
September 2016 | Volume 6 | Article 2051

Mini Review
published: 30 September 2016
doi: 10.3389/fonc.2016.00205

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Kristine Glunde,  

Johns Hopkins School of Medicine, 
USA

Reviewed by: 
Hadassa Degani,  

Weizmann Institute of Science, Israel  
Balaji Krishnamachary,  

Johns Hopkins University, USA  
Jerry David Glickson,  

University of Pennsylvania, USA

*Correspondence:
Egidio Iorio 

egidio.iorio@iss.it

†Present address:
Maria José Caramujo,  

Faculdade de Ciências,  
Centre for Ecology, Evolution 
and Environmental Changes  

(CE3C), Universidade de Lisboa,  
Lisboa, Portugal 

Specialty section: 
This article was submitted  

to Cancer Imaging and  
Diagnosis, a section of the  

journal Frontiers in Oncology

Received: 02 April 2016
Accepted: 12 September 2016
Published: 30 September 2016

Citation: 
Iorio E, Caramujo MJ, Cecchetti S, 
Spadaro F, Carpinelli G, Canese R 
and Podo F (2016) Key Players in 

Choline Metabolic Reprograming in 
Triple-Negative Breast Cancer. 

Front. Oncol. 6:205. 
doi: 10.3389/fonc.2016.00205

Key Players in Choline Metabolic
Reprograming in Triple-negative 
Breast Cancer

 

Egidio Iorio1*, Maria José Caramujo1†, Serena Cecchetti1, Francesca Spadaro2,  
Giulia Carpinelli1, Rossella Canese1 and Franca Podo1

1 Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy, 2 Department of Hematology, 
Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy

Triple-negative breast cancer (TNBC), defined as lack of estrogen and progesterone 
receptors in the absence of protein overexpression/gene amplification of human epi-
dermal growth factor receptor 2, is still a clinical challenge despite progress in breast 
cancer care. 1H magnetic resonance spectroscopy allows identification and non-invasive 
monitoring of TNBC metabolic aberrations and elucidation of some key mechanisms 
underlying tumor progression. Thus, it has the potential to improve in vivo diagnosis and 
follow-up and also to identify new targets for treatment. Several studies have shown 
an altered phosphatidylcholine (PtdCho) metabolism in TNBCs, both in patients and in 
experimental models. Upregulation of choline kinase-alpha, an enzyme of the Kennedy 
pathway that phosphorylates free choline (Cho) to phosphocholine (PCho), is a major 
contributor to the increased PCho content detected in TNBCs. Phospholipase-mediated 
PtdCho headgroup hydrolysis also contributes to the build-up of a PCho pool in TNBC 
cells. The oncogene-driven PtdCho cycle appears to be fine tuned in TNBC cells in at 
least three ways: by modulating the choline import, by regulating the activity or expression 
of specific metabolic enzymes, and by contributing to the rewiring of the entire metabolic 
network. Thus, only by thoroughly dissecting these mechanisms, it will be possible to 
effectively translate this basic knowledge into further development and implementation 
of Cho-based imaging techniques and novel classes of therapeutics.

Keywords: triple-negative breast cancer, phosphatidylcholine metabolism, metabolic reprograming, 
phospholipase, choline kinase

inTRODUCTiOn

Classification of breast cancer (BC) has been historically based on both analysis of tumor morphol-
ogy and histological detection of three marker proteins: the estrogen receptor (ER), the progesterone 
receptor (PR), and the human epidermal growth factor (EGF) receptor tyrosine kinase 2 (ErbB2 
or HER2). Tumors which express none of these three markers are collectively referred to as triple-
negative breast cancer (TNBC; ER−, PR−, HER2−) and still pose a clinical challenge. More recently, 
gene expression analyses showed that BC is a more heterogeneous disease than previously assumed 
and the BC histotypes based on ER/PR/HER2 classification were expanded to include five major 
transcriptional subtypes: basal-like, HER2-enriched, luminal A, luminal B, and normal breast-
like (1, 2). The majority (70–80%) of TNBCs are defined as basal-like by gene expression (3) and 
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share other molecular features with this BC subtype. According 
to most epidemiological studies, TNBCs represent 10–20% of 
all BCs, although a higher proportion can be found in some 
ethnic groups and among BRCA1 mutation carriers. TNBCs are 
typically poorly differentiated, frequently have high histological 
grade and mitotic index, and often present early onset and shorter 
disease-free and overall survival (4, 5). Recent large-scale gene 
expression and genome-based studies have shown that TNBC is 
a heterogeneous disease (Figure 1A) comprising at least four to 
six definable molecular subtypes that express elements of distinct 
oncogenic signaling pathways (6, 7). Interestingly, 50–70% of all 
TNBCs overexpress the EGF receptor tyrosine kinase 1 (ErbB1, 
EGFR, or HER1). EGFR is one of the major regulators of survival, 
proliferation, and migration (8), leading to activation of the phos-
phoinositide 3-kinase (PI3K) and ERK pathways, which in turn 
stimulate other receptor-activated signaling cascades associated 
with cancer onset and progression (Figure 1B) (9).

The aggressiveness of TNBC and the lack of targeted therapies 
specifically recommended for TNBC patients highlight the need 
to explore additional molecular mechanisms beyond genomic 
and proteomic changes to better elucidate the metabolic pathways 
required for TNBC growth and survival (10, 11).

MeTABOLiC RePROGRAMinG  
in TnBC CeLLS

Molecular genomic and proteomic studies have been carried out 
to understand the complexity of TNBC and identify markers 
that can be therapeutically targeted. However, little is known 
about the metabolic alterations that distinguish TNBC from 
non-triple-negative subtypes and characterize TNBC progres-
sion. Previous studies have shown that proteins that are involved 
in glycolysis, glutaminolysis, and glycine or serine metabolism 
are differentially expressed among different BC subtypes in 
tissue microarray sections and in a large series of invasive BC 
specimens (12–14). In particular, several observations reported 
that TNBC have elevated glucose uptake and a glycolytic gene/
protein expression signature (12, 14). A recent study reported a 
novel mechanism, whereby the transcription factor c-Myc drives 
glucose metabolism in TNBC MDA-MB-157 cells by direct 
repression of thioredoxin-interacting protein (TXNIP), a potent 
negative regulator of glucose uptake, aerobic glycolysis, and 
glycolytic gene expression. A Mychigh/TXNIPlow gene signature 
correlates with decreased overall patient survival and decreased 
metastasis-free survival in BC. The correlation between the 
Mychigh/TXNIPlow gene signature and poor clinical outcome is 
evident only in TNBC, not in other BC subclasses. Furthermore, 
mutation in p53 (TP53), found in the majority of TNBCs, 
enhances the correlation between the Mychigh/TXNIPlow gene 
signature and death from BC (15). Finally, an increase of glyco-
lysis was found in a panel of five TNBC cells and accumulation 
of fructose-1,6-bisphosphate (F1,6BP), a glycolytic intermediate 
that directly binds to and enhances the activity of EGFR, was 
detected in MDA-MB-468 cells, with enhanced lactate excretion, 
tumor growth, and immune escape (16). TNBC cell lines, such 
as MDA-MB-468, MDA-MB-231, MDA-MB-436, and BT20, 

exhibit function defects in multiple respiratory complexes with a 
reduction in expression of complex I and complex III proteins of 
the mitochondrial respiratory chain relative to receptor-positive 
cell lines (17). The increased glycolytic activity in TNBCs could 
be responsible for the increased 18F-fluorodeoxyglucose (FDG) 
uptake generally reported in PET examinations of these patients, 
beyond a large variability in the maximum and mean standard-
ized uptake values and in metabolic volumes (18–21).

Lipid metabolism activation in BC cells is recognized as a 
hallmark of carcinogenesis (22, 23). Increased fatty acid (FA) 
synthesis due to increased levels of fatty acid synthase (FAS) has 
been observed in various cancers and is correlated with a poor 
prognosis in many instances (23). FAS could, in principle, be an 
appealing therapeutic target because most cancer cells depend on 
FAS-mediated de novo FA synthesis, whereas most healthy cells 
prefer to incorporate exogenous FAs (24). However, reports on 
the overexpression of FAS across BC subtypes, and in TNBC in 
particular, are still contradictory (25–27), and further studies are 
needed before considering this enzyme as a strong therapeutic 
target.

The concerted activation of an assembly of molecular com-
plexes in cancer cells cooperates to sustain an oncogene-induced 
cell signaling through multiple postreceptor pathways involved 
in phospholipid biosynthesis and breakdown. Among these, 
phosphatidylinositol 4-phosphate 5-kinase Igamma (PIPKIγ) is 
overexpressed in TNBC cells, in which the loss of this enzyme 
impairs PI3K/Akt activation (28). Furthermore, two major 
enzymes involved in the agonist-induced phosphatidylcholine 
(PtdCho) cycle, such as choline kinase (ChoK) and PtdCho-
specific phospholipase C (PC-PLC), are overexpressed and 
activated in various BC subtypes, including TNBC cells, with 
the implications on expression and oncogenic function of EGF 
receptors’ family members (29–33).

The present evidence points to the existence of multiple links 
between enzymes involved in the glycolytic gene/protein signa-
ture and those responsible for enhanced carbon fluxes through 
the oncogene-driven PtdCho biosynthesis and catabolism in BC 
cells (Figure 2). This biochemical interplay may also serve as a 
key regulator of tumor progression in TNBCs.

PtdCho MeTABOLiSM in TnBC

The introduction of magnetic resonance spectroscopy (MRS) 
in cancer biology allowed the detection of abnormal profiles 
of aqueous total choline-containing metabolites (tCho) of the 
PtdCho cycle in cancer cells and tissues, both at preclinical and 
clinical level (9, 34–37). Substantially modified 1H MRS tCho 
spectral profiles have been reported on malignant transformation 
of human mammary (38–40) and prostate epithelial cells (41) 
and in ovarian cancers (42–44). These modifications occur in 
the 3.20–3.24 ppm 1H MRS spectral region and are typical of the 
trimethylammonium headgroups of PtdCho precursors and cat-
abolites, such as phosphocholine (PCho), glycerophosphocholine 
(GPCho), and free choline (Cho).

Phospholipids play the dual role of being basic structural 
components of membranes and acting as substrates of reactions 
involved in key regulatory functions in mammalian cells (45, 46). 
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FiGURe 1 | (A) Molecular subclassification of triple-negative breast cancer (TNBC) based on gene expression profiling. Triple-negative breast cancers have been 
defined as tumors that are devoid of the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). 
TNBC overlap with (1) basal-like breast cancers; (2) BRCA-mutated tumors; (3) claudin-low tumors; (4) tumors overexpressing EGFR, associated with TP53 
mutations or expressing cytokeratins; (5) tumors characterized by immune response signatures; and (6) tumors possessing some special histological types. 
(B) Schematic molecular pathway identified in TNBC. Multiple signaling cascades are activated in TNBC including those triggered by receptor tyrosine kinases 
(RTK), G protein-coupled receptor (GPCR), and integrins and their downstream effectors. Ras-mediated signaling commonly occurs through the RTK/growth factor 
receptor-bound protein 2 (Grb2)/Sos–Ras pathway. Ras directly interacts with and activates Raf. Raf phosphorylates and activates MEK, which in turn 
phosphorylates and activates MAPKs. Integrin engagement triggers several signaling cascades including those that are mediated by FAK, Src, and cdc42. 
Activation of RTK and other external stimuli lead to the activation of PI3K pathway. PI3K activates AKT (whereas PTEN inhibits this activation) and then mTOR. The 
G-proteins bind and activate phospholipase C and activate the nuclear factor kappa B (NF-κB) transcription factor. This network of cell signaling pathways result in 
the activation of transcription factors that drive genomic signature programs of dysregulated cell cycle progression, proliferation, invasion, and survival.
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Hydrolysis of PtdCho, the most abundant phospholipid in eukar-
yotic cell membranes, can generate second messengers, such as 
diacylglycerol (DAG), phosphatidic acid (PA), lysophosphatidic 

acid (LPA), arachidonic acid (AA), and lysophosphatidylcholine 
(LPtdCho). These PtdCho metabolites are produced through 
three major catabolic pathways, respectively, mediated by specific 
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FiGURe 2 | Links between altered glucose and phosphatidylcholine metabolism in breast cancer. Glucose metabolism occurs in cancer cells. Glycolysis is 
a series of metabolic processes, in which 1 mol of glucose is catabolized to 2 mol of pyruvate. As indicated, several intermediates can fuel the pentose phosphate 
pathway (PPP) or lead to lipid synthesis. In cancer cells, pyruvate is further converted into lactate. Pyruvate can be imported in the mitochondrial matrix to feed the 
tricarboxylic acid (TCA) cycle. This step is controlled by pyruvate dehydrogenase kinase (PDK), which can inactivate pyruvate dehydrogenase (PDH). Transporters: 
Glut, glucose transporter; MCT, monocarboxylate transporter. Metabolites: Ala, alanine; α-KG, α-ketoglutarate; DAG, diacylglycerol; G6P, glucose-6-phosphate; F6P, 
fructose-6-phosphate; F1,6BP, fructose-1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; Gro3P, sn-glycerol-3-phosphate; GA3P, glyceraldehyde-3-
phosphate; G3P, 3-phosphoglycerate; PA, phosphatidate; PEP, phosphoenolpyruvate; TAG, triacylglycerol. Enzymes: ACC, acetyl-CoA carboxylase; FAS, fatty acid 
synthase; HK, hexokinase; LDH, lactate dehydrogenase; PDK, pyruvate dehydrogenase kinase; PDH, pyruvate dehydrogenase phosphatidylcholine (PtdCho) cycle. 
Transporters: CHT1, choline high-affinity transporter-1; CTL, choline transporter-like protein; OCT2, organic cation transporter-2. Metabolites: CDP-Cho, cytidine 
diphosphate choline; Cho, free choline; DAG, diacylglycerol; FFA, free fatty acid; Gro3P, sn-glycerol-3-phosphate; GPCho, glycerophosphocholine; LPtdCho, 
lysophosphatidylcholine; PA, phosphatidate; PCho, phosphocholine. Enzymes: Kennedy pathway: ChoK, choline kinase (EC 2.7.1.32); CT, cytidylyltransferase (EC 
2.7.7.15); PCT, phosphocholine transferase (EC 2.7.8.2). Headgroup hydrolysis pathways: PLC, phospholipase C (EC 3.1.4.3); PLD, phospholipase D (EC 3.1.4.4). 
Deacylation pathway: PLA1, phospholipase A1 (EC 3.1.1.32); PLA2, phospholipase A2 (EC 3.1.1.4); LPL, lysophospholipase (EC 3.1.1.5); PD, 
glycerophosphocholine phosphodiesterase (EC 3.1.4.2). Red arrows indicate direction of change in enzyme activity enzymes and metabolite content.
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phospholipases of type C (PC-PLC) and D (PLD), which act at 
the two distinct phosphodiester bonds of the PtdCho headgroup, 
and by phospholipases of type A2 and A1 (PLA2 and PLA1), 
which act in the deacylation reaction cascade (Figure 2). PCho 
accumulation either produced by ChoK in the first reaction of the 
three-step Kennedy biosynthetic pathway or by PLC-mediated 
PtdCho catabolism is associated with tumor growth and progres-
sion (9, 33–36).

This accumulated evidence supports the inclusion of an 
altered phospholipid metabolism as a novel candidate hallmark 
for cancer and as a key regulator in the overall cancer metabolic 
reprograming. An aberrant PtdCho metabolism associated with 
increases in the intracellular total choline-containing PtdCho 
metabolites (tCho) and phosphocholine (PCho) contents (fem-
tomoles per cubic micrometer cell) were initially observed in BC 
cells as they progressed from normal to malignant phenotypes, 
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i.e., from non-tumoral immortalized MCF-12A to the highly 
metastatic TNBC MDA-MB-231 and MDA-MB-435 cell lines 
(38). The high intracellular content of PCho seemed unrelated to 
the demand for cell membrane biosynthesis in the investigated 
BC cells characterized by different doubling time values (38). 
Notably, a different rate of increase was observed for PCho (6×) 
and PtdCho (1.5×) in MDA-MB-231 BC cells compared with the 
non-malignant MCF12A cells (40). An integration of MRS with 
gene microarray analysis revealed that a combination of upregu-
lated ChoK and PLD and/or an increased PC-PLC expression/
activity caused PCho accumulation in MDA-MB-231 cells, 
while lower levels of GPCho were consistent with underexpres-
sion of cytosolic calcium-dependent PLA2 group IVA and 
lysophospholipase 1 (40). Elevated levels of ChoKα and PLD1 
isoforms were found in both the ER− MDA-MB-231 BC cell 
line and in patient-derived ER− BC specimens, as compared 
with the corresponding non-metastatic ER+ MCF-7 BC cell 
line and ER+ patient-derived BC samples (47). Downregulation 
of ChoKα by RNA silencing increased PLD1 expression, and 
downregulation of PLD1 increased ChoKα expression, indicat-
ing a close relationship between ChoK and PLD enzymes (47). 
Additionally, ChoKα silencing resulted in increased PC-PLC 
protein expression (e.g., twofold in MDA-MB-231) suggesting 
that BC cells could compensate for the loss of ChoKα protein 
levels with PC-PLC upregulation, thus maintaining an intracel-
lular PCho pool size markedly higher than that of non-tumoral 
breast epithelial cells (48, 49).

Although the role of PLAs in BC cells remains unknown, very 
low expression of secreted PLA2 (sPLA2) was found in basal-like 
breast tumor biopsies and cultured cells (50). As noted by the 
authors, the mRNA expression of sPLA2s belonging to IIA, III, 
and X groups is regulated by DNA methylation and histone dea-
cetylation, and all three genes are significantly silenced in aggres-
sive TNBC cells due to both mechanisms. It may be interesting to 
investigate a possible relationship with the regulation of cytosolic 
PLA2s underexpressed in TNBC apparently linked to low levels 
of GPCho in this BC subtype (40).

A study by Eliyahu and colleagues (39) confirmed an altered 
PtdCho metabolism in different molecular BC subtypes relative 
to human mammary epithelial cells (HMECs), although the 
MDA-MB-231 TNBC cells exhibited the lowest PCho/NTP 
ratio among the investigated BC cell lines. Interestingly, under 
the adopted experimental conditions, the PCho level in HMEC 
and BC cells was found to correlate with Cho transport into the 
cells, mainly due to the organic cation transporter-2 (OCT2) 
and the choline high-affinity transporter-1 (CHT1), but not with 
ChoK activity, suggesting that this step is fast and not rate limit-
ing, although its induction ensures increased PCho levels. The 
upregulation of choline transporters and ChoK may be related to 
a cascade of genetic changes that are associated with the multistep 
process of carcinogenesis (51).

Enzymatic assays showed a twofold to sixfold activation of 
PC-PLC in BC of different subtypes compared with a non-tumoral 
counterpart (MCF-10A cell line) (32). The activity rate measured 
in the TNBC MDA-MB-231 cell line was about twofold higher 
than that of HER2-enriched and ER-positive cell lines. Metabolic 
analysis of MDA-MB-231 cells identified a characteristic 

biochemical signature of these cells relative to the non-tumoral 
MCF-10A counterpart, consisting of higher contents of PCho 
and succinate, elevated proportion of monounsaturated FAs 
and increased ChoK and PC-PLC protein expression (52). The 
importance of the cell membrane lipid profile to discriminate 
BC subtypes is receiving increasing attention, and the results 
suggest possible links between altered metabolic pathways in 
BC and membrane molecular rearrangement. He and colleagues 
(53) could discriminate BC cell lines from MCF-10A cells on the 
basis of phospholipid species composition and expression of five 
lipogenesis-related enzymes. The authors suggested that elevated 
expression levels of fatty acid synthase 1 (FAS1), stearoyl-CoA 
desaturases 1 and 5 (SCD1 and SCD5), and ChoKα may be 
closely related to enhanced levels of saturated and monounsatu-
rated lipids in BC cell lines. Most interestingly, it was possible 
to distinguish adequately between MDA-MB-231 cells based on 
the highest level of PtdCho (36:1) and PtdCho (36:2) and ChoKα 
expression compared with other BC subtypes (53).

Differences in phospholipid and lipid metabolism between 
cells in culture and in solid tumors have been detected by in vivo 
MRS in the MDA-MB-231 model. These differences may be 
ascribed to characteristic conditions of solid tumor microenvi-
ronment such as depletion of nutrients and oxygen, changes in 
pH, and interactions between cancer and stromal/endothelial 
cells (54, 55). A higher concentration of tCho (mainly due to 
PCho) was found in hypoxic regions of heterogeneous ortho-
topic MDA-MB-231 tumor xenografts using three-dimensional 
multimodal molecular imaging platforms (56, 57). The high 
tCho content of tumor cells was associated with enriched levels 
of proteins involved in glucose metabolism, PI3K-Akt/Ras/FAS 
signaling pathway, protein processing in endoplasmic reticulum, 
apoptosis, and telomere stress-induced senescence (56). A stable 
silencing of glycerophosphodiester phosphodiesterase domain 
containing 5 (GDPD5), which is upregulated in TNBC cells 
and tumors, induced an increase in the levels of GPCho and 
phosphoethanolamine in MDA-MB-231 BC cells and in their 
orthotopic tumor xenografts compared with controls (58, 59) 
suggesting a close networking between choline and ethanolamine 
phospholipid cycles. A larger variation in the PCho/GPCho ratio 
was observed for the basal-like BC subtype of patient-derived 
xenograft models relative to luminal B subtype xenografts (60, 
61). These differences could be explained by lower mRNA expres-
sion of ChoK (α and β) and higher expression of PLA group 4A 
in basal tumor xenografts (61). In another experimental subcu-
taneous model expressing basaloid TNBC markers (HCC1806), 
phosphomonoesters (which include PCho) and lactate levels 
were modulated by tumor size (62).

The metabolic characterization of TNBC human biopsies 
is far from being well established, although different studies 
reported a higher overall tCho content in TBNCs with respect 
to non-tumoral tissues. A significantly higher tCho level, either 
quantified in millimoles per kilogram or expressed as peak inte-
gral normalized to the volume of interest and the signal-to-noise 
ratio, was reported in TNBC compared with non-triple-negative 
tumors using in vivo MRS (63, 64). A quantitative study on in vivo 
MRS examinations of 29 patients indicated that TNBCs exhibited 
increased tCho levels ranging from 0.4 to 4.9  mmol/kg (65).  
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TNBCs are more likely to have high tCho than other BC subtypes, 
although the situation may be reversed in young age patients 
(range 28–39  years) (66). The high tCho levels were well cor-
related with the standardized FDG uptake value obtained using 
PET/CT and with the histological prognostic parameters (19). 
A recent paper (67) reported that intact TNBC biopsies could 
be discriminated by HR-MAS analyses from triple-positive BCs 
based on their content in free Cho and GPCho, which were sig-
nificantly higher in TNBC relative to triple-positive BC. In this 
paper (67), the analyzed TNBC biopsies contained lower levels of 
glutamine and higher levels of glutamate compared with tumors 
with positive receptor statuses which might result from increased 
glutaminolysis metabolism and suggests dependence on glu-
tamine to support cell growth. This issue warrants measurements 
of metabolic fluxes using suitable isotopomeric models, such as 
bonded cumomer analysis by MRS or fragmented cumomer 
analysis by mass spectrometry (68, 69).

TARGeTinG PtdCho MeTABOLiSM  
in TnBC

The role of PtdCho cycle enzymes as potential new molecular 
targets in TNBC can be investigated using molecular depletion 
approaches and/or pharmacological inhibitors. However, there 
are no studies that allowed discrimination of specific effects of 
targeting PtdCho-cycle enzymes on TNBC versus other BC sub-
types, and most of studies were performed using only one or two 
TNBC cell lines. Although a reduction of 85% of in vivo tumor 
growth was obtained in subcutaneous MDA-MB-231 tumors 
treated with the ChoK inhibitor Mn58b (70), this result needs 
further evaluation in different TNBC models. The downregula-
tion of ChoK in MDA-MB-231 cells cultured in  vitro induced 
profound alterations in cell proliferation and promoted differen-
tiation, as detected by cytosolic lipid droplet formation and modi-
fied expression of galectin-3 (71). These changes were associated 
with alterations of 33 proliferation-related genes and 9 DNA 
repair-related genes (72). Interestingly, in MDA-MB-231cells, a 
combination of ChoK silencing with a conventional treatment 
using 5-fluorouracil resulted in higher cell death rate relative to 
that obtained when each treatment was applied individually (72) 
confirming a key role for the ChoK enzyme in in vitro cell pro-
liferation and survival. Furthermore, in vivo targeting of ChoK 
by either lentiviral gene silencing (73) or by ChoKα depletion 
using specific short-hairpin RNA (shRNA) (74), respectively, 
induced a growth delay or strongly repressed tumor growth in 
MDA-MB-231 xenograft bearing mice.

Additionally, there is mounting evidence from studies on 
experimental TNBC models that the reduction/destabilization 
of ChoK protein levels rather than inhibition of the activity of 
this enzyme is more effective in inhibiting tumor growth. In fact, 
direct or indirect pharmacological inhibitors that were able to 
reduce the activity of ChoK (and consequently the levels of tCho 
and PCho) did not reduce cell viability as long as ChoKα protein 
expression and PtdCho levels were not reduced in TNBC cells 
grown in vitro (75).

The potential of using PtdCho catabolic pathways as  important 
cotargets for TNBC therapy is gaining relevance. A multi-
targeting strategy such as simultaneous silencing of PLD1 and 
ChoKα in MDA-MB-231 cells increased apoptosis (detected by 
the TUNEL assay) as compared with individual treatments (47). 
Exposure of MDA-MB-231 cells to D609 which is an inhibitor 
of a PC-PLC resulted in 60–80% PC-PLC inhibition associated 
with tumor cell differentiation, detected by a progressive decrease 
of mesenchymal traits such as vimentin and N-cadherin expres-
sion, reduced galectin-3 and milk fat globule EGF-factor 8 levels, 
β-casein formation and decreased in  vitro cell migration and 
invasion (32). These results, obtained from a single tumor model 
of TNBC, warrant further investigations on a large data set of 
human TNBCs that can be fully genotyped and metabolically 
characterized.

FUTURe DiReCTiOnS

Although evidence of specific metabolic alterations in TNBC is 
accruing, there is a clear need for extending preclinical investiga-
tions to a larger number of TNBC models. On the other hand, 
clinical investigations have to better elucidate the impact of the 
heterogeneous nature of TNBC lesions on the metabolic profiles 
and their changes in tumor progression. It may also prove relevant 
to assess the links between the tCho profile and molecular fea-
tures such as EGFR overexpression, p53 status, and other specific 
biological TNBC characteristics. We hypothesize that the PtdCho 
cycle may represent a good focus point for personalized/precision 
medicine, offering markers that may be used as diagnosis tools for 
assessment of cancer prognosis and response to therapy.

The identification of a role for PtdCho metabolism in TNBC 
progression supports the view that some enzymes of this cycle 
may act as key regulators of molecular mechanisms leading to 
cancer onset, invasion, and metastasis, thus representing a new 
source of potential targets to counteract cancer growth and 
metastasis.
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