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A B S T R A C T   

Schizophrenia and other neurodevelopmental disorders often have very heterogeneous symptoms, especially 
regarding cognition: while some individuals may exhibit deficient cognition, others are relatively unaffected. 
Studies using developmental animal models often ignore phenotypic heterogeneity in favour of traditional 
treatment/control comparisons. This may result in resilient or unaffected individuals masking the effects of 
susceptible individuals if grouped together. Here, we used maternal immune activation and limited bedding and 
nesting, respectively, as a two-hit neurodevelopmental model for schizophrenia. Both factors reduced cognitive 
function in a novel object recognition (NOR) task. While we found treatment group effects on cognitive phe-
notypes, behavioural clustering identified three subpopulations exposed to either insult: those exhibiting ‘typical’ 
cognitive performance on the NOR, an intermediate phenotype, or a marked deficit. These clusters included 
offspring from each treatment group, although both intermediate and marked deficit clusters were composed 
primarily of offspring from treated groups. Clustering allowed stratification within treatment groups into ‘sus-
ceptible’ and ‘resilient’ individuals, while also identifying conserved phenotypes across treatment groups. Using 
unbiased cluster analyses in preclinical models can better characterize phenotypes and enables a better under-
standing of both face and construct validity of phenotypic heterogeneity. The use of unbiased clustering tech-
niques may help identify potential markers associated with individual susceptibility and resilience in 
neurodevelopmental disorder models.   

1. Introduction 

Neurodevelopmental disorders (NDDs) such as schizophrenia pre-
sent as complex psychiatric conditions associated with significant 
cognitive deficits, and positive and negative symptoms. Cognitive defi-
cits in particular can appear heterogeneous between individuals with 
shared diagnoses, despite having been diagnosed based on the same 
criteria (Van Rheenen et al., 2017). Clinical studies have noted large 
heterogeneity in the cognitive profile of patients with schizophrenia 
(Gilbert et al., 2014), suggesting that diagnosis as the sole means of 
patient classification in research ignores the inter-individual variability 
within each group (Van Rheenen et al., 2017). Recent studies stratifying 
patient populations on the basis of phenotype rather than diagnosis (or 
experimental manipulation) have been able to utilize this variability to 

identify symptom-specific patient subgroups, better characterizing their 
individual symptomatic profile (Clementz et al., 2016; Gilbert et al., 
2014; Van Rheenen et al., 2017). For instance, the 
Bipolar-Schizophrenia Network for Intermediary Phenotypes Study 
(B–SNIPS) identified three patient clusters based on cognitive perfor-
mance and sensorimotor reactivity, composed of individuals with bi-
polar disorder with psychosis, schizophrenia, or schizoaffective 
disorder. These groups did not reflect diagnostic differences, instead 
sharing similar symptomatic profiles (Clementz et al., 2016). In 
schizophrenia, cognitive deficits are seen in most patients, who can be 
stratified into subgroups based on the degree to which they exhibit 
general or domain-specific deficits (Gilbert et al., 2014). These sub-
groups may represent distinct neurobiological subgroups as suggested 
by the B–SNIPS and supported by subgroup-specific responses to 
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treatment (Clementz et al., 2016; Gilbert et al., 2014). 
As in the clinical context, pre-clinical models often overemphasize 

the importance of the treatment or manipulation rather than the output, 
i.e. the measured behaviour. For example, neurodevelopmental models 
focus predominantly on the manipulation of the prenatal environment, 
as this period shows the greatest sensitivity to risk factors of neuropsy-
chiatric disorders (Howes and McCutcheon, 2017). In particular, expo-
sure to infection in utero has been linked to an up to five-fold increase in 
the relative risk of NDDs, specifically schizophrenia (Brown and Derkits, 
2010). This scenario can be modelled in pregnant rodent dams by 
exposure to an immunogen such as polyinosinic:polycytidylic acid (poly 
(I:C); a viral mimetic immunostiumulant) resulting in maternal immune 
activation (MIA) (Murray et al., 2019). Exposure to maternal infection 
can result in neurodevelopmental insults through fetal neuro-
inflammation (Lipina et al., 2013) or altered placental function 
(Kowash, 2020). Additionally, these prenatal insults may prime specific 
responses to postnatal stressors such as material deprivation (Omer 
et al., 2014) or adult maltreatment (Arseneault et al., 2011), which in-
crease the relative risk of psychotic symptoms (Arseneault et al., 2011; 
Howes and McCutcheon, 2017). One method of modelling these 
stressors is through limited bedding and nesting (LBN), in which 
reduced bedding material is provided to the litter. LBN may impart its 
effects through altering maternal behaviour. This is seen through an 
increase in fragmented nursing behaviour, such as licking and grooming, 
as well as impaired nesting behaviour, (Gallo et al., 2019; Walker et al., 
2017), illustrating an appropriate analogue for human maltreatment 
(Arseneault et al., 2011). This model has been shown to result in phe-
notypes related to schizophrenia and other NDDs such as cognitive 
deficits and reduced sociability (Walker et al., 2017). Models of both 
types of risk factors can be combined into preclinical, two-hit neuro-
developmental models, enabling studies of both main and interaction 
effects between stressors (Giovanoli et al., 2013). 

While these models allow for greater control over covariates, they 
often find large variability in the observed phenotypes between in-
dividuals within a treatment group. One approach to appreciate this 
variability in preclinical models is through stratification, similar to that 
in clinical research. Once unbiased groups are identified based on phe-
notypes (e.g. ‘exposed-and-resilient’ or ‘exposed-and-susceptible’), 
biomarker analyses can then identify specific in vivo markers of sus-
ceptibility. While inter-individual variability has been described by 
previous research (Van Rheenen et al., 2017), only recently have studies 
begun to identify potential sub-populations. For example, Mueller et al. 
(2021) identified a subpopulation of MIA-exposed mice based on a 
high-inflammatory profile that differed socially from low-inflammation 
MIA offspring and control animals. The use of clustering and subject 
stratification to provide better identification of subtype-specific dys-
functions can thus promote personalised tailored therapeutics. 

Our study aims to provide support for clustering based on behav-
ioural outputs obtained in a rat model of MIA, with significant advances 
over previous stratification approaches in animal models. We modelled 
two environmental risk factors for schizophrenia: MIA (Murray et al., 
2019) and limited bedding and nesting during lactation (LBN; Walker 
et al., 2017). Following exposure to one or both insults, adolescent 
offspring were tested on their visual recognition memory. Clustering 
allows for a ‘diagnosis’ in preclinical models akin to practices in clinic, 
ultimately capturing resilience in manipulated groups and idiopathic 
occurrence of phenotypes in control groups. 

2. Methods 

2.1. Animals 

Wistar rat dams (N = 18; Charles River, UK) and their offspring (n =
67, n= 1–2M, 1–3F per litter) were used in our study. Wistar rats were 
selected as we have shown in our previous research that this strain, 
compared with others, shows low within-group variability across 

phenotypes, in particular in their cytokine response to immune stimu-
lation (Murray et al., 2019). There were four treatment groups; vehicle, 
vehicle with stress, MIA, and MIA with stress (see section 2.3 for details). 
Litters were reduced to n=10 of equal sex number (5M, 5F) to ensure 
equal resource access and maternal attention. Following litter reduction, 
dams and litters were allocated to the LBN stress condition or control 
rearing (N=4–5 dams per treatment group, n= 7–10M + 8–9F offspring 
per treatment group, N = 10, n=67 total). Animals were housed in the 
University of Manchester Biological Services Facility in accordance with 
the Animals (Scientific Procedure) Act of 1986 under project licence 
authority, with local ethical approval. Nulliparous females (mean 
weight: 257.4 ± 6.7g) were acclimatized to the housing conditions for at 
least one week prior to mating. All animals were maintained at a tem-
perature of 21–23 ◦C (55–60% relative humidity), on a 12h:12h light: 
dark schedule (lights on at 0730h). All animals were housed in indi-
vidually ventilated cages with split-level environmental enrichment 
(GR1800 Double-Decker Cage, Tecniplast, UK), with ad libitum access to 
standard rat chow (Special Diet Services, UK) and water. Offspring were 
weaned on postnatal day (PD) 28 and then housed with littermates in 
cages of up to five females or up to three males. 

2.2. Maternal immune activation (MIA) 

Virgin female rats were time-mated, with gestational day (GD) 1 
defined as the day a vaginal plug was found. From GD1-GD14, dams 
were pair-housed. On GD15 between 0900h and 1100h, dams were 
injected intraperitoneally with either 10 mg/kg bodyweight poly (I:C) 
(low molecular weight, Invivogen, France) or injected with an equiva-
lent volume of vehicle control (endotoxin-free 0.9% NaCl, Invivogen). 
Dams were monitored following injection for any adverse reaction (none 
were noted). The first day pups were seen was designated as PD0. 

2.3. Limited bedding and nesting (LBN) 

Following litter reduction on PD1, dams and litters allocated to the 
LBN stress condition were placed into a clean cage with an elevated 
metal platform approximately 2.5 cm above reduced bedding material 
(1.5 cm of woodchips in LBN). Control litters had access to 2.5 cm of 
woodchip bedding. Both conditions were given equal nesting material 
(70–85g Sizzlenest), though LBN litters could not make an adequate nest 
(Walker et al., 2017). Litters were returned to typical nesting conditions 
on PD10. 

2.4. Novel object recognition (NOR) 

We focused on cognitive outputs as these show high levels of inter- 
individual variability in clinical settings, and because of their prior 
use as a clustering factor in clinical research (Clementz et al., 2016; 
Gilbert et al., 2014). Offspring cognition was tested through the Novel 
Object Recognition (NOR) task, reflecting visual learning and memory, 
one cognitive subdomain affected in schizophrenia (Nuechterlein et al., 
2004). NOR deficits are seen in multiple models for schizophrenia in 
rodents, including dopamine agonism, glutamate antagonism, neonatal 
ventral hippocampal lesions, and MIA (Lyon et al., 2012). Further, NOR 
is recommended as an analogue to human visual learning and memory 
tasks due to its ease of testing as well as its involvement of regions 
affected in patients (such as the frontal cortex) or those involved in the 
cognitive subdomains affected in the disorder such as the perirhinal 
cortex (Young et al., 2009). Offspring were first habituated to the 
plexiglass testing arena for two days before testing. On the testing day, 
offspring were placed back into the testing arena which now contained 
two identical objects (two opaque glass bottles or two Diet Coke cans). 
This was the acquisition phase. Rats were allowed to explore the objects 
for 3 min, after which offspring were removed and placed into their 
home cage for 2 min, when the items were removed, and arenas cleaned 
with 70% ethanol. Following cleaning, a previous item was returned and 
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a novel item was placed in the arena. The animal was then placed back in 
the centre of the arena and allowed to explore either object for a further 
3 min (testing phase). Items were counterbalanced to account for any 
side preference within the arena. Exploratory time in the acquisition 
phase was first analysed to ensure no side preference. 

Exploratory time in the testing phase was analysed as Discrimination 
Index (DI), defined as: 

DI =
Novel Item Exploration (s) –Familiar Item Exploration (s)
Novel Item Exploration (s) + Familiar Item Exploration (s)

where a score of +1 represents an exclusive novelty preference, while a 
score of − 1 represents an exclusive familiarity preference. DI was ana-
lysed both for group differences, and as a one-sample t-test against zero, 
indicating no object preference. 

2.5. Statistics 

Statistical analysis was performed using SPSS v.25.0 (IBM) and 
visualized with GraphPad Prism v9.0 (Graphpad, USA). Power analyses 
were run on comparable cognitive task data from our laboratory (d =
1.082) and comparable research (D = 1.446, Mattei et al., 2014) and 
identified N = 10 dams as sufficiently powered for up to two-way in-
teractions at α = 0.05 and a power of 0.8. 

Exploration times for items in the acquisition phase were analysed by 
repeated measures ANOVA and DI was analysed using a General Linear 
Mixed Model (GLMM) with prenatal treatment, postnatal stress, and sex 
as fixed factors while accounting for dam as a random factor. When post- 
hoc analyses were needed, GLMMs were used in order to account for the 
effect of the shared prenatal environment within litters. A two-step 
unbiased clustering analysis was used with no pre-determined number 
of clusters to avoid any experimenter bias. DI was used as the sole input 
in determining clusters. Cluster quality was analysed as part of the two- 
step algorithm in SPSS via silhouette indices rated on a scale of − 1 to +1. 
A greater score indicates greater distance between clusters and a tighter 
fit of datapoints within clusters, with scores above 0.5 suggesting 
‘reasonable’ or ‘strong’ structure (Kaufman and Rousseeuw, 2009). 

3. Results 

3.1. Novel object recognition validation 

To ensure that baseline side preference within the apparatus did not 
affect the subsequent item preference, we analysed the acquisition phase 
exploration preference. In the acquisition phase, animals exhibited no 
preference toward either side of the box irrespective of sex (F1,61 =

0.034, p = 0.855), LBN (F1,61 = 0.011, p = 0.918) or MIA (F1,61 = 2.688, 
p = 0.106). Total exploratory time in the testing phase (e.g. one novel 
object and one familiar object) was reduced by LBN (F1,61 = 7.380, p =
0.009) but not MIA (F1,61 = 1.593, p = 0.212) or sex (F1,61 = 0.021, p =
0.885). 

3.2. Novel object recognition test 

One-sample t-tests identified that control (VEH) offspring (t15 =

7.394, p < 0.001) and vehicle-stressed (VEH+) offspring (t18 = 3.246, p 
= 0.005) exhibited a significant novelty preference, illustrating baseline 
capacity for item recognition. Both MIA-unstressed (MIA, t15 = 0.262, p 
= 0.797) and MIA-stressed (MIA+, t18 = 1.726, p = 0.103) offspring did 
not. Novelty preference in the testing phase was affected by MIA (F1,61 
= 6.816, p = 0.011) and an interaction between MIA and LBN (F1,61 =

4.086, p = 0.048, data not shown). DI was reduced by exposure to MIA 
(F1,60 = 8.746, p = 0.004). Sex (F1,60 = 0.023, p = 0.881) and LBN (F1,60 
= 0.191, p = 0.664) did not have a main effect on DI. As sex did not show 
a significant effect, analyses include combined male and female data. 
Post-hoc analyses indicate that, when DI was compared against VEH 

offspring, VEH+ (F1,32 = 4.547, p = 0.041), and MIA (F1,29 = 14.808, p 
= 0.001) differed significantly, while MIA + did not (F1,5.897 = 4.881, p 
= 0.070). 

3.3. Clustering analysis 

We identified three clusters (Fig. 1B), reflecting a silhouette index of 
cohesion and differentiation of 0.6, rated as “good” in SPSS or a 
‘reasonable’ structure (Kaufman and Rousseeuw, 2009). Cluster 3 
(Fig. 1B), reflecting the most severe cognitive deficit, included only a 
single control animal (Figs. 1A and 2), whereas control offspring made 
up the largest proportion of cluster 1 (Fig. 2), the least-affected cluster. 
The DI differed significantly between clusters (F2,64 = 156.980, p <
0.001, Fig. 1B). Additionally, all three clusters differed from zero in 
one-sample t-tests, with a novel object preference for cluster 1 and 2 (t 
(18) = 16.552, p < 0.001; t (33) = 8.701, p < 0.001) contrasting with a 
familiar object preference for cluster 3 (t (13) = -7.140, p < 0.001). 
While MIA did not affect distribution into these clusters overall (χ2 =

3.991, p = 0.136), it did affect distribution in offspring who were not 
exposed to stress (χ2 = 6.308, p = 0.043). MIA offspring were less 
populous in the typically-performing cluster and more populous in the 
most-affected cluster when compared to VEH offspring. 

4. Discussion 

Our study demonstrates that behavioural clustering in rat models of 
NDDs can stratify individuals into groups based on their potential sus-
ceptibility to the insults. Importantly, the group membership of these 
clusters differs from the simple binary grouping commonly used 
(treatment vs vehicle), and is in line with unbiased comparisons of 
schizophrenia-spectrum disorders using cognition in the clinic (e.g. Van 
Rheenen et al., 2017), and using behaviour or inflammation in mouse 
models (Mueller et al., 2021). Interestingly, MIA did affect distribution 
to these clusters but only in the absence of postnatal stress. 

Poly (I:C)-induced MIA and the environmental stress of LBN during 
early development showed distinct effects on offspring cognition. MIA- 
exposed offspring significantly differed from VEH offspring in object 
recognition and exhibited no novelty preference, irrespective of stress. 
VEH + offspring exhibited a reduced novelty preference compared to 
VEH offspring. The influence of LBN concurs with previous studies 
(Moussa-Tooks et al., 2020) and the interaction suggests no joint effect 
of both insults on cognition. Sex had no significant impact on cognition, 
suggesting similar developmental insults in visual recognition memory 
across the sexes. 

We were able to identify three clusters of typical, intermediate, and 
deficient cognition, differing in the relative proportions of treatment 
groups and significantly different from one another. These results indi-
cate a high degree of translational validity similar to that seen in 
epidemiological research. There was a five-fold greater number of MIA- 
exposed offspring composing cluster 3 (deficient cognition) compared to 
vehicle-unstressed offspring (Fig. 2). Irrespective of postnatal stress, 
MIA-exposed offspring constituted more than 70% of the most affected 
cluster (#3). Conversely, there were approximately two times and four 
times more VEH offspring in the least-affected cluster (#1) relative to 
either stress condition or to MIA on its own (Fig. 2). Considering the 
most-affected cluster (#3) to represent a ‘diagnostic threshold,’ then 
these proportions closely resemble those in the clinical literature 
(Arseneault et al., 2011; Brown and Dertkis, 2010). This aligns appro-
priately with the elevated risk for schizophrenia or psychotic symptom 
development seen in epidemiological studies resulting from both pre-
natal infection (Brown and Derkits, 2010) and postnatal socioeconomic 
deprivation (Arseneault et al., 2011). Therefore, cluster membership 
appears to mimic the relative risks reported in the literature (Fig. 2). 
Prenatal treatment significantly affects cluster membership in the 
absence of postnatal stress, such that allocation to the clusters is 
different between MIA and VEH offspring. Interestingly, this is not the 
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case when both stressed and unstressed offspring are combined, nor 
across prenatal treatments following stress. This suggests that LBN does 
impact cognitive outcome, but affects MIA and VEH offspring similarly. 

It is worth discussing the use of outbred Wistar rats in the current 
research, and the potential for genetic variation as a source of increased 
phenotypic variability among groups, especially in the context of 
reproducibility across laboratories (Crabbe et al., 1999). While some 
behavioural traits do support the notion of reduced variability in inbred 
strains compared to outbred, this appears to be less significant than 
previously believed (Tuttle et al., 2018). Further, inbred strains used for 
MIA still result in marked variability within treatment groups (Mueller 
et al., 2021) similar to what we found in our study. This suggests that the 
variability in these models may be due to individual fetal-placental re-
sponses, rather than baseline genetic differences due to strain type, and 
should be investigated in future research. These differences may be 
underpinned by dissociable epigenetic modifications on genes critical in 
neurodevelopment which have been seen following MIA (Woods et al., 
2021). 

Clustering as shown here allows us to better observe the efficacy of 
the model and to identify mediators of the relationship between model 
exposure and subsequent phenotype (or lack thereof). As clinical 
research begins to more readily use comparable analyses to identify 

patient subpopulations (Clementz et al., 2016; Gilbert et al., 2014), it is 
critical for preclinical and basic research to do the same (e.g. Mueller 
et al., 2021). Unbiased clustering can highlight resilient or susceptible 
subpopulations in models of environmental risk factors like those 
modelled here. While identifying statistical outliers within a treatment 
group may suggest resiliency to the insult, those outliers are still 
compared to their particular treatment group; ultimately this analysis is 
still oriented around ‘treatment.’ However, using clustering, differences 
may be identified that could explain the rates of non-response across 
manipulations (e.g. neuroanatomical or transcriptional differences). By 
analysing data in this way, better construct validity is achieved in 
models for NDDs that will also advance our understanding of the 
mechanisms that drive the occurrence of disorder in some individuals 
but not in others. 
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Fig. 1. Offspring cognition in the Novel Objection 
Recognition Task. A) Prenatal poly (I:C) reduced 
novel object preference in adolescence. LBN reduced 
preference in vehicle animals but had no effect in poly 
(I:C)-exposed offspring. N = 4–5/group, n = 15–18/ 
group. B) Clustering based on performance resulted in 
three groups of varying size that significantly differed 
from one another and illustrated an object preference. 
N = 10–19/cluster, n = 14–34/cluster ** = p < 0.01 
compared across treatment conditions. *** = p <
0.001 compared across treatment conditions. ## = p 
< 0.01 compared against 0.0 (no object preference). 
### = p < 0.001 compared against 0.0 (no object 
preference).† = p < 0.05 compared to VEH, †† = p <
0.01 compared to VEH. + = Limited bedding and 
nesting material. Data presented as individual scores 
with group mean ± SEM.   

Fig. 2. Cluster Proportion by Treatment. The composition of each cluster is presented with the number of offspring from each treatment indicated. VEH offspring 
compose the largest proportion of cluster 1, which decreases as performance decreases and deficit becomes more pronounced. This is in contrast to MIA and MIA +
offspring, which make up a progressively larger proportion of the impaired cluster. VEH + offspring are predominantly represented in clusters 2 and 3. 
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