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A B S T R A C T   

Metal-organic frameworks (MOFs) are promising materials offering exceptional performance 
across a myriad of applications, attributable to their remarkable physicochemical properties such 
as regular porosity, crystalline structure, and tailored functional groups. Despite their potential, 
there is a lack of dedicated reviews that focus on key physicochemical characterizations of MOFs 
for the beginners and new researchers in the field. This review is written based on our expertise in 
the synthesis and characterization of MOFs, specifically to provide a right direction for the 
researcher who is a beginner in this area. In this way, experimental errors can be reduced, and 
wastage of time and chemicals can be avoided when new researchers conduct a study. In this 
article, this topic is critically analyzed, and findings and conclusions are presented. We reviewed 
three well-known XRD techniques, including PXRD, single crystal XRD, and SAXS, which were 
used for XRD analysis depending on the crystal size and the quality of crystal morphology. The 
TGA profile was an effective factor for evaluating the quality of the activation process and for 
ensuring the successful investigation for other characterizations. The BET and pore size were 
significantly affected by the activation process and selective benzene chain cross-linkers. FTIR is a 
prominent method that is used to investigate the functional groups on pore surfaces, and this 
method is successfully used to evaluate the activation process, characterize functionalized MOFs, 
and estimate their applications. The most significant methods of characterization include the X- 
ray diffraction, which is utilized for structural identification, and thermogravimetric analysis 
(TGA), which is used for exploring thermal decomposition. It is important to note that the thermal 
stability of MOFs is influenced by two main factors: the metal-ligand interaction and the type of 
functional groups attached to the organic ligand. The textural properties of the MOFs, on the 
other hand, can be scrutinized through nitrogen adsorption-desorption isotherms experiments at 
77 K. However, for smaller pore size, the Argon adsorption-desorption isotherm at 87.3 K is 
preferred. Furthermore, the CO2 adsorption isotherm at 273 K can be used to measure ultra- 
micropore sizes and sizes lower than these, which cannot be measured by using the N2 
adsorption-desorption isotherm at 77 K. The highest BET was observed in high-valence MOFs that 
are constructed based on the metal-oxo cluster, which has an excellent ability to control their 
textural properties. It was found that the synthesis procedure (including the choice of solvent, 
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cross-linker, secondary metal, surface functional groups, and temperature), activation method, 
and pressure significantly impact the surface area of the MOF and, by extension, its structural 
integrity. Additionally, Fourier-transform infrared spectroscopy plays a crucial role in identifying 
active MOF functional groups. Understanding these physicochemical properties and utilizing 
relevant characterization techniques will enable more precise MOF selection for specific 
applications.   

1. Introduction 

Metal-organic frameworks (MOFs) or coordination polymers (CPS) are highly ordered porous hybrid materials, formed through the 
coordination of an organic linker with secondary building units (SBU) or clusters enriched with a coordinated anion [1]. Among the 
coordinated anions, oxygen is prevalent. Lately, sulfur-based MOFs and CPs have been prepared using sulfur as the coordinated anion 
in SBU, and these materials have attracted attention as exceptional crystalline materials [2]. Several researchers working in different 
research areas are interested in MOFs owing to their high specific surface area (up to 7000 m2/g), tunable pore size and functionalities, 
high flexibility, various unique morphologies, high porosity (free space of up to 90 %), and an excellent thermal/chemical stability [3]. 
To date, MOFs have found diverse applications, including gas storage and separation [4], catalysis [5], sensing [6,7] and drug delivery 
[8]. However, to broaden the scope of MOF utilization, it is crucial to adhere to appropriate synthesis, activation, and characterization 
techniques. Currently, several synthesis procedures are employed to prepare a myriad of MOFs, such as solvothermal/hydrothermal, 
microwave, ultrasonic, ionothermal synthesis, and electrochemical methods [9,10]. Moreover, MOFs are activated—a process to 
remove undesirable guest molecules and unblock pores—via methods like direct heating, solvent exchange followed by heating, su-
percritical CO2 drying, benzene freeze-drying, and photothermal activation [10]. This results in a diverse range of characteristics, even 
when using the same metal and organic ligands. 

Given the rapid development of MOFs and their expanding list of applications, the need for accurate physicochemical and elec-
trochemical characterizations to unravel their structural integrity, thermodynamic stability, and functional properties is paramount. 
Numerous studies have reported detailed insights into the synthesis, activation, and modification of MOFs [11]. However, it is 
extremely important to provide a consolidated review on distinct characterization techniques to elucidate successful synthesis, doping 
of heteroatoms for tailored properties, and further calcination or carbonization for achieving thermodynamic stability, electronic 
conductivity, and ionic conductivity [12,13]. Moreover, the swift advancement of MOFs has led to the development of prototypes and 
devices for various applications. Yet, for having application in diverse fields, MOFs need to be synthesized in the form of bulk powders, 
thin films, and other forms, necessitating robust and authentic characterization techniques to achieve the desired properties [14]. 
Several reviews have discussed the applications of MOFs. For instance, MOFs have been widely used as carriers for drugs in phar-
maceutical applications due to their nanoscale size and effective tunable functionalities [15]. In addition, MOFs have been used as 
smart nanomaterials for biomedical applications and medical therapy [16–18]. Furthermore, MOFs were utilized for gas and energy 
storage [19]. Greenhouse gases were effectively stored in most MOFs used by researchers since MOFs have a huge surface and large 
pore volume. Recently, MOFs have been widely investigated to store energy via hydrogen storage [20]. Also, smart sensors have been 
successfully prepared based on selective characteristics of MOFs [21]. Functionalized MOFs have increasingly been used to fabricate 
sensors for various purposes depending on the chemical characteristics of their functional groups. MOFs are proved to be superior 
when compared with other sensing materials owing to their distinguished sensing properties [22]. MOFs have been introduced as ideal 
candidates for heterogeneous catalysis for reactions owing to (i) their physicochemical properties, (ii) the porous hybrid metal/organic 
assemblies, and (iii) the existence of vacant metal sites and reachable organic moieties [23]. MOF-derived materials draw considerable 
research interest as catalysts for organic reactions owing to their flexible tunability, high catalytic activity, and high controllability in 
the fabrication of a catalyst structure [24]. Therefore, to utilize MOFs in all these applications, the appropriate fabrication and 
characterization of MOFs is necessary. 

In this review, we have assessed the key MOFs that have been widely utilized in the past two decades. This work provides a swift 
screening analysis of the principal MOFs, imparts a fundamental understanding of MOFs in general, and serves as a gateway for 
newcomers to this research field. Our review, grounded in extensive personal hands-on experience, observations, and literature 
analysis, will benefit new researchers in the field of MOFs synthesis, characterization, and applications. Furthermore, it provides 
outlooks and future directions on the selection of specific characterization techniques for existing and emerging MOFs. 

2. MOFs characterization 

2.1. XRD analysis 

X-ray facilities include a group of spectroscopic techniques of considerable importance. These facilities technically operate with 
optical methods, and therefore, they are accordingly classified based on the interaction of X-rays with matter i.e., absorption, 
refraction/reflection, and scattering of X-rays [25]. Furthermore, three sub-categories of X-ray techniques exist, i.e., X-ray fluorescence 
(XRF) spectrometry, proton-induced X-ray emission (PIXE) spectrometry, and X-ray diffraction (XRD). XRF and PIXE are usually used 
for elemental analysis, while XRD is mainly used to identify the fingerprint of crystalline materials [26] as well as its morphology [27]. 
Crystalline materials are made of atoms with a highly ordered arrangement in a three-dimensional space. The symmetrical crystal 
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structure of these materials is built based on repeating units, which are referred to as unit cells. The sizes and shapes of these unit cells 
control the directions of constructive interference [28]. MOFs are highly ordered crystalline porous materials. Therefore, XRD is a 
more helpful technique to characterize MOFs as compared to other techniques. Specifically, in case of characterization of unknown 
materials, X-ray diffraction (XRD) analysis is preferred because it can provide important information on the structures of materials 
[12]. MOFs are polymetric and engineering materials with a high degree of crystallinity; thus, each MOF has its unique structure [9]. 
Therefore, XRD analysis should be performed as the first characterization to identify the synthesized materials and their purities prior 
to performing further investigations. The two targets for XRD analysis are the determination of a new crystal structure and confir-
mation of existing crystal structures. The details are provided in the following sections. 

Generally, MOFs can be characterized through single-crystal X-ray diffraction (SCXRD) analysis. Single-crystal X-ray crystallog-
raphy (or, more commonly, SCXRD) analyses the atomic arrangement in a single crystal using an X-ray beam and a diffractometer. The 
SCXRD data can determine and refine the new crystalline structure of an unknown material. In addition, this data is required to know 
the stability of the crystals in operating conditions. Crystals might be sensitive to visible light, atmospheric air, or moisture content. 
Therefore, a pre-treatment of the crystals is necessary before analysis. For instance, the sample can be mounted inside sealed thin-wall 
glass capillary tubes in an inert environment [29,30]. 

However, SCXRD requires a perfect crystal having a large size (>100 μm) [25,31]. For instance, Zeolitic imidazolate frameworks 
(ZIF)-67 (Zn) is usually synthesized with large uniform crystals [32] as shown in Fig. 1a. However, some large crystals cannot be 
analyzed by single crystal XRD, because they might not be high quality crystals (e.g., compare MIL-53 (Al) (Material Institute Lav-
oisier) in Fig. 1b) that are not suitable for single crystal XRD. To resolve this, alternatively, their structure is computationally resolved 
using the data of powder X-ray diffractometers (PXRD) [4,33,34]. Practically, micro-size crystals are represented by the patterns of 
sharp and narrow peaks, whereas the patterns of wide and short peaks are associated with nano-sized crystals. 

Some MOFs such as Zr-BPDC (biphenyl dicarboxylic acid-BPDC) are hydrothermally synthesized using benzoic acid as a modulator. 
Benzoic acid modifies the crystal size of Zr-BPDC from nanoscale to micro-scale as shown in the SEM images of Fig. 2. This trend is 
confirmed by the XRD pattern, where the peaks become narrower with an increase in the amount of benzoic acid. PXRD instruments 
are supplied with sample holders and detectors attached to goniometers; the sample holder is rotated to the correct position at a 
specified angle with the location of the detector to ensure that the reflected rays are captured and detected by the detector [36]. This 
methodology is classified under reflection geometry. Conversely, an alternative approach in PXRD utilizes transmission geometry. 
Both techniques have been used for structural analysis of materials. A high-resolution PXRD in combination with computational 
analysis is widely used to determine MOF structures [37,38]. It should be noted that the selection of a helpful XRD technique to 
determine structures depends on the crystal size of the MOF and the quality of its morphology. For PXRD, the sample should be in the 
form of a fine homogenous powder of a crystallite size ranging from 0.1 to 1 μm. Based on the target of the experiment and availability 
of the instrument, the crystal sizes might not be comprehensively depended. Specifically, when quantitative analysis is not required, 
PXRD can be used for analysing a higher crystalline size (30 μm) or lower crystalline size (<0.1 μ) [30,39,40]. 

In addition, PXRD can measure defects in the texture or strain of crystals and identify mineral phases; however, PXRD only offers 
the average information of a bulk number of grains or crystallites targeted by the X-ray beam [37]. Furthermore, the average crystal 
size of small crystalline particles (<100 nm) can be determined via the Scherrer equation. 

Fig. 1. XRD pattern and morphological image (SEM Image) of (a) ZIF-67 [35] and (b) MIL-53(Al).  
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D=
Kλ

Wcosθ
(1)  

where D is the mean crystal size, W is the full-width at half of the maximum reflection, K is a shape factor that typically has a value 
between 0.89 and 0.94 [42]. λ is the wavelength that usually depends on the X-ray diffractometers, and ϴ is the scattering angle [43]. 
The structural identity of extremely small crystals (<10 nm) can be examined via small-angle X-ray scattering (SAXS). SAXS is a 
dependent technique for determining the structural properties of samples at resolutions between 1 nm and 1000 nm [44]. SAXS can 
help researchers in understanding morphology at nanometer and angstrom length scales using complementary small angle X-ray 
scattering. Correlation functions are used to determine the crystal size, particle size distribution, crystal shape, and organization into 
hierarchical structures [45]. SAXS differs from conventional X-ray diffraction because in case of SAXS, a collimated X-ray beam in-
teracts with particles that have much larger dimensions than the wavelength of the radiation. Thus, the detected scattering angles are 
located in a narrow region from 0.1◦ to 10◦ [46]. The precision of the results (e.g., pore structure) is affected by the experimental 
technique used and the quality of the sample [47]. In a typical SAXS experiment, the sample is mounted in transmission, and the 
scattered X-ray radiation is collected by an area detector [48–50]. 

Fig. 2. Powder XRD patterns and SEM images of Zr- MOF using benzoic acid as the modulator in different equivalent amount, a) 30, b) 3 and 
c) 0 [41]. 

Table 1 
Advantages and limitations of essential XRD techniques.  

Instrument Advantages Limitation  

1 Powder X-ray 
diffraction (PXRD)  

1 Successful nondestructive measurement is guaranteed.  
2 The phase analysis is used to distinct between amorphous and 

crystalline materials (with possibilities of microstructural 
characterization and refinement and solution of crystalline 
structures),  

3 XRPD data can be used for wide range measurements such as:  
(i) Qualitative analyses (phase compositions) and quantitative 

analyses (phase abundances),  
(ii) Bravais lattice symmetry and lattice parameters,  

(iii) Residual strain (macrostrain),  
(iv) Crystal structure,  
(v) Crystallite size and microstrain [30,40].  

1 Isostructurality challenge if phases have similar crystalline 
structures and XRD patterns although they are chemically 
completely different.  

2 Amorphous phases cannot be identified.  
3 It is hard to identify or analyze minor phases.  
4 Long procedure and sometimes, it is very difficult to 

calculate the Phase quantification [30,40].  

2 Single crystal X-ray 
(SCXR)  

1 The primary goal of single-crystal x-ray diffraction is to determine 
crystal structure and the arrangement of atoms in a unit cell.  

2 From single-crystal XRD data it is possible to solve and refine the 
crystalline materials [29,30]. 

1- Must have a single, robust (stable) crystal, generally >100 
μm in size, obviously seen as a single crystal. 
2- Long time required for data collection commonly needs 
between 24 and 72 h [29,30].  

3 small-angle X-ray 
scattering (SAXS).  

1 SAXS often needs very little time for sample preparation.  
2 It has typical advantages over other techniques such as electron 

microscope instruments.  
3 it can determine nanoparticle size distributions, resolve the size and 

shape of (monodisperse) macromolecules, determine pore sizes, 
characteristic distances of partially ordered materials [51,52].  

1 Their properties are size-dependent.  
2 when all nanoparticles are not identical, it only provides 

the average size of a population of nanoparticles in the 
specimen.  

3 The final recorded pattern is essentially an integrated 
superposition (a self-convolution) of many adjacent 
pinhole patterns [51,52].  
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The PXRD instrument is commonly used for wide-angle X-ray scattering to identify a large crystal structure (>100 nm), while SAXS 
identifies a nanoparticle structure (<10 nm). Table 1 depicts further significant differences between the abovementioned prominent 
XRD techniques. 

Different crystalline structures of organic compounds, inorganic-organic frameworks, and mineral species can be identified by 
comparing the positions of the various experimental diffraction peaks with those in the published literature [53]. However, occa-
sionally, a shift in the peaks might be observed, a phenomenon which can identify internal stresses, twin boundaries, stacking faults, 
chemical heterogeneities, a small crystal size, or structural defects [54,55]. Table 2 illustrates various MOFs that were analyzed by 
using different techniques based on their crystal sizes. 

2.2. Thermogravimetric analysis (TGA) 

TGA is usually used to determine thermal or oxidative stability, chemical composition, expected lifetime, rate of decomposition, the 
influence of the surrounding environment on thermal stability, or the moisture and volatiles content [74]. In TGA, the amount and the 
rate of weight change of the sample is measured as a function of temperature and/or time in a controlled atmosphere. TGA profiles are 
initially obtained for newly synthesized MOFs (before activation) to identify the types of contaminants, non-reacted precursors, and 
decomposition temperatures [55]; This information is used to determine suitable activation process temperatures. Subsequently, TGA 
is repeated for the activated MOFs to test the performance of the activation process. Thermal MOF stability depends on two factors, 
namely metal-ligand interaction, and the functional groups on the organic ligand–note that high valence metals and high multidentate 
ligands generate a high thermal MOF stability. Mainly, the metal and organic linkers are connected together through coordination 
bonds via nodes, which might be metals or metal-oxo clusters. Therefore, the number of superficial functional groups, degree of 
crystallinity, and density of metal-oxo clusters positively affect the clusters-linking density of the final extended MOFs, accordingly 
affecting their thermal stabilities. MOFs that have a stable framework structure built by highly connected metal-oxo cluster nodes and 
organic linkers can demonstrate immense potential in gas storage, adsorption, and separation [75,76]. Specifically, the interactions 
between the oxygen atom in the carbonyl group of the deprotonated organic linker and the metal atom of the metal node should be 
sufficiently strong. The strength of this bond is dominated by the coordination number of the metal atoms and the specific coordination 
geometry. High coordination numbers have been shown to have high thermal stability [77,78]. For instance, MIL-53(Al) contains a 
trivalent metal and benzene dicarboxylic acid (BDC), and the free BDC molecules were completely eliminated through the activation 
process, while the integrity of the structure could be maintained up to 803 K. Besides, using a dicarboxylic aliphatic linker instead of an 
aromatic linker causes the MOF to have a low thermal stability, which is observed in the case of MOF-801 (which decomposes at 548 K 
[79]). The lowest thermal stability among MOFs was detected in Mn-BTT, which decomposes at 473 K (Table 3) due to the use of 
nitrogen donor ligands, which are strongly coordinated with solvent molecules (dimethyl formamide, (DMF)). Therefore, its structure 
is destroyed upon removal of DMF molecules. However, coordination of a soft ligand containing nitrogen and soft metal enhances the 
thermal MOF stability (such as in case of Zn3(BTP)2, which exhibits a high thermal stability up to 723 K owing to strong linkage 
between the pyrazolate-based linker and the low valence metal when using methanol to exchange DMF during the activation process at 
room temperature [80]). Nevertheless, active functional groups on organic ligands decrease the thermal MOF stability because the 
functional group can affect the charge distribution and electronegativity of the whole MOF structure. As a result, the bond strength 
between the metal and oxygen decreases. Functional groups that are enriched with free electrons can reduce the thermal and chemical 
stability of the MOFs without a doubt. In this regard, ZIF has methyl groups which are not enriched with free electrons. These methyl 

Table 2 
XRD analysis results for various MOFs.  

MOF Crystal Size XRD Technique Structural Formula Reference 

MIL-96 (Al) 0.04 × 0.04 × 0.04 (mm3) Single-crystal X-ray Al12O(OH)18(H2O)3(Al2(OH)4) [btc]6⋅24H2O [56] 
MOF-5 0.1 × 0.1 × 0.18 (mm3) Single-crystal X-ray Zn4O(BDC)3⋅(DMF)8(C6H5Cl) [57] 
UiO-66(Zr) 2 × 2 × 2 (μm3) PXRD Zr24 O120 C192 H96 [58] 
MOF-892 0.14 × 0.09 × 0.08 (mm3) Single-crystal X-ray Zr6O4(OH)4(CH3CO2)6(CO2)6 [59] 
CPO-27-Co 0.02 × 0.02 × 0.20 (mm3) Single-crystal X-ray [Co2(C8H2O6) (H2O)2]⋅8H2O [60] 
NOTT-112 0.05 × 0.05 × 0.05 (mm3) Single-crystal X-ray [Cu3(C54H24O12) (H2O)3] ⋅16DMF⋅26H2O [61] 
MOF-73 0.2 × 0.1 × 0.05 (mm3) Single-crystal X-ray Mn3(BDC)3 (DEF)2 [62] 
MOF–72 0.3 × 0.1 × 0.1 (mm3) Single-crystal X-ray Cd3 (1,3–BDC)4•(Me2NH2)2 [62] 
MOF-70 0.22 × 0.20 × 0.18 mm Single-crystal X-ray Pb (BDC) (C2H5OH)⋅(C2H5OH) [62] 
TUDMOF-1 60–70 nm PXRD Mo3(BTC)2 [63] 
MOF-48 0.10 × 0.10 × 0.05 (mm3) Single-crystal X-ray VO(DMBDC)⋅(H2DMBDC)0.4 [64] 
Ni-MOF-74 (2.8 nm) PXRD Ni2(dhtp) (H2O)2⋅8H2O [65,66] 
MIL-53(Al) (4 μm) PXRD Al(OH)[O2C–C6H4–CO2]⋅[HO2C–C6H4–CO2H]0.70 [4,33] 
MIL-101 8.87 × 8.87 × 8.87 (nm3) PXRD Cr3OH(H2O)2O(BDC)3 [67] 
UiO-67 75 μm Single-crystal X-ray Zr6C84H48O32 [68,69] 
POST-1 0.15 × 0.5 × 0.5 (mm3) PXRD + Single-crystal X-ray Zn3 (μ3-O) (D-PTT)6 [70] 
MIL-125 210–660 nm PXRD Ti16O72C96H64 [71,72] 
MIL-100(Fe) <200 nm PXRD Fe3O(H2O)2F⋅(C6H3(CO2)3)2⋅nH2O [8,73] 
ZIF-8 0.16 × 0.10 × 0.10 mm3 Single-crystal X-ray C24 H30 N12 O10 Zn3 [32] 

Materials Institute Lavoisier; UiO = University of Oslo; CPO = Coordination polymer of Oslo; NOTT = Nottingham University; TUDMOF-1 =
Technical University of Dresden Metal-Organic Framework, POST = Pohang University of Science and Technology. 
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groups are hydrophobic functional groups which impart a high hydrothermal stability to ZIF. However, removal of the methyl groups 
at temperatures lower than 773 K initiated the decomposition of the imidazole ring, which was destroyed in the temperature range 
between 873 and 1073 K [81]. 

Hence, functional groups have a major impact on thermal MOF stability (the thermal stability reduces further when the functional 
group is a polar functional group). For instance, the thermal breakdown temperature of UiO-66 is 753 K, whereas it is 645, 645 and 
623 K for 2OH-UiO-66 [54], NO2-UiO-66 [95] and NH2-UiO-66 [94] respectively). On the other hand, the thermal stabilities of UiO-66 
functionalized with halogenic functional groups, such as Cl, F and Br, is only slightly affected [93]. Occasionally (as in MIL-96(Al)), the 
presence of an uncoordinated organic linker such as BTC inside ultrafine pores can potentially reduce the thermal MOF stability 
because these molecules might be confined in the MIL-96 (Al) pore network. When they are eliminated from the structure by heating, 
the whole structure collapses at around 570 K [78]. 

Generally, TGA experiments determine the mass loss in a sample at a steady heating rate in a specific environment. This mass loss 
usually occurs in several known steps, starting with dehydration and desolvation at temperatures close to the boiling point of a solvent 
(<423 K); the mass loss stabilizes when all the solvent is evaporated. During the second step, the solvent and non-reacted precursors 
are degraded. The degradation of MOFs is represented by the exhaustive third step at the end [100]. For instance, MIL-53(Al, Mn) 
experienced multi-weight loss steps due to presence of unreacted precursors and solvents (protonated terephthalic acid and metal 
oxides (Al2O3 and MnO) as well as the coordinated solvent in the metal centers) inside the pores [98], Fig. 3. Excess precursors are 
impurities which should be removed from the pores. Such observation is among a special case of synthesized MOFs where unreacted 

Table 3 
Thermal Stabilities of some selected MOFs.  

MOF Temperature (K) Chemical Composition Type of Solvent and Ligand Reference 

MOF-5 673–773 [Zn4O(BDC)3] DMF, H2BDC [82,83] 
MUF-9 648–663 [Zn4O (rac-1)3] DMF, rac-H21 [84] 
MOF-2 653 [Zn2(BDC)2(H2O)2] DMF, H2O, H2BDC [85] 
IRMOF-10-OH 623 [Zn4O(BPDC(OH))3] BPDC-NH2, DEF [86] 
MTV-MOF-5-AE 573 [Zn4O(BDC)2.13(BDC(NO2))0.87] DEF, DMF, H2BDC-Br [87] 
MOF-5 (Zn/Ni) 723 [Zn3⋅64Ni0⋅36O(BDC)3] DMF, H2BDC [88] 
MOF-5 (Zn/Co) 713 [Zn3⋅16Co0⋅84O(BDC)3] DMF, H2BDC [89] 
MOF-801 548–873 [Zr6O8H4(fumarate)6] DMF, Fumaric acid [79] 
Mn-BTT 473 Mn3 [(Mn4Cl)3(BTT)8]2⋅20MeOH H3BTT. 2HCl, H2O, CH3OH [90] 
Fe-MOF 553 Fe2(BDP)3 DMF, H2BDP [91] 
Zn3(BTP)2 723 Zn3(BTP)2⋅3DMF⋅5CH3OH⋅17H2O DMF, Me [80] 
IRMOF-3 623 [Zn4O(BDC(NH2))3] DEF, H2BDC-NH2 [85] 
UiO-66 753 Zr6O8H4(BDC)6 DMF, H2BDC [92] 
UiO-66-F 678 Zr6O8H4(BDC-F)6 DMF, H2BDC-F [93] 
UiO-66-Cl 706 Zr6O8H4(BDC-Cl)6 DMF, H2BDC-Cl [93] 
UiO-66-NH2 623 Zr6O8H4(BDC-NH2)6 DMF, H2BDC-NH2 [94] 
UiO-66-NO2 645 Zr6O8H4 (BDC-NO2)6 DMF, H2BDC-NO2 [95] 
Ti/Zr-MOF 753 (Zr6− xTixO4(OH)4(BDC)6) DMF, BDC [96] 
MIL-53(Al) 803 Al (OH) (O2C–C6H4–CO2) H2O, BDC [97,98] 
MIL-96(Al) 600–800 Al12O(OH)18(H2O)3(Al2(OH)4) [btc]6⋅24H2O. H3BTC, H2O [56] 
NH2-MIL-53(Al) 700 (Al (OH)[NH2-BDC] ⋅H2O) H2BDC-NH2, DMF [99] 

BDC = 1,4-benzene-dicarboxylic acid; DMF = N, N-dimethylformamide; MUF = Massey University Framework; IRMOF = Isoreticular MOFs; H2BDC- 
NH2 = 2-amino-(1,1′-biphenyl)-4,4′-dicarboxylic acid; DEF = N,N-diethylformamide; MTV = Multivariate metal–organic frameworks; H2BDC-Br =
2,5-bromo-1,3-benzenedicarboxylate; H2BDC-NO2 = 2-nitroterephthalic acid; Fumaric acid = trans-1,2-Ethylenedicarboxylic acid; 2-Butenedioic 
acid; H3BTT⋅2HCl = 1,3,5-Tris(2H-tetrazol-5-yl)benzene hydrochloride; CH3OH = Methanol; H2BDP = 1,4-Di(4′-pyrazolyl)benzene; BTP = 2,6-bis 
(1,2,3-triazol-4-yl)pyridine; H2BDC-F = 2-Fluoroterephthalic acid; H2BDC-Cl = 2-Chloroterephthalic acid; H3BTC = 1,3,5-benzenetricarboxylate. 

Fig. 3. TGA profile of MIL-53 samples a) As synthesized b) Activated solvothermally before heating and c) activated solvothermally after heating.  
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precursors presented in MOF structure. Therefore, the weight loss steps from 550 to 800 K correspond to the removal of the above-
mentioned impurities, while the main weight loss at 800 K represents the starting point of MOF structural breakdown. Furthermore, 
solvent exchange activation has been confirmed to be the best activation method used for activating MOFs [10], as shown in Table 4. 
The profiles reveal that these impurities were mainly solvents that weakly interacted with the pores. Consequently, the sample was 
stable up to approximately 830 K. We conclude that TGA analysis and thermal MOF stability are important factors in the synthesis of 
MOFs. MOF functionality and structural integrity can be considerably cooperated under different thermal conditions. A limitation in 
thermal stability makes some MOFs impracticable for certain applications [101] Therefore, the thermal stability of MOFs is a sig-
nificant factor in determining their performance for the applications of MOFs. Generally, stable MOFs exhibit a high performance over 
a wide range of applications [102,103]. 

2.3. Pore size analysis and specific surface area 

The MOF surface area, pore size, and pore volume are the other key properties of MOF. These quantities are measured via gas 
adsorption, SAXS, small-angle neutron scattering (SANS), porosimetry, scanning electron microscopy (SEM), or transmission electron 
microscopy (TEM) [116]. The most widespread method is the gas adsorption method (GAM), which is carried out at the boiling point 
temperature of the gas and at saturated pressure [117]. Precisely, the pore size is usually indicated as the internal pore width (for 
slit-like pores) and pore diameter (for cylindrical and spherical pores). Gas physisorption is typically measured through volumetric 
(manometric) or gravimetric techniques. Gravimetry is more convenient to use for measuring vapor adsorption at room temperature, 
while volumetry is preferable for measuring nitrogen, krypton, and argon adsorption at cryogenic temperatures (here, 77.4 K and 87.3 
K are typical experimental temperatures) [118]. The diffusion of N2 is very slow at low temperature (77 K), and therefore, the analysis 
requires a long equilibrium time [119], N2 adsorption at 77 K is widely used to measure surface area, pore size, and pore volume if the 
gas can access small pores (pore >0.7 nm); however, for pores smaller than 0.7 nm, argon (at 87.3 K) is the preferred gas [120]. 
Nitrogen or argon measurements can routinely measure surface areas as low as 0.5 m2 g− 1, while krypton (at 77 K) is routinely used to 
analyze even lower surface areas (smaller than <0.05 m2 g− 1) [121]. For pore sizes less than 0.45 nm, carbon dioxide (at 273 K) is 
used. CO2 (at 298 K) is also used for total pore volume measurements of ultramicropores [120,121]. Note that pores are based on their 
average size: micropore, mesopore, and macropore. Pore class can be efficiently identified through gas adsorption-desorption iso-
therms as gas adsorption strongly depends on solid surface characteristics. Thus, the shape of this isotherm refers to the type of the 
pores and their proportions. The MOF surface areas can be controlled by different benzene chain cross-linkers. Owing to this feature, 
MOFs with a very high surface area can be synthesized. A high-valence NU-110 E constructed based on a metal-oxo cluster was proved 
to have an excellent ability to control textural properties [75]. It demonstrated the highest surface area amongst all the MOFs, which 
was 7140 m2 g− 1 [105]. 

Table 4 
Specific surface area of some example MOFs.  

MOF Specific Surface Area (m2 g− 1) Organic Linker Reference 

NU-1000 2387 BPDC [104] 
NU-110 E 7140 LH6-2 [105] 
MOF-210 6240 BTE, BPDC [106] 
MOF-200 4530 BBC [106] 
UiO-68 4170 TPDC [58] 
MOF-177 3780 BTB [107] 
UiO-67 3000 BPDC [58] 
MOF-5-H (DEF/120) 2766.5 H2BDC [108] 
MOF-5-DMF/H2O–90C 2136 H2BDC [109] 
MOF-5-L (DMF/130) 1032.4 H2BDC [108] 
UiO-66 1434 BDC [92] 
UiO-66 1187 (Langmuir) BDC [58] 
UiO-66-1.9 GPa 76 BDC [110] 
UiO-66-NH2 1220 H2BDC-NH2 [94] 
UiO-66-(OH)2 396 H2BDC-OH2 [111] 
UiO-66-NO2 771 H2BDC-NO2 [111] 
MIL-100(Fe) 1604 BTC [112] 
Mg II-MIL-100(Fe) 1384 BTC [112] 
MIL-53(Al) 1631.7 BDC [98] 
MIL-53-Mn3 1576.38 BDC [98] 
Cu-HKUST-Zn 1082 BTC [113] 
Cu-HKUST-1-Heating 1100 BTC [114] 
HKUST-1-Me 1700 BTC [114] 
MOF-199-Chloroform 1305 BTC [115] 
MOF-199-Me 1448 BTC [115] 

NU = Northwestern University; LH6 = N,N′-dimethyl-N,N′-ethylene-bis(5-bromo-3-(1H-benzimidazol-2-yl)hydrazineylidene)-2-hydroxybenzyl-
amine); BTE = 4,4′,4′′-(1,3,5-benzenetriyltri-2,1-ethynediyl)trisbenzoic acid; BPDC = biphenyl-4,4′-dicarboxylate (BPDC); BBC = 4,4′,44″-[benzene- 
1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate; TPDC = terphenyl dicarboxylate, BTB = (1,3,5-benzenetribenzoate; BPDC = 4,4′ biphenyl- 
dicarboxylate; H2BDC-OH2 = 2,5 dihydroxybenzenedicarboxylic acid; HKUST = Hong Kong University of Science and Technology. 
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Similarly, MOF-210, MOF-200 [106], UiO-68 [58], MOF-177 [107], UiO-67 [58] have ultrahigh surface areas; i.e., 6240, 4530, 
4170, 3780 and 3000 m2 g− 1, respectively. For MOF-200, and MOF-210, the surface area was calculated using Brunauer-Emmett-Teller 
model (BET), which is less than the surface area calculated by the Langmuir model. The Langmuir isotherm assumes monolayer 
adsorption in contrast to the multi-layered absorption for the BET model. The synthesis procedure and the solvent used during syn-
thesis can also affect the surface area due to defects produced in the MOF structures. A prime example for this phenomenon is MOF-5, 
which was synthesized by using DEF as a solvent (resulting in a surface area of 2766.5 m2 g− 1 [108]). Changing the solvent to DMF 
resulted in the synthesis of MOF-5 having a low surface area (1032.4 m2 g− 1) [108]. However, using H2O with DMF as a co-solvent to 
synthesize MOF-5 increased the surface area (again to 2136 m2 g− 1) [109], Table 3. 

Sample preparation for pore size analysis and degassing conditions (temperature and evacuation rate) is an extremely important 
factor to ensure MOF integrity during degassing process [105]. The degassing temperature should be lower than 75 % of the MOF 
decomposition temperature. Also, the surface area is significantly affected by the activation process. To access the full surface area, 
solvent-filled materials are initially evacuated through a selective activation process without pore collapse [122]. Activation by 
heating [10], results in a low MOF surface area because the structure undergoes a partial breakdown and/or the pores are not 
completely cleaned from the solvent and unreacted precursors. Table 3 demonstrates selective MOFs, such as HKUST-1, MOF-199, and 
UiO-66, which are activated through heating and solvent exchange methods. A typical example is the N2 adsorption-desorption 
isothermal behavior of HKUST-1 at 77 K (Fig. 4) after activation by methanol exchange method. It should be noted that a sharp 
decrease in N2 adsorption is observed at low relative pressure, indicating a significant increase in the micropore content, and 
consequently, an enlarged surface area (from 1100 m2 g− 1 after activation by heating to 1700 m2 g− 1 after methanol exchange 
activation), while the mesopore size decreased from 4.5 nm to 2 nm (Fig. 4b [114]). This indicates that the methanol molecules can 
efficiently eliminate impurities from HKUST-1 and open ultra-micropores. The high polarity of methanol makes it one of the most 
suitable solvents (compared to CHCl3, CH2Cl2, acetone, DMF, ethanol, and water) to maximize the surface area of HKUST-1 [123,124]. 

It is noteworthy that the high mechanical compression of the MOF may cause a diminishment of the free pore volume, and a huge 
decrease in the surface area and porosity due to breakage of chemical bonds. This trend has been demonstrated for UiO-66, where the 
surface area significantly dropped after the application of mechanical pressures of around 1.9 GPa [110]. 

Furthermore, the surface area can also be reduced by using a high concentration of a second metal in bimetallic organic- 
frameworks; some examples of this behavior are Mg-MIL-100(Fe) [112], MIL-53(Al)–Mn3 [98] and Cu-HKUST-Zn [113], Table 4. 

Amongst other MOF materials represented by NU-1000, Zr-MOF exhibits excellent textural properties, including a high surface and 
large pore size, which makes it a promising material for various applications. These include gas storage, drug delivery, water reme-
diation, energy storage, multi-phase catalysis, and electrocatalysis [104]. 

Fig. 4. A) N2 Adsorption/Desorption isotherms and b) Mesoporous pore size distribution of HKUST-1 with different activation method.  
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2.4. Surface functional groups 

Functional groups are molecular moieties of a specific stoichiometry, which typically undergo similar chemical reactions that occur 
in most molecules containing these moieties. In organic chemistry, a functional group is used to characterize and classify molecules and 
estimate their reactions. Each functional group can exhibit similar physical and chemical reactions [125]. Surface functional groups 
play a prominent role in the performance of porous carbon and MOF [126,127] particularly in adsorption processes. Fourier Transform 
Infrared (FTIR) spectroscopy is typically used to identify such surface functional groups, and FTIR measures the change in dipole 
moment versus the chemical bond length. FTIR is thus used initially during MOF synthesis to identify impurities and residual reactants 
on external surfaces and pores in the interior [128]; Non-reacted organic linker and coordinated solvent in the MOF structures can 
easily be identified through FTIR. For instance, when terephthalic acids or their derivatives are used for MOF synthesis, the carboxylic 
group (-CO2) in cross-linked terephthalic acid is shown as an FTIR peak band at 1400–1767 cm− 1, while non-reacted terephthalic acid 
exhibits a band at 1650–1767 cm− 1 [4]. The progress of the reaction can also be observed via FTIR when IR-peaks of the organic linkers 
and coordinated solvents are diminished in the spectrum of the activated sample [94,129]. As shown in Fig. 5, CO2H groups appear at 
1659 cm− 1 in 2OH-UiO-66, NO2-UiO-66, and NH2-UiO-66 before activation but disappear after activation. Specifically, a peak of 
hydroxyl group at 3300 cm− 1 and an absorption band of OH in-plane deformation at 1460 cm− 1 were observed [94,111]. In addition, 
an asymmetric (ν(NO) asym) peak was observed at 1544 cm− 1 (which identifies NO2 groups). C–N stretching of an aromatic amine was 
observed at 1356 cm− 1 [95], and a primary amine was identified by two peaks at 3376 and 3457 cm− 1 [94], shown in Fig. 5. 
Furthermore, the existence of crystalline MOF was confirmed by the observation of four peaks at 1300–1630 cm− 1 (metal 
oxide-terephthalate bond), the presence of –CO2 asymmetrical stretching at 1497 and 1600 cm− 1, and –CO2 symmetrical stretching at 
1391 and 1408 cm− 1 [130,131]. Table 5 displays the infrared data for –CO2 functional groups in various MOFs. 

Functional groups inside the pores of MOFs play a major role in their chemical modifications. Specifically, post-synthesis modi-
fication of MOFs is facilely achieved with the presence of functional groups on the organic linkers, and it is significantly affected by the 
nature, size, and number of these functional groups [136]. Functional groups can also be tuned on the surface of MOFs via different 
ways. One of the methods is through direct synthesis procedure [94]. The other ways are post-synthesis modification [10] and 
chemical etching modification [136]. The pore parameters and functional groups cooperatively operate in the applications of MOFs. 
Therefore, changing the functional group leads to a change in the pore structure. Based on the type of the functional group, MOFs can 
be used in various applications, such as gas storage, catalysis, sensing, separation, and drug delivery [137]. 

3. Outlook and future directions 

This paper conducts a systematic review of the essential physicochemical properties of Metal-Organic Frameworks (MOFs), with an 
emphasis on facilitating the research journey for novice researchers. The review covers key MOF characterization techniques, 
including X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), assessments of textural properties, and Fourier-transform 
infrared (FTIR) spectroscopy. 

XRD enables the identification of MOF structures and integrity, while TGA provides insights into MOF thermal degradation profiles 
and decomposition temperatures, highlighting the significance of thermal stability in selecting appropriate preparation conditions for 
MOFs. Furthermore, it is noted that the factors influencing the MOF surface area include the synthesis procedure (type of solvents, 
cross-linkers, second metal, and temperature), the activation method, and mechanical pressure. 

FTIR spectra, employed to identify active functional MOF groups, such as –CO2, –NO, –OH, –NH2, or –CN, are crucial to under-
standing MOF stability. The robustness of the FTIR technique is exemplified through its applicability to powder samples, thin films, and 
fully fabricated devices, rendering it a standard, effective method to verify functional groups in MOFs. 

With regard to studies that are primarily focused on synthesis, the researchers who work on MOF should pay greater attention to 
simplified and authentic in situ FTIR measurement processes or techniques. XRD measurements for thin films can be challenging on 
crystalline or amorphous substrates due to strong signals from the substrates [138]. Therefore, alternative techniques such as 
High-Resolution Transmission Electron Microscopy (HR-TEM) may verify the crystalline structure, albeit with less effectiveness for 
novel MOFs as compared to MOF powders that have been investigated extensively [139]. 

MOF thin films, produced through direct synthesis routes or post-synthetically modified methods, require sophisticated techniques 
such as Atomic Force Microscopy for investigation of their porosity. For MOF-derived materials (both powders and thin films) in 
electrochemical applications like fuel cells, batteries, water splitting, and supercapacitors, more attention should be given to the 
electrochemically active surface area as opposed to the geometric or specific surface area [140]. 

The doping of heteroatoms and incorporation of external moieties in existing MOF structures can be elucidated by HR-TEM and 
Energy Dispersive Spectroscopy (EDS). The trademark properties of MOFs, such as porosity and geometric surface area, are usually 
reported through gas adsorption isotherms using nitrogen as an adsorbate due to its inert nature and readily available property data. 
However, discrepancies can arise in reporting surface area, pore size, pore volume, and pore size distribution based on N2 isotherms 
[141]. A comparison of the intrinsic density of perfectly structured MOFs and that of the actual bulk synthesized ones can assist in 
evaluating synthesis accuracy and the role of activation for powder samples. These characteristics are paramount in the selection of 
MOFs for specific applications, especially when developing novel MOFs. 

In summary, this review critically examines MOF characterization techniques, providing a comprehensive and accessible overview 
for new researchers in this area. Consequently, it will contribute to the improvement of MOF development techniques and their 
characterization for targeted applications. For future work, a review of the characterization of MOFs under high pressures and high 
temperatures is recommended. 
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Fig. 5. FTIR spectra of UiO-66 MOFs with various surface functional groups a) OH-UiO-66, b) NO2-UiO-66 and c) NH2-UiO-66.  

Table 5 
FTIR absorption frequencies of some selected MOFs.  

MOFs Organic Linker FTIR Absorption Frequency (cm− 1) Reference 

Not Coordinated 
-CO2H 

Coordinated 
-CO2 Asymmetrical Stretching 
-CO2 Symmetrical Stretching 

UiO-66-Zr BDC 1670 1584; 1393 [92,129] 
NH2-UiO-66-Zr NH2-BDC 1656 1497,1564; 1385,1424 [94] 
MIL-53-Al BDC 1730–1650 1574,1505; 1443,1397 [4] 
MIL-96-Al BTC 1654 1597; 1457,1396 [4] 
NH2-MIL-53 NH2-BDC 1688 1565, 1494; 1440, 1389 [4] 
MOF-5-Zn BDC 1654 1608,1540; 1410,1340 [132] 
HKUST-1 BTC 1700 1450,1649; 1373,1548 [114,133] 
MIL-100 (Fe) BTC 1750 1690: Nil [8] 
NH2-MIL-101(Fe) NH2-BDC 1659 1583; 1436 [131] 
NO2-UiO-66 (Zr) BDC-NO2 1650 1590,1495; 1409,1389 [111] 
2OH-UiO-66 (Zr) BDC-OH2 1659 1500; 1380 [54] 
MIL-47(VIII) BDC 1695–1708 1542,1566; 1393, 1420 [134] 
MIL-101(Cr) BDC 1700 Nil; 1404 [135]  
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[30] M.M. Font Bardia, X. Alcobé i Ollé, X-ray single crystal and powder diffraction: possibilities and applications. Capítol del llibre: Handbook of instrumental 

techniques for materials, chemical and biosciences research, Centres Científics i Tecnològics, vol. 9, Universitat de Barcelona, Barcelona, 2012, p. 14, 2012. 
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