
Wang et al. BMC Bioinformatics 2012, 13:178
http://www.biomedcentral.com/1471-2105/13/178
RESEARCH ARTICLE Open Access
Finding minimum gene subsets with heuristic
breadth-first search algorithm for robust
tumor classification
Shu-Lin Wang1,2,3, Xue-Ling Li2 and Jianwen Fang3*
Abstract

Background: Previous studies on tumor classification based on gene expression profiles suggest that gene
selection plays a key role in improving the classification performance. Moreover, finding important tumor-related
genes with the highest accuracy is a very important task because these genes might serve as tumor biomarkers,
which is of great benefit to not only tumor molecular diagnosis but also drug development.

Results: This paper proposes a novel gene selection method with rich biomedical meaning based on Heuristic
Breadth-first Search Algorithm (HBSA) to find as many optimal gene subsets as possible. Due to the curse of
dimensionality, this type of method could suffer from over-fitting and selection bias problems. To address these
potential problems, a HBSA-based ensemble classifier is constructed using majority voting strategy from individual
classifiers constructed by the selected gene subsets, and a novel HBSA-based gene ranking method is designed to
find important tumor-related genes by measuring the significance of genes using their occurrence frequencies in
the selected gene subsets. The experimental results on nine tumor datasets including three pairs of cross-platform
datasets indicate that the proposed method can not only obtain better generalization performance but also find
many important tumor-related genes.

Conclusions: It is found that the frequencies of the selected genes follow a power-law distribution, indicating that
only a few top-ranked genes can be used as potential diagnosis biomarkers. Moreover, the top-ranked genes
leading to very high prediction accuracy are closely related to specific tumor subtype and even hub genes.
Compared with other related methods, the proposed method can achieve higher prediction accuracy with fewer
genes. Moreover, they are further justified by analyzing the top-ranked genes in the context of individual gene
function, biological pathway, and protein-protein interaction network.

Keywords: Gene expression profiles, Gene selection, Tumor classification, Heuristic breadth-first search, Power-law
distribution
Background
Tumor involves many pathways, distinct genes and ex-
ogenous factors, and is considered as systems biology
diseases [1]. Despite tremendous efforts in research, the
mechanism of tumor genesis and development has not
been thoroughly known yet. Treatment of later stage
cancers is often not therapeutically effective, and medical
experts agree that early diagnosis of tumor is of great
benefit to successful therapies. However, early tumor
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detection is extremely difficult using traditional tumor
mass detection techniques such as X-ray imaging. Fur-
thermore, different subtypes of tumor show very different
responses to therapy, indicating that they are molecularly
distinct entities. Thus, accurate classification of tumor
samples based on molecular signatures is essential for ef-
ficient cancer treatment. Since the first paper on the clas-
sification of leukemia subtype based on Gene Expression
Profiles (GEP) was published [2], this research field has
been studied extensively and become a research hotspot
[3-8]. Many datasets on different tumors have been pub-
lished such as colon tumor [9], Small Round Blue Cell
Tumor (SRBCT) [10], Diffuse Large B-Cell Lymphomas
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(DLBCL) [11], and prostate tumor [12], etc.. All of the
published tumor datasets have very high dimensionality
and small sample size mainly due to limited resources
and the time required for collecting and genotyping spe-
cimens [13]. Many supervised classification methods in
pattern recognition, such as Support Vector Machines
(SVM) [14,15], Artificial Neural Networks (ANN) [16-20],
k-Nearest Neighbor (KNN) [12,21], and nearest shrunken
centroids [22], have been successfully applied to GEP-
based tumor classification over the last decade. All these
studies have shown that GEP-based tumor classification
methods hold great promises for early diagnosis and clin-
ical prognosis of tumor. However, due to the challenges
from the curse of dimensionality that the number of
genes far exceeds the size of sample set, dimensionality
reduction including feature extraction such as total
principal component regression [23] and gene selection
[2] should be performed before constructing classifica-
tion model [24]. Compared to feature extraction, gene
selection do not alter the original representation of
genes, so it can not only improve the performance of
tumor classification by removing redundant and irrelevant
genes but also select informative gene subsets that may
serve as cancer biomarkers and potential drug targets.
More importantly, it may provide insight into the under-
lying molecular mechanism of tumor development. There-
fore gene selection plays a very important role in tumor
classification [25].
Generally, gene selection can be classified into two cat-

egories: Filters and Wrappers [26]. Filters are independ-
ent from the following classification stage. They evaluate
the discriminability of genes by using only the intrinsic
information of data themselves and subclass information,
such as relative entropy [27], information gain and t-test
[28], as well as Minimum Redundancy-Maximum Rele-
vance (mRMR) [29]. Because gene selection is not asso-
ciated to any specific classifiers, the gene subsets selected
by Filters can avoid over-fitting phenomena. The advan-
tage of Filters is that they can be easily catered to very
high-dimensional datasets, and are computationally sim-
ple and fast [25]. On the contrary, Wrappers evaluate the
discriminability of each gene subset using the evaluation
function of learning algorithm, such as Genetic Algo-
rithm (GA)/SVM method [30] and GA/KNN method
[21]. Wrappers often deliver better performance than Fil-
ters in gene selection [26] because they utilize the feed-
back information of classification accuracy. However,
their computational cost must be seriously taken into ac-
count [31] due to the fact that hunting for the smallest
feature sets in a high-dimensional space is an NP-
complete problem [32,33]. Practically for all Wrappers a
good solution is to adopt heuristic method in a con-
densed search space to approximately find out the smal-
lest feature sets. One example is to adopt GA to find the
most informative gene subsets [21,34]. Another example
is to combine gene ranking with clustering analysis to se-
lect a small set of informative genes [35].
Three general modes are commonly adopted in gene

selection strategies: Increasing Mode, Decreasing Mode,
and Hybrid Mode, which are respectively introduced as
follows. 1) Increasing Mode selects a gene subset starting
from empty set until a gene subset with the highest classi-
fication accuracy is selected through appending potential
genes into the gene subset, such as Sequential Forward
Search (SFS) [36]. 2) Decreasing Mode starts from the
whole gene set to remove irrelevant and redundant
genes, and keeps the least gene subset among the sub-
sets with the same classification accuracy, such as the
well-known Support Vector Machine-Recursive Feature
Elimination (SVM-RFE) [14] that selects informative
genes in a sequential backward elimination manner by
starting with the whole gene set and eliminating one or
several redundant gene in each iteration, and the exten-
sion of SVM-RFE(MSVM-RFE) [37] that solves the
multi-class gene selection problem by simultaneously
considering all subclasses during the gene selection
process. 3) Hybrid Mode, such as Sequential Forward
Floating Search (SFFS) algorithm [36] and Markov
blanket-embedded genetic based gene selection algo-
rithm [34], combines Increasing Mode with Decreasing
Mode by starting from an arbitrary gene set. However,
Reunanen [38] proved that intensive search strategies
such as SFFS do not necessarily outperform a simpler
and faster method like SFS, provided that the compari-
son is done properly.
In fact, due to the characteristics of GEP, more complex

methods are not obviously superior to the simpler ones
and the loss of biomedical meaning derived from the
over-complex methods may be not sufficiently compen-
sated by the little improvement of predictive performance
[39]. Therefore, designing biologically interpretable meth-
ods that obtains minimum gene subsets with the highest
or nearly highest classification accuracy is very important
for robust tumor classification. Furthermore, identifying
minimum gene subsets means discarding most noise and
redundancy in dataset to the utmost extent, which may
not only improve classification accuracy but also decrease
the tumor diagnosis cost by suggesting the fewest bio-
markers in clinical application as suggested by [35,40,41].
However, the curse of dimensionality from GEP implicates
two problems in selecting a small gene subset with the
highest or nearly highest accuracy from thousands of
genes: over-fitting and selection bias, because it may be
just by chance to find a small gene subset with perfect
classification performance from such tremendous gene
space even in random dataset [42-44]. So the over-fitting
and selection bias problems must be avoided in order to
obtain robust classification performance.
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Ambroise et al. [45] found that overoptimistic results
incurred by selection bias could happen if test set is not
thoroughly excluded from gene selection process. There-
fore, test set must be independent of the training process
of classifier. Wang L.P. et al. [46] further pointed out
that many previous studies, such as [47] and [10], had
gained overoptimistic performance according to this cri-
terion, and they proposed a simple method with result-
ant accurate tumor classification by using a very few
genes. This method combines gene ranking with ex-
haustive search method to find minimum gene subsets
so as to achieve the unbiased accuracy. Although their
methods achieve good and unbiased classification
results, the high computational cost makes it infeasible
when the number of initially selected genes is very large
(e.g., more than 300). Our previous work [48] designed a
gene selection approach that was used to find the mini-
mum gene subsets with the highest classification accur-
acy, but seriously upward bias occurred because that
initially selecting differentially expressed genes on whole
dataset and over-fitting is performed in gene selection
stage. In this study, based on the Heuristic Breadth-first
Search Algorithm (HBSA), we further construct a
HBSA-based ensemble classifier and design a HBSA-
based gene ranking method by counting its occurrence
frequency on the basis of gene subsets selected only on
training set so as to avoid over-fitting case and selection
bias. Our novel method manages to simultaneously
achieve the two conflict goals [49]: 1) Design a simple
classifier to achieve nearly highest and unbiased predic-
tion accuracy; and 2) Mine as many important tumor-
related genes as possible, which may provide insight into
the mechanism of tumor genesis and help find diagnosis
biomarkers and new therapeutic targets [50].
In this following section, we firstly describe the classi-

fication problem and introduce the search strategy of
HBSA. The implementation of HBSA is given, and its
biomedical interpreter is also illustrated. Then two
methods including HBSA-based ensemble classification
and HBSA-based gene ranking are designed to obtain
unbiased prediction accuracy and find important tumor-
related genes. The results obtained on nine actual tumor
datasets including three pairs of cross-platform datasets
demonstrate the feasibility and effectiveness of our
method. Comparison with other related methods also in-
dicate the superiority of our method. The biomedical
analysis of the selected genes in the context of individual
gene function, pathway analysis and Protein-Protein
Interaction (PPI) network further justify our methods.

Methods
Problem description
Let G= {g1, �, gn} be a set of genes and S= {s1, �, sm} be a
set of samples. |G| = n denotes the number of genes, and
|S| =m denotes the number of samples. The correspond-
ing GEP can be represented as matrix X= (xi,j)mn, 1≤ i≤
m, 1 ≤ j ≤ n, where xi,j is the expression level of gene gj in
sample si, and usually n≫m. Each vector si in the gene
expression matrix can be regarded as a point in n-
dimensional space. And each of the m rows consists of
an n-element expression vector for a single sample. Let
L= {c1, �, ck} denote the label set and |L| = k denote the
number of subclasses. Usually, the subclass of each sam-
ple is known, so S× L= {(si, li)|si 2 Rn, li 2 Rn, li 2 L, i= 1,
2, �, m} denotes the labeled sample space.
Selecting an informative gene subset T with the high-

est classification accuracy from gene space P(G) (the
power set of G) is a crucial problem, but it is an NP-
complete problem [33]. Moreover, which and how many
genes are relevant to a specific tumor subtype are not
clear for biomedical scientists so far. We therefore as-
sume that the gene subsets with powerful classification
ability are relevant to a specific tumor subtype. Let Acc
(T) denote the classification ability of a gene subset T
on sample set, which is usually measured by the accur-
acy of a classifier. We hope that the selected informative
gene subset T simultaneously satisfies the following two
goals:

minimizeT2P Gð ÞðjT jÞ ð1Þ
miximizeT2P Gð Þ Acc Tð Þð Þ ð2Þ

where |T| denotes the cardinal number of gene subset
T. The gene subset simultaneously satisfying (1) and (2)
is called an optimal gene subset T*. Note that usually
more than one optimal gene subset T* may exist in that
the genes belonging to the same pathway in a cell usu-
ally have similar expression pattern and function. Opti-
mal subsets A* comprise all of the optimal gene subsets
T*, i.e., A* = {T*|T* ⊂G, T* simultaneously satisfies (1)
and (2)}. Although finding only one gene subset T* is
sufficient for tumor classification, finding as many opti-
mal gene subsets as possible is very useful to gain an
insight into tumor dataset structure and discover more
important tumor-related genes.
Due to a large |G| = n (e.g., one sample usually

includes 2 000~ 30 000 genes), it is impractical to apply
an exhaustive search method to find out A* in the space
of 2n gene subsets. A good solution is to adopt a heuris-
tic method in a condensed search space to approxi-
mately find out A*. However, different gene subsets with
different cardinal numbers may be selected by using dif-
ferent methods, so it is difficult to determine the mini-
mum number of optimal gene subset for a specific
tumor dataset by only designing methods. Thus we must
balance the minimum number and the classification ac-
curacy. Jain et al. [51] suggested a criterion (3) that the
number of training samples per subclass is at least five
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times the number of features in designing a classifier to
avoid the curse of dimensionality, i.e.

mt=kð Þ=ns > 5 ð3Þ
where k is the number of subclasses, mt is the number
of training samples, and ns denotes the number of the
selected genes, and for more complex classifier the ratio
of sample size to dimensionality should be larger. For
example, we should consider at most eight informative
genes for two-subclass tumor dataset with only 80 train-
ing samples to design a classifier with acceptable
generalization performance [52]. Considering that very
high accuracy can always be obtained by selecting suffi-
cient genes in a small size of sample set, we aim to find
minimal gene subsets with nearly maximal accuracy ra-
ther than to obtain maximal accuracy with much more
genes. Therefore, those gene subsets approximately sat-
isfying (1) and (2) are also included into our optimal
gene subsets A*. Based on these optimal gene subsets,
how to obtain more reliable accuracy and find more im-
portant tumor-related genes are two key problems.

Gene pre-selection
It is widely accepted that tumor-related genes are differ-
entially expressed ones, so the Filters-based gene ranking
techniques are usually used to pre-select the differentially
expressed genes from the original gene space even
though those differentially expressed genes are not always
tumor-related ones due to the noises in dataset. Its main
idea is to assign each gene a single score that denotes the
significance of each gene according to a certain scoring
criterion. Many single variable methods such as t-test
and Bhattacharyya distance are extensively used as dis-
crimination criterions. However, these methods require
the dataset to follow Gaussian distribution. Otherwise,
these methods may not achieve optimal experimental
performance. Deng et al. [53] reported that usually tumor
datasets do not follow Gaussian distribution and showed
that Wilcoxon rank sum test (WRST) is superior to t-test
method in gene selection on three binary tumor datasets.
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Figure 1 A diagram of the expanded tree generated by HBSA..
However, WRST is only suitable for the binary classifica-
tion problem. Kruskal-Wallis rank sum test (KWRST) is
suitable for multi-class problem. The WRST or KWRST-
based gene selection method was reported to perform
very well in GEP-based tumor classification on the basis
of the extensive comparison studies [24,54]. Taking it into
consideration that KWRST does not require a certain
distribution of data and is also suitable for small dataset,
in our experiments we use KWRST to pre-select an ini-
tial informative gene set G* = {g1, �gp}, which contains p
candidate genes with good discriminating ability.

Heuristic breadth-first search
Search strategy
We aim at finding as many optimal gene subsets as pos-
sible. When p, the number of the informative genes
pre-selected by KWRST, is small, breadth-first search al-
gorithm can realize our goals (1) and (2). However,
when p is very big (e.g. p= 300), the required CPU time
of such a search algorithm is intolerable. We therefore
design a heuristic breadth-first search algorithm (HBSA)
with heuristic information measured by Acc(T) to find
the optimal gene subsets A*, which can drastically re-
duce the search space.
Usually, in the process of search an expanded tree is

generated by HBSA from G* = {g1,.,gp}, which is the dif-
ferentially expressed gene set pre-selected by KWRST, as
shown in Figure 1, where Ni

j denotes a node with i
representing the layer of the node (0 ≤ i ≤ p) and j the
serial number of the node in layer i. The data structure
of each node is defined as follows:

Node =Begin

set;
parent;
path;
c;

End
p
1

)1(
2

−ppN}1−p

2}pg −
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w pN −

Initally select p genes from 
whole dataset by KWRST

Select w  open nodes by the 
accuracy of all nodes in layer 2

Select w  open nodes by the 
accuracy of all nodes in layer 3
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where Ni
j.set denotes a set only containing single gene,

Ni
j.parent the parent node of the node Ni

j, and Ni
j.path a

gene set containing all genes on the path from the root
node N0

1 to the node Ni
j itself. Obviously the length of

the gene set Ni
j.path is i, i.e., Ni

j.path=Ni
j.parent.path [

Ni
j.set. Let Ni

j.c=Acc(Ni
j.path) denote the classification

accuracy of the gene subset Ni
j.path, serving as the heur-

istic information to guide the node selection in layer i,
evaluated by SVM and KNN classifiers here. For the
root node N0

1, N0
1.set = ; (; is empty set), N0

1.path= ;,
N0
1.parent = nil, and N0

1.c= 0. The root node is expanded
to p child nodes guided by the heuristic information
KWRST(g), where we set Ni

j.set= {gj} and N0
1.path= {gj}, gj

2 G*, 1≤ j ≤ p. Next all p nodes are expanded again in
next layer. Each node Ni

j(1 ≤ j ≤ p) in layer 1 is expanded
to p− 1 child nodes, thus there are p(p− 1) nodes in layer
2, where N2

j .set= {gi}, N2
j .path=N2

j .set [ N2
j .parent.path,

N2
j .c=Acc(N2

j .path), gi 2 G* ∧ gi =2 N2
j .parent.path, where

1≤ j ≤ p(p− 1), 0 ≤ i ≤ p. Then we descendingly rank all
nodes in layer 2 by their N2

j .c, and examine whether
Accmax(2) =max1 ≤ j ≤ p(p−1)(N2

j .c) is greater than a given
threshold Acc_Max or not, where Accmax(2) denotes the
maximal accuracy in layer 2.If Accmax(2) ≥Acc_Max,
where Acc_Max is a given threshold, which indicates that
at least one optimal gene subset is found, the searching
process is stopped. Otherwise in layer 2 we select the w
top-ranked nodes as open nodes to be expanded in next
layer, where the parameter w denotes the search breadth.
In fact, whatever w is set to, w always takes p value in
layer 1. The rest may be deduced by analogy. Note that
some gene subsets on different paths are possibly the
same regardless of gene order in these gene subsets. Ex-
cept nodes in layer 0 and 1, if the classification accuracy
of a node has been previously computed, the accuracy of
this node is set to zero so as to avoid the unnecessary ex-
pansion and this node is called closed node that will not
be expanded in next layer. Finally, when the search
process is stopped, all gene subsets in the w top-ranked
nodes in last layer are selected into the optimal gene sub-
sets A*. An example of HBSA is illustrated in Additional
file 1: Figure S1.
The goal of HBSA is to select as many optimal gene

subsets as possible only on training set. For each gene
subset in A* constructed from empty set, its classifica-
tion accuracy monotonously increases with the increase
of its size, so when the classification accuracy of the
gene subset achieves Acc_Max threshold or the maximal
value (100%), the size of the gene subset obtained is
minimal. It, therefore, is apparent that the optimal gene
subsets in A* just approximately satisfy the two goals in
(1) and (2). If the search breadth w is set appropriately,
the error prone of searching process can be avoided to
some extent so that as many optimal gene subsets as
possible can be selected.
Obviously, the search breadth of increase with the in-
crease HBSA does not exponentially of search depth.
Thus our HBSA is a beam search algorithm, or an
optimization of best-first search that searches a graph by
ordering all partial solutions according to some heuristic
information. As a result, only the best partial solutions
of the predetermined number are kept as candidates.
That is, only the most promising nodes are retained for
further expanding at each layer of the search tree, while
the remaining nodes are pruned off permanently [55].
Generally speaking, in local view the HBSA-based gene
selection belongs to the Increasing mode, while in global
view such gene selection belongs to Hybrid mode in that
most of the gene combinations with lower classification
accuracy are discarded in the search process. The HBSA
can be implemented more flexibly. For example, it is un-
necessary to select fixed w top-ranked nodes to be
expanded in each layer, that is, w can be set to different
values in different layers. There are two modes to set w.
1) For each layer, w can be determined by the distribu-
tion of the classification accuracy of all nodes in the cor-
responding layer. 2) Set different Acc_Max thresholds
for different layers, and the given threshold of each layer
must be less than that of its next layer, which leads to
different numbers of the selected nodes in different
layers. Thus, one advantage of HBSA is its adaptability.
Another advantage of HBSA is its biomedical inter-

pretation. Suppose Ti= {g1
′ , �, gi′} is a selected gene subset

with high accuracy in the i-th layer, where gj
′ 2 G*, 1≤ j≤ i.

If g’i+12G* could be appended into Ti to make Acc
(Ti+1 = {g’1, �, g’i, g’i+1}) increase maximally, g’i+1 should
be independent of or very weakly related to the genes
in gene subset Ti ideally. Otherwise, if Acc (Ti+1) increases
only a little or even decreases, the subset Ti+1 will be
discarded in layer i + 1. Therefore, ideally, all genes in
the optimal set T* should be independent of each other,
and each optimal gene subset T* selected should be an
independent variable group. It implies that those genes
in subset T* should be on the different regulatory path-
ways, but, due to much noise in GEP, the gene latterly
appended into the gene subset might be weakly tumor-
related.
Moreover, to distinguish which genes are more im-

portant ones, the significance of a gene is measured by
its occurrence frequency counted in the optimal set A*.
The bigger the occurrence frequency of a gene, the more
important the gene. This definition also has its biomed-
ical interpretation. For example, given two three-gene
subsets G1 = {g1

′ , g2
′ , g3

′} and G2 = {g1
00
, g2

00
, g3

00
}, where we as-

sume that all genes in G1 are on pathway 1 and all genes
in G2 are on pathway 2, as shown in Figure 2, and that
the tumor-related strengths of the genes in G1 and G2

decrease with their orders in G1 and G2, respectively.
Generally, gene subsets such as {g1

′ , g2
′} and {g1

00
, g2

00
} might
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Figure 2 A diagram of two regulatory pathways. The dotted
lines represent all possible combinations of genes on different
pathways.
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not be selected by HBSA because both Acc({g1
′ , g2

′}) and
Acc({g1

00
, g2

00
}) might be lower than that of other irrelevant

gene combinations such as {g1
′ , g2

00
} due to the expression

similarity of genes on the same pathways. Thus the po-
tential gene combinations include nine gene subsets pos-
sibly selected: {g1

′ , g1
00
}, {g1

′ , g2
00
}, {g1

′ , g3
00
}, {g2

′ , g1
00
}, {g2

′ , g2
00
}, {g2

′ ,
g3
00
}, {g3

′ , g1
00
}, {g3

′ , g2
00
} and {g3

′ , g3
00
}. Particularly, such gene

subsets including g1
′ and g1

00
tend to be selected by HBSA,

while those gene subsets including g3
′ and g3

00
incline to

be discarded by HBSA, which results in high occurrence
frequency of those important tumor-related genes such
as g1

′ and g1
00
in gene set A*. Thus, the resultant occur-

rence frequency of a gene is a reasonable measure of its
importance from this point of view.

Implementation
In practice, there is no need to construct searching tree
to obtain the optimal gene subsets A*. It is enough to
preserve the potential gene subsets and their classifica-
tion accuracy in the searching process. To conveniently
implement HBSA, a classification matrix CM= (ai,j)w×p
is defined as follows:

CM ¼
g1f g � gp

� �
T1 a1;1 � a1;p
⋮ ⋮ ⋱ ⋮
Tw aw;1 � aw;p

2
664

3
775 ð4Þ

Adopting row label vector Row= (T1, T2, �TW) to label
every row of CM in turn, where Ti(1 ≤ i ≤w) denotes the
selected gene subsets. Adopting column label vector Col-
umn= ({g1}, � {gj}, � {gp}) to label each column of CM in
turn, where gj 2 G*,and ai,j=Acc(Row[i] [ Column[j]),
where Row[i] denote the gene subset of the i-th row in
CM matrix and Column[j] denote the single gene set of
the j-th column in CM matrix, 1≤ i≤w, 1 ≤ j ≤ p. The
framework of HBSA is shown in Algorithm 1, where Acc
(T) is defined as the classification accuracy of gene subset
T. For example, if Row[5] = {g1,g4} and Column[3] = {g6},
a5,3 =Acc(Row[5] [ Column[3]) =Acc({g1,g4,g6}), which is
the prediction accuracy of the gene subset {g1,g4,g6}.
Algorithm 1: HBSA(M, p, w, Acc_Max, Depth)
Input: M denotes gene expression profiles, p the num-

ber of pre-selected genes, w the number of the selected
gene subsets in each layer (searching breadth), Acc_Max
a given maximal accuracy threshold, and Depth the
upper bound of searching depth.
Output: A set of optimal gene subsets A*.

1: For each gene gj 2 G do
2: B[j]: = KWRST(gj); //Compute p-value for each gene

by Kruskal-Wallisrank sum test.
3: End For
4: B: = Sort(B); //Rank B by ascending order.
5: G*: = Selected(G, B, p); //Select the p top-ranked

genes as initial informative gene set G*from original
gene set G according to B.

6: For each i 2 {1,2,�, p}
7: Column[i]: = {gi};
8: Row[i]: = Column[i];
9: End For
10: iter: = 1; //The times of iteration.
11: Repeat //If CM is firstly computed, CM is a

symmetric matrix, so only the lower triangle matrix
of CM is computed.

12: Construct the classification matrix CM, label each
row of CM with each component of Row vector,
and label each column of CM with corresponding
component Column vector.

13: Compute classification matrix CM, where ai,j=Acc
(Row[i] [ Column[j]), 1 ≤ i ≤w, 1 ≤ j ≤ p; //Before ai,j
is computed, the sample set labeled with Row[i] [
Column[j] must be normalized (where the sample
mean is zero while the variance is 1); function Acc
(.) is measured by SVM with Gaussian radial basis
function (RBF) kernel or KNN classifier. Computing
matrix CM is equivalent to doing the classification
accuracy of all nodes in a layer shown in Figure 1.

14: Convert CM to the vector V: = (v1, v2, �, vw×p), and
set V[(i− 1) × p+ j].subset: = Row[i] [ Column[j],
and V[(i− 1) × p+ j].c: = ai,j, 1 ≤ i ≤w, 1≤ j ≤ p, then
rank vector V by V.c in descending order. Select w
top-ranked components to reconstruct label vector
Row[i]: = V[i].subset, 1 ≤ i ≤w, where the row
dimensionality of matrix CM can be dynamically
changed according to the requirement.

15: Accurancy: = max(V.c);
16: iter: = iter+ 1;
17: Until (Accurancy ≥Acc_Max) or (iter=Depth);

//When the maximal classification accuracy is
obtained or the iteration times is equal to Depth,
the searching process ends.

18: Select all gene subsets with the highest or nearly
highest accuracy and append them into the optimal
gene subsets A*.

19: Return A*; //Return the optimal gene subsets A*, |
A*| is the number of the optimal gene subsets, and
[ A* might be the tumor-related gene set.
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Algorithm end
Three stopping criterions are predefined in HBSA:

1) When a gene subset whose accuracy on overall
training set is no less than Acc_Max threshold is
found, the algorithm ends.

2) If no gene subset with Acc_Max accuracy is found,
the HBSA ends with the maximum iteration times
Depth, which can guarantee the end of this
algorithm. Usually, we do not know how to select an
appropriate Depth. If Depth is set inappropriately,
the selected gene subsets might not be optimal.

3) An alternative criterion is that the HBSA ends with
the criterion |Accuracyiter+1−Accuracyiter| < δ, where
δ is set to a very small positive real number and
Accuracyiter denotes the maximum classification
accuracy in the iter-th iteration.

The most time-consuming operation in the HBSA is
to compute Acc(T). If we assume that computing Acc(T)
only costs one unit time, the time complexity of com-
puting the classification matrix CM is O(w× p), and the
time complexity for the whole algorithm is O(Depth ×
w× p). Although HBSA is an algorithm of polynomial
time complexity, it is still very time-consuming. How-
ever, since the task of finding optimal gene subset is
mainly performed in laboratory phase and the clinical
tumor diagnosis phase only uses the selected gene sub-
sets, which takes only a little CPU time (e.g., within at
most several seconds on general PC computer). Thus,
our HBSA-based gene selection method is feasible.

Evaluation criterion
We adopt two machine learning methods, KNN and
SVM, to measure the classification accuracy, Acc(T), of a
gene subset T in HBSA, respectively. KNN is a common
non-parametric method. To classify an unknown sample
x, KNN extracts the k closest vectors from training set
by using similarity measures such as Euclidean distance,
and decides the label of the unknown sample x by using
the majority subclass label of the k nearest neighbors. k
is set to an odd number to avoid tied votes. In our
experiments Euclidean distance and five nearest neigh-
bors are adopted to measure the similarity of samples
and make decisions. The HBSA with KNN is called
HBSA-KNN.
SVM [56] with Gaussian Radial Basis Function (RBF)

K(x,y) = exp(−γ||x− y ||2) (SVM-RBF) is also adopted to
evaluate the classification performance of the selected
gene subsets. LIBSVM [57] is used in the study, where
the combinations of penalized parameter C and Gauss-
ian kernel parameter γ need to be optimized when train-
ing SVM classifier. Parameter C is the penalty factor of
the samples classified mistakenly, while parameter γ
dominates the sensitivity to the change of input data. Be-
cause of the large search space, the general grid-search
method (for example, C=2−5, 2−4, �, 215, γ=2−15, 2−14, �, 23)
[58,59] is time-consuming in finding the optimal parameter
combinations (C, γ). Furthermore, we find that normalized
tumor datasets are not sensitive to parameter C, and that
search space can be reduced with parameter γ being set
within the range of [10-5,10] and C being set to 200 and
400 or even fixed to 200. Specifically, if γ takes the value
in O(10-1), γ may take 0.1, 0.2, �, 0.9, respectively; if γ
takes the value in O(10-2), γ may take 0.01, 0.02, �, 0.09,
respectively. And the others are set similarly. The HBSA
with SVM is called HBSA-SVM.
The k-fold Cross-Validation (k-fold CV) is commonly

used to evaluate classification model. Here it is applied
only on training set to measure Acc(T). If k is set to Trn
(the size of training set), the k-fold CV is called Leave-
One-Out Cross-Validation (LOOCV). If k is set to 2, the
k-fold CV is known as the holdout method. When k is
set too low, the accuracy of k-fold CV tends to have high
bias and low variance. On the contrary, when k is set too
high (e.g., k =Trn), the accuracy of k-fold CV will have
low bias but high variance [51,60]. Breiman et al. [61]
found that 10-fold CV method outperforms the LOOCV
method to some extent. Ambroise et al. [45] and Asyali
et al. [52] also recommended 10-fold CV methods in
tumor classification, but whether 10-fold CV method
outperforms LOOCV method depends on datasets. To
balance the bias and variance, here we design a new
method to evaluate the experimental results. Let CV(k)
denote the accuracyof k-fold CV classification, where
2≤ k ≤m and m is the total number of samples in train-
ing set. Then the mean of the accuracy is defined as:

mean ¼ 1
m� 1

Xm

k¼2
CV kð Þ

� �
ð5Þ

The standard deviation is defined as:

std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k¼2
CV kð Þ �meanð Þ2= m� 2ð Þ

q
ð6Þ

This method is called Full-fold CV method. The mean
of the accuracy evaluated by this method is called Full-
fold CV accuracy. Since the computational cost of HBSA
would greatly increase by using Full-fold CV to compute
Acc(T), 10-fold CV is still used to evaluate Acc(T) as the
heuristic information of HBSA. While Full-fold CV
method is only used to evaluate the resultant gene sub-
sets in A* with the highest or nearly highest 10-fold CV
accuracy.
The implementation of HBSA-KNN is similar, but dif-

ferent in some ways, to that of HBSA-SVM. For HBSA-
KNN, we randomly divide training set into 10 parts
when using 10-fold CV method, but different divisions
can slightly affect the experimental results. To eliminate



If the experiments are performed on single tumor dataset, then divide 
the whole dataset into the training set Tr and the test set Te; if the 
experiments are performed on a pair of cross-platform tumor datasets, 
then one dataset is used as the training set Tr and another dataset as the 
test set Te.

Apply KWRST to the training set Tr to rank all genes and select p top-
ranked genes as initially selected gene set G*.

Apply the HBSA algorithm with 10-fold CV method to the training set 
Tr with the selected gene set G* to further select the optimal set A* 
including all optimal gene subsets selected.

Construct ensemble classifier by 
incorporating all individual 
classifiers generated by using the 
selected optimal gene subsets in  
A*.

Use the ensemble classifier  to 
predict the test set Te. The final 
decision is made by simple 
majority voting strategy.

Count the occurrence frequency of 
each gene in A* and sorting all 
genes by their occurrence frequency 
with descending order.

Those top-ranked genes are thought 
of as the key tumor-related genes. 

Figure 3 The flowchart of our analysis method..
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the effects of different divisions, HBSA-KNN is per-
formed five times with different divisions of training set,
thus we could obtain five optimal sets A*. Then the oc-
currence frequency of each gene is counted from the
obtained five optimal sets A*. However, for HBSA-SVM,
the division of training set for 10-fold CV method, pro-
vided by LIBSVM, is definite in each run. It is sufficient
to perform HBSA-SVM only once.
Usually, for HBSA-SVM, final prediction accuracy is

evaluated on independent test set by SVM-RBF classifier
constructed by optimizing parameter pair only on train-
ing set, which is called HBSA-SVM (Unbiased). How-
ever, more than one parameter pairs can make the
constructed classifiers obtain the highest 10-fold CV ac-
curacy on training set, while the classifiers constructed
with these different parameter pairs obtain different pre-
diction accuracy on independent test set. So, in contrast
with HBSA-SVM (Unbiased), a biased HBSA-SVM,
selecting the parameter pair that makes the constructed
classifier obtain the highest prediction accuracy on test
set, is also used to evaluate the performance of the
selected gene subsets, which is called HBSA-SVM
(Biased).
Receiver Operator Characteristics (ROC) analysis is a

visual method for evaluating the performance of binary
classification model [62].Usually, a few performance
measures can be derived from the number of true posi-
tives (TP), true negatives (TN), false positives (FP) and
false negatives (FN) in test set to measure the perform-
ance of classification model, i.e., the true-positive rate or
sensitivity (TPR), the false-positive rate(FPR), positive
predictive value(PPV), and negative predictive value
(NPV). Here ROC curve that is a TPR (on the y_axis)
versus FPR (on the x_axis) plot is used, and the Area
Under ROC Curve (AUC) is used to measure the per-
formance of classification model.

Acc ¼ accurancy
¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ ð7Þ

SP ¼ specificity ¼ TN= FP þ TNð Þ ð8Þ
TPR ¼ sensitivity ¼ TP= TP þ FNð Þ ð9Þ
FPR ¼ 1� specificityð Þ ¼ FP= FP þ TNð Þ ð10Þ
PPV ¼ TP= TP þ FPð Þ ð11Þ
NPV ¼ TN= TN þ FNð Þ ð12Þ

Analysis framework
Flowchart of analysis
After HBSA is applied to gene selection from the differ-
entially expressed genes initially selected by KWRST on
training set, numerous optimal gene subsets are
obtained. However, finding optimal gene subsets in such
tremendous gene space tends to over-fit training set.
Some tumor-unrelated genes are very likely to be
selected mistakenly into optimal gene subsets, which
might introduce serious bias in the gene selection. The
generalization performance of these gene subsets con-
taining tumor-unrelated genes is possibly very poor in
predicting unknown tumor samples. To address this
problem, we design a HBSA-based ensemble classifier
and a HBSA-based gene ranking method to obtain un-
biased prediction accuracy and find as many important
tumor-related genes as possible. The flowchart of our
analysis method is shown in Figure 3.

HBSA-based ensemble classifier
The HBSA-based ensemble classifier consists of the indi-
vidual classifiers constructed from the optimal gene sub-
sets, and the corresponding prediction accuracies
(Biased and Unbiased) are determined by the ensemble
classifiers constructed by SVM (Biased) and SVM (Un-
biased) on test set, respectively. Final decisions are made
by simple majority voting strategy in our experiments.
To illustrate the results, the construction of an ensemble
SVM classifier with w individual SVM classifiers is
shown in Figure 4, where each individual SVM classifier
is constructed by each optimal gene subset T obtained
by HBSA-SVM.
To measure the reliability of the classification for each

test sample by the ensemble classifier constructed with N
individual classifiers, a confidence level is defined. Assume
that a dataset has k subclasses denoted by L= {c1, �, ck}, a
test sample is assigned a voting vector (m1, �, mk), where
each component mi denotes the number of the obtained



Figure 4 The construction of HBSA-SVM-based ensemble
classifier..

Table 1 Designation of training set and test set in our
experiments

Datasets Usages m* n* k Platform

Prostate102 Tr** 102 12,600 2 Affy HU95A V2

Prostate34 Te** 34 12,626 2 Affy U95A

DLBCL77 Tr 77 7,129 2 Affy HU6800

DLBCL21 Te 21 12,581 2 Affy HU95AV2

Leukemia72 Tr 72 7,129 2 Affy HU6800

Leukemia52 Te 52 12,582 2 AffyHGU95a

Colon Tr 42 2000 2 AffyHUM6000

Te 20

ALL Tr 148 12626 6 Affy HGU95AV2

Te 100

SRBCT Tr 63 2308 4 cDNA

Te 20

* m denotes the number of sample in dataset. n denotes the number of
genes, and k denotes the number of subclasses.
**“Tr” denotes this dataset will be used as training set, while “Te” denotes this
dataset will be used as test set.
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votes for the corresponding subclasses ci in L= {c1, �, ck},
where

Pk
i¼1mi ¼ N . Let mmax and msec denote the max-

imum and next maximum number in voting vector
(m1, �, mk), respectively. The confidence level conf of a
test sample can be defined as conf=mmax/msec. If msec=0,
conf is set to N, where 1≤ conf≤N. The bigger the conf is,
the more reliably is the test sample correctly or mistakenly
classified.

HBSA-based gene ranking method
The HBSA-based gene ranking method, which ranks
genes according to the occurrence frequency count of
each gene in the final optimal gene subsets A*, is
designed to find important tumor-related genes. That is,
the significance of a gene is measured by its occurrence
frequency. The top-ranked genes with the highest occur-
rence frequency are considered to be the most important
tumor-related ones and should have superior and robust
generalization performance.

Results
Tumor datasets
Nine publicly available tumor datasets are applied: Small
Round Blue Cell Tumor (SRBCT) [10], Acute Lympho-
blastic Leukemia (ALL) [63], Colon tumor [9],
Leukemia72 [2], Leukemia52 [64], Diffuse Large B-cell
Lymphomas (DLBCL77) [11], DLBCL21 (obtained from
R. Dalla-Favera’s lab at Columbia University) [65], Pros-
tate102 [12], and Prostate34 [66] datasets. Among these
datasets, three pairs of cross-platform datasets are used
to evaluate the generalization performance for our clas-
sification model. The division of training set and test set
is shown in Table 1. More details about the datasets are
available in the Additional file 1: Tables S1-S4.

HBSA-SVM classification performance
The gene selection procedure of HBSA-SVM is performed
only on training set. Considering the computational
performance of our computer, we initially select 300 top-
ranked genes by KWRST. Then training sets and test sets
are normalized by genes using z-score normalization
method that makes dataset with mean zero and standard
deviation one, respectively. Other parameters in HBSA are
set: p=300, w=300, Acc_Max= 100, and Depth=15, re-
spectively. After the experiments are performed on six
training sets, for each dataset 300 optimal gene subsets
are selected according to 10-fold CV method. Part of the
optimal gene subsets selected are shown in Table 2, which
shows that at least one gene subset with 100% training
accuracy is always obtained for each tumor dataset. It is
also found that the prediction accuracy of HBSA-SVM
(Unbiased) is always not greater than that of HBSA-
SVM (Biased). The experiments further indicate that
searching optimal gene subsets costs high computation-
ally. For example, for the ALL dataset, it costs about
11 days by using HBSA-SVM at the worst case on our
computational platform of Core (TM) 2 Duo 2.20 GHz
CPU and 2 G RAM.
Over-fitting occurs in selecting gene subsets on all six

training sets as shown in Additional file 1: Table S2. For
example, for the leukemia dataset, 2-gene subset
{X95735, Y07604} with 100% training accuracy has only
73.08% prediction accuracy on Leukemia52. For SRBCT,
3-gene subset {859359, 769716, 134748} with 100%
training accuracy obtained only 60% prediction accuracy.
Some gene subsets may obtain very high prediction ac-
curacy (e.g., for DLBCL77, 3-gene subset {L06132,
D78134, Z35227} with 100% training accuracy also
obtains 100% prediction accuracy on DLBCL21). It may
be only by chance to find such gene subsets because the
high training accuracy obtained by this gene subset



Table 2 Representative results obtained by the HBSA-SVM(Biased) and HBSA-SVM(Unbiased)

Dataset No. Optimal gene subsets selected
by the HBSA on training set

10-Fold
CV % on
training set

Full-fold
CV % on
training set

Prediction Acc.%
on test set
(Biased)

Prediction Acc.%
on test set
(Unbiased)

Leukemia 1 {M23197, M31523} 100 98.75 ± 0.42 86.54 86.54

2 {M23197, Y07604} 100 99.41 ± 0.69 80.77 73.08

3 {M23197, U46751} 100 99.96 ± 0.33 80.77 73.08

4 {X95735, Y07604} 100 99.96± 0.23 73.08 71.15

5 {M31523, L47738} 100 99.22 ± 0.73 88.46 71.15

6 {M63379, Z15115} 100 99.86± 0.82 94.23 92.31

DLBCL 1 {U28386, U81375, D78134} 100 100± 0 90.48 76.19

2 {U28386, U90313, D78134} 100 100± 0 76.19 71.43

3 {X67951, L06132, D78134} 100 100± 0 80.95 76.19

4 {U81375, L06132, D78134} 100 100± 0 95.24 90.48

5 {L06132, L35249, D78134} 100 99.86 ± 0.58 85.71 85.71

6 {L06132, D78134, Z35227} 100 100± 0 100 85.71

Prostate 1 {37639_at, 41504_s_at, 40074_at, 1708_at} 100 99.96 ± 0.24 91.18 76.47

2 {37639_at, 41504_s_at, 863_g_at, 32225_at} 100 100± 0 91.18 88.24

3 {41288_at, 38087_s_at, 41504_s_at, 32786_at} 100 99.99 ± 0.10 88.24 82.35

4 {37639_at, 41504_s_at, 34853_at, 863_g_at} 100 99.07± 0.21 85.29 82.35

SRBCT 1 {770394, 769716, 563673} 100 99.90 ± 0.39 80 75

2 {859359, 1435862, 769716} 100 99.80 ± 0.73 90 85

3 {377461, 769716, 563673} 100 99.97 ± 0.20 85 75

4 {859359, 377461, 782193} 100 99.72 ± 0.93 85 75

5 {1435862, 143306, 782193} 100 99.72 ± 1.17 80 65

6 {859359, 769716, 134748} 100 97.44± 1.30 60 40

7 {1435862, 207274, 878652} 100 99.97 ± 0.20 90 80

8 {295985, 769716, 221826} 100 98.50± 1.53 95 85

9 {308231, 214572, 784257} 100 99.90 ± 0.63 75 65

10 {1435862,383188,141768} 100 94.88 ± 1.59 70 65

ALL 1 {AF068180,L13939,AF041434,M64925,X17025,J03473} 100 99.94 ± 0.27 96 95

2 {M11722,AF013249,Z50022,X17025,J03473,U03106} 100 99.98 ± 0.12 95 94

3 {M11722,AF013249,X17025,J03473,U03106,AB018310} 100 99.99 ± 0.08 94 92

4 {M11722,X17025,J03473,AB007902,U46922,AI525834} 100 99.83± 0.43 91 86

5 {M11722,X17025,J03473,U46922,AI525834,U51240} 100 99.99± 0.08 96 92

Colon 1 {M26383, H40095} 100 100± 0 70 65

2 {M26383, R84411} 100 99.94 ± 0.37 80 65

3 {D21261, H20709} 100 97.97± 0.85 85 85

4 {J05032, M76378} 100 99.65 ± 1.14 70 65

5 {J05032, M63391} 100 99.71 ± 0.95 75 70
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cannot represent good generalization performance of the
obtained classifier due to the biased gene selection pro-
cedure on whole training set. In fact, some gene subsets
with nearly 100% training accuracy obtaining very high
prediction accuracy on test set indicate that these gene
subsets probably contain important tumor-related genes.
For example, for the leukemia dataset, two genes
{X95735, M63838} with only 97.22% training accuracy
can obtain 96.15% prediction accuracy on Leukemia52,
in which X95735 is an important tumor-related gene.
Moreover, some redundant or noise genes may poten-
tially degrade the classification performance by masking
the contribution of the relevant genes. For example, for
SRBCT, 2-gene subset {859359, 769716} can obtain 70%



Table 3 Prediction accuracies of the ensemble SVM
(Biased) and SVM(Unbiased) classifiers

Dataset Ensemble modes #Individual Acc.% Acc.%

classifiers (Biased) (Unbiased)

Leukemia Top 300 gene subsets 147 92.31 84.62

10-Fold >98* 47 96.15 88.46

10-Fold = 100 and
Full-fold > =99

5 88.46 86.54

DLBCL Top 300 gene subsets 61 95.24 85.71

10-Fold = 100 143** 95.24 85.71

10-Fold = 100 and
Full-fold = 100

29** 95.24 85.71

Prostate Top 300 gene subsets 300 97.06 88.24

Full-fold > 98 290 97.06 88.24

Full-fold > 99 139 97.06 88.24

SRBCT Top 300 gene subsets 300 90 80

Full-fold > 98 114 95 85

Full-fold > 98 and
10-Fold = 100

8 100 90

ALL Top 300 gene subsets 300 96 96

10-Fold = 100 59 97 96

10-Fold = 100 and
Full-fold > =99

42 95 95

Colon Top 300 gene subsets 300 90 70

10-Fold = 100 62 85 65

10-Fold = 100 and
Full-fold > =98

59 85 65

* The corresponding prediction accuracies (Biased and Unbiased) are obtained on
the Leukemia52 test set, respectively. The item 10-Fold > 98 means that the gene
subsets with 10-fold CV accuracy greater than 98% are selected from the 300
top-ranked gene subsets in which only 47 gene subsets are shared between the
Leukemia72 training set and Leukemia52 test set. Thus the final ensemble
classifier consists of the 47 individual classifiers respectively constructed from
these 47 gene subsets; the corresponding prediction accuracies (Biased and
Unbiased) are obtained by the ensemble classifiers constructed by SVM(Biased)
and SVM(Unbiased) on the Leukemia52 test set, respectively.
** The individual classifiers are constructed from the gene subsets that are
selected from all nodes in last layer, not limited to the 300 top-ranked nodes in
last layer because more than 300 gene subsets can obtain 100% 10-fold CV
accuracy on DLBCL.
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prediction accuracy on the corresponding test set, but 3-
gene subset {859359, 769716, 134748} only obtains 60%
prediction accuracy. Similarly, HBSA-KNN can also lead
to over-fitting phenomena.
The genes in the same gene subset usually come from

different pathways. For instance, for the ALL dataset, the
six genes in gene subset {BLNK(AF068180), AP1B1
(L13939), PTP4A3(AF041434), MPP1(M64925), IDI1
(X17025), PARP1(J03473)}with 100% training accuracy
take part in different pathways. BLNK takes part in base
excision repair and B cell receptor signaling pathways.
PARP1 takes part in the primary immunodeficiency
pathway. For the gene subset {DNTT(M11722), LAIR1
(AF013249), PTTG1IP(Z50022), IDI1(X17025), PARP1
(J03473), CDKN1A(U03106)}, although these genes are
enriched in 12 important pathways, there are no two
genes taking part in the same pathway. For the SRBCT
dataset, the 3-gene subset {CD99 (1435862), RCVRN
(383188),ERBB2(141768)}are involved in 11 major path-
ways, but all these three genes come from different path-
ways. The genes in subset {CDK6(295985), NF2(769716),
GNA11(221826)} participate in 13 important pathways
such as non-small cell lung cancer, p53 signaling path-
way, etc., but there are no two genes in the gene subset
on the same pathway. In addition, we find that the ma-
jority of the genes selected are involved in important
tumor-related biological pathways. For example, the
gene CDK6 is involved in non-small cell lung cancer,
p53 signaling pathway, Melanoma, etc., in total 9 path-
ways. Thus, the results are generally consistent with our
interpretation of HBSA.

Ensemble classifier
HBSA-SVM-based ensemble classification
To solve the above over-fitting problem, HBSA-SVM-
based ensemble schemes are constructed by using a sim-
ple majority voting strategy to integrate the individual
classifiers. The number of the gene subsets used to con-
struct an ensemble classifier is determined by experi-
ments. The results of three different ensemble classifiers
based on different modes are shown in Table 3. For ex-
ample, for the leukemia dataset, the item Top 300 gene
subsets, 300 top-ranked gene subsets with the highest
training accuracy are selected, but only 147 gene subsets
among the 300 gene subsets share with the Leukemia52
test set. Thus the final ensemble classifier consists of the
147 individual classifiers respectively constructed from
these 147 common gene subsets. The corresponding pre-
diction accuracies (Biased and Unbiased) are obtained on
the Leukemia52 test set, respectively.
To analyze the reliability of classification, the confi-

dence level for each sample is calculated. Taking the
colon tumor dataset as an example, the confidence levels
of 20 test samples are shown in Table 4 by HBSA-SVM
(Unbiased), in which the 7th, 9th and 13thsamples are
mistakenly classified with very high confidence levels,
3.3478, 3.1096 and 99, respectively. Compared with the
results in Additional file 1: Table S30 obtained by
HBSA-SVM(Biased), most of the samples mistakenly
classified in Table 4 are the ones mistakenly or correctly
classified with low confidence levels in Additional file 1:
Table S30.

HBSA-KNN-based ensemble classification
HBSA-KNN-based ensemble classifier is also con-
structed by using majority voting strategy to combine
300 individual classifiers constructed by 300 optimal
gene subsets selected by HBSA-KNN. Unlike HBSA-
SVM, for each dataset random division of 10-fold CV on



Table 4 Confidence levels of 20 test samples by
HBSA-SVM(Unbiased)-based ensemble classifier on colon
tumor dataset

20 samples #Tumor
subclass
votes

#Normal
subclass
votes

Confidence
level

Correct? **

(No.) *

1 (43) 116 184 1.5862 C

2 (44) 298 2 149 C

3 (45) 111 189 1.7027 E

4 (46) 285 15 19 C

5 (47) 286 14 20.4286 C

6 (48) 119 181 1.5210 C

7 (49) 69 231 3.3478 E

8 (50) 165 135 1.2222 E

9 (51) 227 73 3.1096 E

10 (52) 297 3 99 C

11 (53) 276 24 11.5 C

12 (54) 19 281 14.7895 C

13 (55) 297 3 99 E

14 (56) 88 212 2.4091 E

15 (57) 193 107 1.8037 C

16 (58) 230 70 3.2857 C

17 (59) 260 40 6.5 C

18 (60) 98 202 2.0612 C

19 (61) 300 0 300 C

20 (62) 118 182 1.5424 C

* The number in parentheses denotes the serial number of sample in original
colon tumor dataset.
** “C” means the sample classified correctly and “E” means the sample classified
mistakenly.

Table 5 Prediction accuracies of five runs of HBSA-KNN-
based ensemble classifier on six test sets

Run First Second Third Fourth Fifth Average

Dataset Acc.% Acc.% Acc.% Acc.% Acc.% Acc.%

Leukemia 86.54 84.62 88.46 84.62 84.62 85.57 ± 1.66

DLBCL 90.48 90.48 90.48 85.71 90.48 89.53 ± 2.13

Prostate 85.29 82.35 85.29 85.29 85.29 84.70 ± 1.31

SRBCT 95 95 95 90 95 94 ± 2.24

ALL 95 97 96 95 95 95.60 ± 0.89

Colon 75 75 75 75 75 75 ± 0

Column First denotes the prediction accuracy of the constructed ensemble
classifier obtained on the first run of the HBSA-KNN, and the others are deduced
by analogy. The average accuracy is the average prediction accuracy obtained by
five runs of the HBSA-KNN.
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training set are run for five times, and the average of the
five accuracies is used as the final prediction accuracy.
For the cross-platform datasets, only the gene subsets
shared between the training set and the corresponding
test set within the selected 300 gene subsets are used to
construct an ensemble classifier. The prediction accur-
acies of the constructed ensemble KNN classifier are
listed in Table 5. Compared with prediction accuracies
obtained by the ensemble HBSA-SVM(Unbiased) classi-
fier, shown in Table 3, the prediction accuracy of the en-
semble KNN classifier is no less than that of the
ensemble SVM(Unbiased) classifier except the prostate
dataset.

HBSA-based gene ranking
To prioritize genes so as to find important tumor-
related genes, we simply count the occurrence frequency
of each gene in all of the optimal gene subsets to meas-
ure the gene significance. The 50 top-ranked genes
selected by HBSA-SVM and HBSA-KNN for each data-
set are shown in Additional file 1: Tables S5-S10 and
S17-S22, respectively. It is shown that only few genes
have relatively higher frequency, and that the respective
top 10 genes selected by HBSA-SVM and HBSA-KNN
are mostly shared on the same dataset. The result sug-
gests that our HBSA-based gene ranking method is
robust and valid.
We also find that the most frequently selected genes

are not always the most differentially expressed ones.
For DLBCL, MCM7 that is ranked the first by KWRST
is ranked the third in the corresponding list of gene fre-
quency by HBSA-SVM. However, RHOH that is ranked
the first in the frequency list by HBSA-SVM is ranked
the 258-th by KWRST. However, for SRBCT, most of
the top 10 genes selected by HBSA-SVM are included in
the top 10 genes selected by KWRST, suggesting that
the most differentially expressed genes in this dataset
are the most important tumor-related genes. Therefore
the most important tumor-related genes are not neces-
sarily the most differentially expressed ones.
Figure 5 shows the relationship between the occur-

rence frequency of genes and their rank orders. An im-
portant aspect of the occurrence frequency of gene in
Figure 5 is the linearity of the log-log plots, so it can be
inferred that the occurrence frequency of the selected
genes follows power-law distribution with respect to the
number of genes whose frequencies are greater than the
corresponding frequency. This discovered trend is con-
sistent with a previous study [67]. The gene frequency of
HBSA-KNN is the accumulated frequency of gene from
five runs of HBSA-KNN for each dataset, which indi-
cates the characteristic of rich-get-richer.
Figure 6 shows that the classification accuracy varies

with the number of top-ranked genes sorted by the gene
frequencies for HBSA-SVM(Biased), HBSA-SVM(Un-
biased) and HBSA-KNN, respectively. Table 6 lists the
prediction accuracies of some representative number of
top-ranked genes selected by HBSA-SVM(Biased),
HBSA-SVM(Unbiased) and HBSA-KNN on independent
test sets. It is found that a few top-ranked genes are
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Figure 5 Power-law distribution of the occurrence frequency of genes selected on six tumor datasets. The abscissa denotes the
frequency rank order of the selected genes. The vertical axis denotes the occurrence frequency of genes selected. The figure is drawn by using
log-log coordinates.
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enough for achieving the highest or nearly highest classifi-
cation accuracy. Moreover, the prediction accuracy of
HBSA-KNN is comparable to HBSA-SVM(Unbiased). For
example, for HBSA-KNN on SRBCT, five genes can ob-
tain 100% prediction accuracy, while 28 genes are needed
to obtain the same accuracy by HBSA-SVM(Unbiased).
High accuracy obtained with few genes could be more ob-
jective and reliable than that with much more genes since
the latter easily leads to classification bias [68]. Interest-
ingly, for HBSA-SVM and HBSA-KNN, when the number



0 50 100 150 200 250
30

40

50

60

70

80

90

100

The number of the top-ranked genes (SRBCT)

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

HBSA-SVM(Biased)

HBSA-SVM(Unbiased)

HBSA-KNN

0 50 100 150 200 250
60

65

70

75

80

85

90

95

100

The number of the top-ranked genes (ALL)

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

HBSA-SVM(Biased)

HBSA-SVM(Unbiased)

HBSA-KNN

0 50 100 150 200 250
50

55

60

65

70

75

80

The number of the top-ranked genes (Colon)

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

HBSA-SVM(Biased)

HBSA-SVM(Unbiased)

HBSA-KNN

0 50 100 150 200
75

80

85

90

95

100

The number of the top-ranked genes (Leukemia)

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

HBSA-SVM(Biased)

HBSA-SVM(Unbiased)

HBSA-KNN

0 50 100 150 200
65

70

75

80

85

90

95

100

The number of the top-ranked genes (DLBCL)

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

HBSA-SVM(Biased)

HBSA-SVM(Unbiased)

HBSA-KNN

0 50 100 150 200 250
55

60

65

70

75

80

85

90

95

100

The number of the top-ranked genes (Prostate)

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

HBSA-SVM(Biased)

HBSA-SVM(Unbiased)

HBSA-KNN

Figure 6 Classification accuracy versus the number of top-ranked genes on the six test sets..
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of the top-ranked genes approximates the number of sub-
classes in dataset, the prediction accuracy of the classifi-
cation model constructed by these gene subsets can
Table 6 Comparison of the classification accuracies for
HBSA-SVM(Biased), HBSA-SVM(Unbiased) and HBSA-KNN
methods with the top-ranked genes

Dataset HBSA-SVM
(Biased)

HBSA-SVM
(Unbiased)

HBSA-KNN

#TG* Acc.% #TG* Acc.% #TG* Acc.%

Leukemia 2 88.46 3 82.69 2 84.62

3 92.31 5 86.54 5 90.38

71 96.15 (H) 15 92.31 (H) 24 96.15 (H)

DLBCL 2 95.24 2 80.95 2 80.95

3 100 (H) 9 95.24 (H) 3 90.48 (H)

Prostate 1 94.12 1 91.18 (H) 2 88.24 (H)

2 97.06 (H) 4 88.24 5 85.29

SRBCT 4 75 4 70 3 75

5 95 5 90 4 95

24 100 (H) 28 100 (H) 5 100 (H)

ALL 6 97 6 96 5 94

7 96 10 97 9 96

112 100 (H) 111 99 (H) 85 100 (H)

Colon 2 75 2 65 3 70 (H)

3 80 (H) 7 70 4 80 (H)

4 80 15 80(H) 7 80

*‘#TG’ denotes the number of top-ranked genes. Note that the accuracy labeled
by ‘H’ denotes the highest accuracy and the number of the corresponding top-
ranked genes denotes the minimal number with the highest accuracy.
achieve similar performance or even outperform that of
the corresponding ensemble classifier.

Comparison of HBSA-KNN and HBSA-SVM
The ensemble HBSA-KNN classifier slightly outperforms
ensemble HBSA-SVM(Unbiased) classifier in prediction
accuracy. Further comparison of the prediction accur-
acies of HBSA-SVM(Biased), HBSA-SVM(Unbiased) and
HBSA-KNN varying with different number of top-
ranked genes is shown in Figure 6. The comparison indi-
cates that HBSA-KNN is slightly superior to HBSA-SVM
(Unbiased) in prediction accuracy when the number of
top-ranked genes selected is small enough. To further re-
veal how the biased SVM affect classification results, the
gene list obtained by HBSA-KNN is further evaluated by
SVM-RBF classifier constructed by biased and unbiased
methods again, respectively (Additional file 1: Figure S2).
The two methods are named HBSA-KNN-SVM(Biased)
and HBSA-KNN-SVM(Unbiased), respectively. Additional
file 1: Figure S2 shows that HBSA-KNN-SVM(Unbiased)
can always obtain the prediction accuracy no greater than
that of HBSA-KNN-SVM(Biased) and that HBSA-KNN is
also slightly superior to HBSA-KNN-SVM(Biased) in pre-
diction accuracy when the number of top-ranked genes is
small. To further evaluate the effectiveness of HBSA-
KNN in gene selection, the eight top-ranked genes are
selected to construct HBSA-SVM(Unbiased) and HBSA-
KNN-SVM(Unbiased) classifiers on four binary datasets,
respectively, which are evaluated by ROC (Figure 7). It is
clear that HBSA-KNN-SVM(Unbiased) is slightly superior
to HBSA-SVM(Unbiased) in AUC, indicating that the
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classification ability of the gene subsets selected by
HBSA-KNN is slightly stronger than that obtained by
HBSA-SVM.

Comparisons with other related methods
Compared with the exhaustive search method, proposed
by Wang L.P. et al. [46], our methods are less computa-
tionally demanding. Moreover, the ensemble strategy
adopted is also superior to their average strategy which
averages the prediction accuracy of all gene subsets
selected from training set. Coincidently, the 3-gene sub-
sets {IGF2, AF1q(MLLT11), CD99},selected by exhaust-
ive search method [46], with 95% prediction accuracy is
identical to the first three genes selected by our HBSA-
KNN (see Additional file 1: Table S17), which indicates
that our HBSA is feasible and can achieve the same good
results as the exhaustive search method. The Prediction
Analysis of Microarrays (PAM) proposed by Tibshirani
et al. [22] can identify a small subset of genes that best
characterize each subclass by shrinking weak compo-
nents of class-centroids with a shrinkage parameter for
tumor subclass prediction. Its experimental results on
SRBCT and leukemia datasets demonstrated that their
method is very efficient in finding informative genes
with high classification accuracy. Of the 43 genes
selected by PAM on SRBCT dataset, 21 genes are also
found by our method on the same dataset (where only
the 50 top-ranked genes are considered as shown in
Additional file 1: Table S5). On the other hand, although
one of their goals was to find the smallest gene subsets,
the size of their selected gene subsets with satisfactory
accuracy was still too large from the viewpoint of classi-
fication and clinical diagnosis.
In addition, Dabney et al. [69,70] proposed a Classifi-

cation to Nearest Centroids (ClaNC) method for class-
specific gene selection. To find the theoretically optimal
gene subset, they further provided a theoretical result
showing how to determine the gene subsets of a given
size that maximizes the classification accuracy for high-
dimensional nearest centroid classifiers. Their results
suggest that ClaNC outperforms PAM in prediction ac-
curacy. However, before gene selection, ClaNC requires
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a given number of genes, which is difficult to determine
how many genes are appropriate.
Our method is similar to PAM and ClaNC methods in

three aspects. 1) Find minimum gene subsets with max-
imum accuracy. 2) Consider the discriminative power of
multiple genes when searching for gene subsets. 3) Seek
the simplest method with biomedical interpretability.
To achieve more objective comparison, the classifica-

tion performance of PAM, ClaNC and our method are
obtained on the two cross-platform datasets (leukemia
and DLBCL) that are realigned by those shared genes
between the training set and the corresponding test set,
respectively. For the leukemia dataset, 4606 genes are
shared between Leukemia72 and Leukemia52. For
DLBCL, 4072 genes are shared between DLBCL77 and
DLBCL21.
Since HBSA-KNN is slightly superior to HBSA-SVM

(Unbiased) in gene selection, we just compare HBSA-
KNN with PAM and ClaNC methods in prediction ac-
curacy. The conclusion from the comparisons of the
classification accuracy, shown in Table 7, is that al-
though ClaNC outperforms PAM in accuracy, the accur-
acy obtained by ClaNC is lower than ours on all six
independent test sets when the number of the top-
ranked genes selected is small enough, i.e., when the size
of the selected gene subset approximately satisfies (4) as
shown in Table 7. For example, for ALL (six subclasses),
when the number of the top-ranked genes selected by
HBSA-KNN is five, 94% prediction accuracy can be
obtained, while ClaNC obtains only 86% accuracy with
six genes (one gene selected per subclass). For SRBCT
(four subclasses), our method obtain 100% prediction ac-
curacy with only five genes, while eight genes (two genes
selected per subclass) are needed to obtain 95%predic-
tion accuracy by ClaNC. For the prostate dataset (two
subclasses), our method obtains 88.24% accuracy with
two genes, while only 74% accuracy is obtained by ClaNC
with the same number of genes. Obviously, our method
can achieve higher accuracy with the same or fewer top-
ranked genes. From Table 7 we can see that the PAM
method does not performs well in the classification of
some cross-platform datasets because the same accuracy
is obtained when different number of genes for the
DLBCL and Prostate cross-platform datasets are used,
which are possibly caused by the fact that the cross-
platform training set and test set are not on the same
measurement scale.
Note that the prediction accuracy may be affected by

different data normalization methods. The results in
Table 7 are obtained with the z-score normalization
method on the tumor datasets. If we use another 0–1
normalization method that scales all data into the range
of [0, 1] with the formula (x−min(x))/(max (x)−min(x)),
where x is a vector that denotes a set of expression values
of a gene in different samples, the results may vary with
the same gene subset as shown in Table 7 and Additional
file 1: Table S29. For example, for the leukemia dataset,
the first three genes obtain 94.23% prediction accuracy
on the Leukemia52 test set with the former z-score
method, but the same three genes can obtain 98.08% pre-
diction accuracy with the latter 0–1 normalization. The
prediction accuracies of PAM and ClaNC methods are
obviously improved on the cross-platform prostate data-
set normalized with 0–1 normalization method, but the
prediction accuracy becomes worse on the leukemia
dataset similarly normalized. The results with 0–1
normalization also indicate that our method is still super-
ior to PAM and ClaNC in prediction accuracy when the
number of top-ranked genes is small enough.
We further compare HBSA-KNN-based gene ranking

method with the other two well-known gene ranking
methods: Kruskal-Wallis rank sum test (KWRST) and
Relief-F [71]. The results in Figure 8 show that our
method consistently outperforms KWRST and Relief-F
in prediction accuracy when the number of top-ranked
genes is small enough. Although for the prostate dataset
only top two genes obtain high prediction accuracy
(88.24%) that is obviously greater than that of KWRST
and Relief-F with the same number of genes, our
method is still effective because this case still conforms
to our goal that the most important tumor-related gene
is ranked first. However, our method aims at finding as
many more important tumor-related genes as possible,
even though the important genes might include redun-
dant ones from the viewpoint of classification. Thus the
prediction accuracy might be worse as the number of
top-ranked genes increases. For example, the prediction
accuracy curves of leukemia and prostate in Figure 8 ap-
pear the situation.
Moreover, better results can be achieved with more

pre-selected genes by KWRST and with an acceptable
search breadth increased in HBSA. For example, on the
cross platform leukemia dataset, with the top 400 genes
pre-selected by KWRST and the search breadth w of
450, the top eight genes selected by HBSA-KNN are
{L09209, M23197, M11722, X95735, HG1612-HT1612,
X62654, U77948, M31523} in which three genes L09209,
HG1612-HT1612 and X62654 are not in the Leukemia
52 test set. Among these shared genes, the set of the top
three genes {M23197, M11722, X95735} obtains 94.23%
prediction accuracy on the independent test set, and the
top five genes {M23197, M11722, X95735, U77948,
M31523} and the top 84 genes can result in 96.15% and
98.08% prediction accuracies, respectively. More import-
antly, these important genes selected with this search
breadth are shared with those genes shown in Additional
file 1: Table S21. For the ALL dataset, the top eight
genes selected by HBSA-KNN are {36985_at, 38242_at,



Table 7 The comparison of prediction accuracies by HBSA-KNN, PAM and ClaNC on independent test set

Methods Dataset Number of the top-ranked genes

2 3 4 5 6 7 8 20 40 60

HBSA-KNN Leukemia (Acc) 84.62 94.23 92.31 94.23 82.69 82.69 82.69 88.46 90.38 92.31

sensitivity 100 100 100 100 100 100 100 100 100 100

specificity 71.43 89.29 85.71 89.29 67.86 67.86 67.86 78.57 82.14 85.71

PPV 75 88.89 85.71 88.89 72.73 72.73 72.73 80 82.76 85.71

NPV 100 100 100 100 100 100 100 100 100 100

DLBCL (Acc) 95.24 100 80.95 85.71 80.95 85.71 85.71 85.71 85.71 90.48

sensitivity 100 100 85.71 85.71 78.57 85.71 85.71 85.71 85.71 92.86

specificity 85.71 100 71.43 85.71 85.71 85.71 85.71 85.71 85.71 85.71

PPV 93.33 100 85.71 92.31 91.67 92.31 92.31 92.31 92.31 92.86

NPV 93.33 100 85.71 92.31 91.67 92.31 92.31 92.31 92.31 92.86

Prostate (Acc) 88.24 76.47 82.35 85.29 82.35 79.41 76.47 76.47 82.35 85.29

Sensitivity 100 100 100 100 100 88.89 88.89 88.89 88.89 100

Specificity 84 68 76 80 76 76 72 72 80 80

PPV 69.23 52.94 60 64.29 60 57.14 53.33 53.33 61.54 64.29

NPV 100 100 100 100 100 95 94.74 94.74 95.24 100

SRBCT 75 95 95 100 95 95 95 95 95 100

ALL 75 82 87 94 92 93 93 96 97 99

Colon (Acc) 65 70 80 75 80 80 75 75 75 75

sensitivity 75 83.33 91.67 91.67 91.67 83.33 83.33 83.33 75 75

specificity 50 50 62.50 50 62.50 75 62.50 62.50 75 75

PPV 69.23 71.43 78.57 73.33 78.57 83.33 76.92 76.92 81.82 81.82

NPV 57.14 66.67 83.33 80 83.33 75 71.43 71.43 66.67 66.67

PAM Dataset Number of the selected genes

2 4 6 8 10 12 16 20 40 60

Leukemia 82.69 90.38 90.38 90.38 92.31 94.23 96.15 96.15 98.08 98.08

DLBCL 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67

Prostate 73.53 73.53 73.53 73.53 73.53 73.53 73.53 73.53 73.53 73.53

SRBCT 45 45 75 75 85 95 95 95 95 95

ALL 43 61 61 68 68 83 85 85 86 86

Colon 65 75 70 70 70 75 75 75 75 75

ClaNC Dataset Number of the selected genes

1× k* 2 × k 3× k 4× k 5 × k 6× k 7× k 8× k 9× k 10× k

Leukemia 86.54 90.39 90.39 92.31 90.39 94.23 94.23 94.23 94.23 96.15

DLBCL 80.95 95.24 95.24 95.24 95.24 80.95 76.19 71.43 71.43 71.43

Prostate 73.53 85.29 79.41 76.47 76.47 79.41 79.41 76.47 76.47 79.41

SRBCT 85 95 95 95 95 95 95 95 95 95

ALL 86 95 97 99 98 98 99 99 99 98

Colon 65 65 65 70 70 75 75 75 75 75

* k denotes the number of subclasses in each dataset, which ranges from two to six. For example, for ALL dataset, the size of the gene subset selected ranges
from six (1 × 6) to sixty (10 × 6).
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32207_at, 1287_at, 37470_at, 35974_at, 34168_at,
38518_at} in which only the rank orders of a few genes
are changed compared with the same genes in Add-
itional file 1: Table S18. The top seven, 20 and 25 genes
can obtain 96%, 98% and 99% prediction accuracies, re-
spectively, which are obviously improved compared with
the corresponding results (shown in Tables 6 and 7)
with less preselected genes and narrower search
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Figure 8 The comparisons of three gene ranking methods..
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breadth. In conclusion, if the number of the initially
selected genes and the search breadth are more appro-
priate, the prediction accuracy by HBSA will be further
improved, which further proves that our method is in-
deed robust.
Biological validation of the top-ranked genes
The association of top-ranked genes with tumor is ana-
lyzed in the context of individual gene function, pathway
analysis, and protein-protein interaction (PPI) network
to validate the effectiveness of the results. We first
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validate the top-ranked genes as tumor-related genes by
known cancer gene list. Some unvalidated genes are vali-
dated by Cancer Linker Degree (CLD) analysis and rele-
vant biomedical literature. Moreover, the selected genes
are further validated by the fact that some pathways in-
volving in the selected genes are closely related to tumor
development. The following analysis is mainly based on
the results obtained by HBSA-KNN.

Individual gene based literature validation
The top 50 genes selected by HSBA-SVM and HSBA-
KNN are listed in Additional file 1: Tables S5-S10 and
S17-S22, respectively. The known cancer genes were
downloaded from the website (http://cbio.mskcc.org/
cancergenes). 1086 known cancer genes are collected by
querying the website for “oncogene”, “tumor suppressor”
and “stability” [72]. The top 50 genes selected are ana-
lyzed through relevant biomedical literature. Here two
case studies of the top-ranked genes on leukemia and
prostate are presented as following. More analyses are
available in the Additional file 1: Section 11.
Among the top 50 genes selected by HSBA-KNN on

leukemia dataset, 10 genes (20%) are known cancer
genes as listed in Additional file 1: Table S21. For other
genes, by means of biomedical literature search and
CLD calculation validation only on those among top 10
ones, we have successfully validated all the ten genes.
The evidence of their involvement in cancer and the
number or PubMed IDs of references documenting each
gene-cancer association are shown in Table 8. CD33
(M23197) is expressed on the malignant blast cells in
most cases of acute myeloid leukemia (AML) but not on
normal hematopoietic pluripotent stem cells [73]. In
vivo ablation of CD33+ cells achieves good results when
treating patients with acute myeloid leukemia [74].
MARCKSL1, also named multidrug resistant associated
Table 8 Top 10 genes selected by HBSA-KNN from the
leukemia dataset

Top ten genes CLD Validation of tumor-related genes

APLP2 4 stability

CD33 3 [73,74]

ZYX – Tumor suppressor

MARCKSL1 [75]

SP3 9 [76]

CD63 2 [77]; tumor suppressor

TCF3 – [78]

PSME1 1 –

CCND3 – Tumor suppressor

CST3 – PMID: 17728092

The genes are sorted according to their frequency. If a gene is validated in the
literature, the corresponding reference is shown (‘PMID’ denotes the PubMed ID).
protein (MRP), are found to be increasedly expressed in
some vincristine-resistant cell lines [75]. SP3, a nuclear
protein identified in numerous different biochemical
assays at translocation break points, is associated with a
subtype of acute myeloid leukemia [76]. CD63 (X62654)
belongs to a newly defined family of genes for mem-
brane proteins including CD33 which was recognized by
monoclonal antibodies inhibitory to human T cell
leukemia virus type 1-induced syncytium formation [77].
TCF3 (M31523) is involved in 19p13 chromosome re-
arrangement and acts as a tumor suppressor gene in B-
cell precursor acute lymphoblastic leukemia [78]. CST3,
also named cystatin C, was elevated in cancer patients
than in controls.
For the prostate dataset, among the top 50 genes

ranked by HSBA-KNN, 12 genes (24%) are known can-
cer genes (Additional file 1: Table S22). For other
selected genes, we perform manual literature validation
only on those among top 10 ones. We successfully valid-
ate nine of these ten genes (Table 9).
A major 11-locus haplotype of SNPs in the HEPSIN

gene (HPN), is significantly associated with prostate can-
cer, which supports that HPN (X07732) is a potentially
important candidate gene involved in prostate cancer
susceptibility [79]. SLC25A6, also named ANT3, is se-
lectively required for TNF-α and oxidative stress-
induced cell death in MCF-7 cells [80]. KIBRA is
involved in estrogen receptor transactivation in breast
cancer cells. Altered RBP1 expression and hypermethyla-
tion are common in prostate carcinoma. Both prostate
adenocarcinoma and intraepithelial neoplasia show fre-
quent RBP1 overexpression. CHD9 and NELL2 have
CLD of four and two respectively as shown in the fol-
lowing network based analysis. The gene A2R6W1 was
identified from Aspergillus niger and is hypothesized as
a nucleus protein binding zinc ion and DNA for
Table 9 Top 10 genes selected by HBSA-KNN on the
prostate dataset

Top ten genes CLD Validation of tumor-related genes

MAF 7 Tumor oncogene

HPN 1 [79]

ABL1 46 Tumor suppressor

SLC25A6 – [80]

CHD9 4 PMID: 20308527

SERPINB5 – Tumor suppressor

A2R6W1 – PMID:17259976;Tumor suppressor

WWC1 2 PMID: 16684779

NELL2 2 –

RBP1 4 PMID: 15280411

The column is the same as described in Table 8.

http://cbio.mskcc.org/cancergenes
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transcription regulation. Its relation with cancer deserves
investigation.

Network-based analysis for top 10 genes
Aragues et al. [81] demonstrated that CLD of a protein,
defined as the number of cancer genes to which it is
connected, was a good indicator of the probability of
being a cancer gene. We apply a protein-network-based
method to analyze the neighborhood partners of the
selected genes using all interactions in the Human Pro-
tein Reference Database (HPRD) [82]. The results are
shown in Additional file 1: Figures S4-S8. For the
leukemia dataset, among the 10 top-ranked genes, two
genes (ZYX and CCND3) are cancer ones, five (APLP2,
CD33, SP3, CD63, PSME1) and one other genes (CST3)
are directly or indirectly associated with cancer genes,
respectively. The CLDs of APLP2, CD33, SP3, CD63,
PSME1, which are ranked first, second, fifth, seventh
and ninth, respectively, are 4, 3, 9, 2 and 1, respectively.
TTC3 and MARCKSL1 show no cancer gene linking, of
which MARCKSL1 are increasedly expressed in some
vincristine-resistant cell lines [75].
For the prostate dataset, our results show that three

genes, namely MAF, ABL1 and SERPINB5, are cancer
ones and most other top-ranked genes have a direct
interaction with known cancer genes. The CLD of
MAF, HPN, ABL1, CHD9, WWC1, NELL2 and RBP1
is 7, 1, 46, 4, 2, 2 and 4, respectively. We therefore
infer that even if the remaining few genes not reported
as cancer genes by previous studies are very possibly
play a critical role in tumor genesis and cancer cell
process as suggested by the fact that they interconnect
directly with known cancer genes and ‘guilt of associ-
ation’ rule.

Validation based on pathway analysis
The top-ranked genes are analyzed in the context of bio-
logical pathways on the website http://vortex.cs.wayne.
edu/projects.htm. The pathways that the genes selected
are most likely involved in are listed in Additional file 1:
Tables S11–S16 and Tables S23–S28, where p-values are
calculated by (14) and only ten pathways with the lowest
p-values are selected. This approach is based on the as-
sumption that the numbers of genes participating in dif-
ferent pathways conform to hypergeometric distribution.
Given N genes in which M genes participate in a path-
way F, we randomly select K genes which are considered
to be significant. Then the p-value of having x or fewer
genes in F can be calculated by summing the probabil-
ities of a random list of K genes having 1, 2, �, x genes of
category F:

p ¼
Xx

i¼0

M
i

� �
N �M
K � x

� �	
N
K

� �� �
ð13Þ
When N is very large, the hypergeometric distribution
tends to be binominal. In this case, the p-value could
also be calculated as:

p ¼ 1�
Xx�1

i¼0

K
i

� �
M
N

� �i

1�M
N

� �K�i

ð14Þ

The top-ranked pathways in which the top 50 genes
are involved include cell proliferation (such as cell cycle,
DNA replication [83]), genomic stability (base excision
repair, mismatch repair, etc), angiogenesis (like vascular
endothelial growth factor(VEGF) signaling pathway),can-
cer metastasis (such as the pathway of cell adhesion
molecules [84]),tumor suppressor pathway (such as p53
signaling pathway [85]), immunity escape (like pathways
of antigen processing and presentation, B cell receptor
signaling pathway, primary immunodeficiency, etc.) or
progression of one specific or more than one kinds of
cancers, etc.
Owing to a large number of top pathways involved, by

means of biomedical literature we validate the tumor
relevance of only four pathways supported by both
HBSA-SVM and HBSA-KNN. For leukemia, B-cell anti-
gen receptor (BCR) signal pathway is important for the
survival of chronic lymphocytic leukemia cells which is
regulated by overexpressed active protein kinase Cβ
[86]. Heterogeneity in leukemia stem cell self-renewal
potential supports the hypothesis that they derive from
normal Hematopoietic stem cells [87]. Many transcrip-
tion factors are either tumor suppressors or oncogenes,
thus, mutations or aberrant regulation of them is
associated with cancer [88]. DNA excision repair pro-
files of normal and leukemic human lymphocytes are
different [89].
For the prostate dataset, Osman et al. [90] hypothe-

sized that a pathway of prostate cancer progression
involves p53 inactivation by mdm2 overexpression and
that p21 transactivation via an alternative signaling sys-
tem, rather than through a p53-dependent mechanism.
Insulin signalling pathway is involved in the pathogen-
esis of various malignancies, increase cancer risk
through its effect on cell proliferation, differentiation
and apoptosis, and was reported to be involved in the
tumorigenesis and neoplastic growth of the prostate
[91]. The linkage of the morphological and functional
changes of nucleolus and ribosome to cancer are
reviewed in literature [92]. For cell cycle pathway, inves-
tigation has revealed that androgen acts as a master
regulator of G1-S phase progression, able to induce sig-
nals that promote G1 cyclin-dependent kinase in pros-
tate cancer cells [93].
We can conclude from the above signal pathway ana-

lysis that most of the pathways involving the selected
genes are associated to the tumorigenesis, neoplastic

http://vortex.cs.wayne.edu/projects.htm
http://vortex.cs.wayne.edu/projects.htm
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growth or metastasis of tumor. From the analysis in the
context of the molecular basis, the PPI networks and the
pathways, we infer that the top-ranked genes are useful
for cancer diagnosis as important potential biomarkers
and may also provide insights into the mechanism of
tumor genesis, development and metastasis.

Discussions
To find optimal gene subsets from tremendous gene
space, a challenge is how to avoid the effects of the curse
of dimensionality. Usually, preliminary gene selection is
often regarded as an indispensable step of classifier con-
struction process. However, if it is performed only once
on whole dataset and the performance is further evalu-
ated by CV method, such gene selection may lead to an
overoptimistic classification performance [24]. Even
though the optimal gene subsets are selected independ-
ently on training set without the feedback of the test set
and evaluated on independent test set, gene selection
may also lead to over-fit the training set even test set if
done improperly. On the other hand, over-fitting can
also be easily caused by too many potential genes to dis-
criminate among a small number of samples [68], which
is evident by the fact that among the numerous gene
subsets that can obtain 100% or nearly 100% k-fold CV
accuracy on training set, only few can obtain very high
prediction accuracy on independent test set. This is the
reason why different methods usually find different opti-
mal gene subsets and why many existing gene selection
methods cannot consistently perform well on all tumor
datasets. To address the over-fitting and selection bias
problems, we adopt simple majority voting strategy to
construct HBSA-based ensemble classifier with the opti-
mal gene subsets. The results show that our ensemble
classifier can efficiently avoid over-fitting and improve
the stability of prediction performance.
Intuitively, the construction of classification model

with more genes would obtain better generalization per-
formance, but in fact the classifier constructed in such
way usually leads to the bias of results. More import-
antly, we do not determine which genes contribute more
to the classifier if a complicate classifier is used. As sta-
ted by Dabney [69], “a complicated classification model
may be rejected for a simpler alternative even if the sim-
pler alternative does not perform as well.” We observed
that although simpler classification model constructed
with fewer genes may be a little worse in accuracy than
that with more genes, the results obtained by the simpler
model result in less bias. We conclude that only a few
top-ranked genes are enough for obtaining good classifi-
cation performance. Particularly, when the number of
the discriminate genes approximately equals to the num-
ber of subclasses in a dataset, high prediction accuracy is
always obtained.
To prioritize genes for a specific tumor, the occurrence
frequency of each gene in the selected gene subsets is
counted and these genes are ranked according to the
counted frequency to measure the importance of corre-
sponding genes with respect to tumor. Our analysis
based on protein-protein interaction network, individual
gene function through relevant literatures and biological
pathway demonstrate: 1) most of the top-ranked genes
are important cancer genes or linked with cancer genes;
2) they are involved in cancer genesis, development, in-
vasion, metastasis or angiogenesis. Thus these few top-
ranked genes are useful for the screening of cancer genes
and cancer biomarkers for tumor diagnosis, molecular
treatment targets as a cancer-related gene pool and may
also provide some insight into the mechanism of car-
cinogenesis and cancer development.
We also find that the occurrence frequency of a gene

with respect to the number of those genes whose fre-
quencies are greater than the corresponding frequency
follows power-law distribution. As we know, power-law
distribution is a universal phenomenon in nature. Gene
regulatory network is widely accepted as a complex
scare-free one with the property of power-law degree
distribution. In such network, nodes represent genes and
a link between two genes represents interaction between
the two genes, and some nodes are more highly con-
nected [94,95]. No doubt that the nodes with high de-
gree play a very important role in network because
structure always affects function. There may be no or
weak interaction (minimum relevance) among the genes
in the same optimal gene subset selected by HBSA, but
the classification accuracy is the combined effect of the
genes in an optimal gene subset. If we design a cooper-
ation network in which nodes represent genes in an op-
timal gene subset and a link between each two genes in
the gene subset represents cooperation between the two
genes. There is no cooperation between two genes
belonging to different optimal gene subsets. The node-
degree distribution of the network constructed in such
way by all gene subsets in A* obviously follows power-
law degree distribution. In such virtual network the
genes with high node-degree correspond to the ones
with high frequency in the optimal gene subsets, and
these genes should closely involved in an actual gene
regulatory network related to tumor.
However, the PPI network based analyses suggest that

tumor-related genes are not always highly linked or hub
ones in biological processes as indicated by the node
linking degree. The node linking degree is the number
of proteins that a node (protein) directly links and the
nodes with higher degree are assumed as more import-
ant or hub proteins. For the prostate dataset, ABL1, a
cytoplasmic and nuclear protein tyrosine kinase encoded
by its proto-oncogene, ranked the third in Additional file 1:
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Table S22, is implicated in cell processes of cell differenti-
ation, cell division, cell adhesion, and stress response, has a
node linking degree of 100, with a CLD of 46. However, the
protein MAF encoded by the first ranked gene MAF, an-
other proto-oncogene, has a linking degree of only 12 de-
gree in the PPI network, with a CLD of seven. For the
SRBCT dataset, the fourth gene CAV1 in Additional file 1:
Table S17, a tumor suppressor gene candidate that encodes
protein Caveolin 1, has a linking degree of 73 in the PPI
network, while the three proteins encoded by the top three
genes CD99, MLLT11 and IGF2 in Additional file 1: Table
S17 are 9, 0, and 16, respectively and have much lower
CLD. One reason is that the protein-protein interactions
in HPRD are most physical ones while our referred
interactions of the selected genes are most functional.
Since protein-protein interactions are highly dynamic in
different cell states or highly different in different types
of cells, the divergence may also be explained by the fact
that the biological pathways in cancer cells may be
greatly different or changed from pathways in normal
cells, where many abnormal protein-protein interac-
tions may be opened and normal interactions are closed.
However, the real position of the cancer-related genes
in the cancer oncogenesis and development pathways
needs further study.
Our contribution in this paper is to propose two

methods, namely the construction method of HBSA-
based ensemble classifier and the HBSA-based gene
ranking method, to obtain unbiased classification per-
formance and find important tumor-related genes more
biologically meaning in molecular tumor diagnosis. Un-
like other search-based gene selection methods, such as
GA/SVM [30] and sequential forward search (SFS) [36]
that find only one optimal gene subsets, our HBSA can
find as many optimal gene subsets as possible on train-
ing set and obtain determined results in each run. More
importantly, these gene subsets by HBSA have the same
minimum cardinal number which can ensure that it is
reasonable to measure the significance of gene by using
its occurrence frequency. Generally, HBSA-based gene
ranking method is also different from many traditional
gene ranking methods because our method simultan-
eously takes into account the discrimilability of individ-
ual gene and the relationship among multiple genes (the
discrimilability of gene subset), while many traditional
univariate Filters-based gene selection methods often se-
lect the top-ranked genes only according to their indi-
vidual discriminative power and a few multivariate
Filters-based methods only consider gene dependencies
to improve classification performance. However, our
method does not remove the redundant genes from the
top-ranked genes because these redundant genes might
be very important tumor-related genes [49]. On the
other hand, our ensemble classifier is constructed by
simplest but optimum individual classifiers on training
set, which is different from other ensemble classifiers
such as Bagging [96], Boosting [97] and random sub-
space method [98], in which individual classifiers are
constructed by randomly resampling in sample set or
feature set.

Conclusions
Many machine learning and statistical algorithms for
GEP-based tumor classification are available, but many
of these methods might suffer from the problems of
over-fitting and gene selection bias because the number
of genes far exceeds the number of tumor tissue sam-
ples. Thus, we proposed two novel and robust methods
(HBSA-based ensemble classification and HBSA-based
gene ranking methods) to obtain high but unbiased pre-
diction accuracy on independent test set and to find the
most important tumor-related genes. HBSA-based en-
semble classifier is constructed by using majority voting
strategy on the basis of the selected optimum gene sub-
sets selected by HBSA to improve the stability of the
classification performance. HBSA-based gene ranking
method is to prioritize the genes by using their occur-
rence frequencies counted in all of the selected gene
subsets so that a set of significant genes can be found,
which can be used as the biomarker of clinical tumor
diagnosis and prognosis. Although HBSA implicates two
problems: over-fitting and selection bias, both the pro-
posed HBSA-based ensemble classifier and HBSA-based
gene ranking method can successfully avoid the two pro-
blems. Moreover, the two methods are robust, stable and
global optimum when such gene subsets selected are
enough because the two methods are statistically estab-
lished on the basis of the optimal gene subsets. Particu-
larly, our methods not only are simple but also have rich
biomedical interpretability. The experimental results in-
dicate that our method can obtain high prediction accur-
acy with approximately minimum gene subset, and it
overcomes the problem that too many genes can also
lead to over-fitting phenomenon [68].
By comparing HBSA-SVM(Unbiased) and HBSA-

KNN, we find that HBSA-KNN-based gene ranking
method is slightly superior to HBSA-SVM-based one in
gene selection. And the comparison of HBSA-SVM
(Biased) and HBSA(Unbiased)demonstrates the bias de-
gree of results. Most importantly, the analyses on the
top-ranked genes in the context of individual gene func-
tion, pathway and PPI network biomedically justify our
method. We also find that the occurrence frequency of
gene in the optimal gene subsets with respect to the
number of gene whose frequency is greater than the cor-
responding frequency follows power-law distribution, so
we further infer that the important or hub genes related
to tumor might be few. It may partly explain our finding
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that the number of informative genes that approximately
equals to the number of subclasses in dataset is enough
for obtaining good generalization performance. Lastly,
we find that the genes with maximum differential ex-
pression among subclasses are not always the most im-
portant tumor-related genes, and some most important
tumor-related genes are possibly those less differentially
expressed ones.
Our future work will be mainly focused on utilizing

the prior biomedical knowledge and exploring new heur-
istic search algorithms to reduce the time complexity of
our current method. We are currently designing a novel
time-saving method based on neighborhood rough set
model to implement the same idea as this paper.
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