/ionomycin 19 335 53 19

CTLs (TLR-2-/-) 0 -a 28 6

Spleen (TLR-2-/-, ex vivo, unselected) 101 -a 78 18

Bone marrow macrophages (cultured) -b 6375 7056 113

Spleen mature B cells -b 25 25 13

Spleen marginal-zone B cells -b 49 33 11

aNot determined; sterile fusion transcripts of the mutated Toll-like receptor (TLR)-2 gene can be found with the indicated primer pairs; however, no 
protein product is detectable (CJ Kirschning, unpublished observations). bNot determined. Purified T cells (Thy1.2+, CD4+ or CD8+) or B cells 
(mature, marginal zone) from B6 mice, whole splenocytes from TLR-2-/- mice or purified cytotoxic T lymphocytes (CTLs) from C57BL/6 and TLR-2-
/- anti-BALB/c mixed lymphocyte culture (purified by cell sorting for CD8-positive cells) were stimulated with phorbol 12-myristate 13-acetate 
(PMA) and ionomycin for 24 h or frozen directly in TriReagent for RNA isolation and real-time polymerase chain reaction, as described in Materials 
and methods. As a control, cultured bone marrow-derived macrophages were used. Experiments, except for the measurement of mRNA in CTL 
lines and spleen cells that were stimulated with PMA and ionomycin, were repeated twice and gave similar results, both in the sense of inter-
experimental and intra-experimental reproducibilities. n.d., not detectable.
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9. The pathogenesis and (histo)pathological findings in B.
burgdorferi infection are compatible with those of CIJD
[14,67-70].

These data suggest that the described inflammatory proc-
esses are elicited and maintained by direct interaction of
intact spirochetes and/or extracellular membrane-bound
vesicles [71] and molecules thereof with cells that either
home to the affected tissue or infiltrate the diseased area.
The observation that susceptibility to the development of
chronic arthritis in patients with B.burgdorferi infection is
linked, at least partly, to HLA-DRB1*0401 or related alleles
[72,73], just as the predisposition of normal mouse strains
with certain H-2 haplotypes to develop chronic joint inflam-
mation [69,74] indicated the critical involvement of T cells
in the pathogenesis of Lyme disease. The fact that human
T cells with specificity for a particular OspA epitope in the
context of HLA-DR4 protein co-recognize an epitope on a
host adhesion molecule, LFA-1, led to the hypothesis that

Lyme arthritis could be a consequence of a specific patho-
gen-induced autoimmunity [75]. However, at present, there
is no convincing experimental evidence whatsoever for
such a causal relationship [18,76-78]. In addition, no
correlation was found between responses of T cells to LFA-
1 peptide in patients with Lyme disease and their clinical
status [79].

The findings that synovial T cells from patients with Lyme
arthritis are polyclonal [14,15] and that pre-activated T
cells, irrespective of their antigen specificity, effectively infil-
trate inflammatory foci [80,81] suggest that T cells specific
both for spirochetal and for third-party antigen can expand
and secrete pro-inflammatory cytokines in infected tissue,
thereby contributing to the disease progress. Engagement
of TLR-2 and other TLRs with resident spirochetes or their
products would give any pre-activated T cell a nonspecific
stimulus that ensures the ongoing inflammation in a seem-
ingly specific way (Fig. 4). This might also hold true for

Figure 4

Explanation for the involvement of Toll-like receptor (TLR)-2 on pre-activated T cells in pathogen-induced chronic inflammatory joint diseasesExplanation for the involvement of Toll-like receptor (TLR)-2 on pre-activated T cells in pathogen-induced chronic inflammatory joint diseases. Any 
inflammation will cause the induction of chemokine and cytokine production in several tissue-associated cells in the joint, including fibroblasts, mac-
rophages and dendritic cells. Activated T cells and T effector cells of any specificity (also auto-specificities) can respond to these signals, migrate to 
the joint, breach endothelial barriers, infiltrate the inflamed foci and sustain inflammatory processes by secreting cytokines in response to direct co-
stimulation via TLR-2, without the necessity of engagement of the T cell receptor.
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other pathogen-induced or non-pathogen-induced CIJD.

Conclusion
The present data reveal a new method of co-stimulation of
T cells via TLR-2 that might have a critical role in pathogen-
induced immunopathology. The important finding that bac-
terial lipoproteins can trigger the release of a proinflamma-
tory cytokine also from T effector cells, even in the absence
of TCR engagement, might help to elucidate causative sig-
nals of inflammatory diseases for which the original microbe
has not been identified, such as rheumatoid arthritis. It has
not escaped our attention that the novel mechanism of T
cell activation described here might also open new ave-
nues for the understanding and treatment of diseases other
than chronic inflammatory disorders, for example cancer.
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