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Extensive research has focused on applying signal-detec-
tion theory to recognition memory (see Rotello, 2017, for 
a review)—the ability to judge whether or not an item 
(e.g., a word) has been encountered before in a particular 
context. Since the first attempts to model recognition 
memory, the unequal variance signal-detection model 
(UVSD) has been accepted as one of the most successful 
formal models. In the UVSD model, recognition judge-
ments are modelled as arising from a unidimensional 
memory strength variable. The strength of old (studied) or 
new (non-studied) items are represented as two separate 
normal (Gaussian) distributions, with the mean of the old 
item distribution (µo) being typically greater than that of 
the new item distribution (µn: typically fixed at 0). The dif-
ference between the old and new item distribution means 
is henceforth referred to as d. Recognition confidence rat-
ings can be modelled by comparing an item’s strength 

value to criteria values at various intervals of memory 
strength. Each criterion represents a level of confidence in 
a recognition judgement, ranging from a high confidence 
that an item was new (resulting from low memory strength) 
to a high confidence that an item was old (resulting from 
high strength).

The UVSD model’s success has been consistently 
reflected in accurate predictions of patterns in observed 
data. A common analysis of recognition data is the crea-
tion of a receiver operating characteristic (ROC), which is 
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a plot of the hit rate (proportion of correctly recognised 
old items) against the false-alarm rate (the proportion of 
new items incorrectly recognised) at different levels of the 
response criterion. The UVSD model can account for sev-
eral established regularities in observed ROCs (Yonelinas 
& Parks, 2007). It also predicts a linear z-transformed 
ROC (z-ROC), which is often seen in item recognition 
studies. Previous studies have shown that the slope of the 
z-ROC is commonly close to 0.8 (Glanzer et  al., 1999; 
Ratcliff et al., 1992). As the value of the z-ROC slope rep-
resents the ratio of new to old item variance in the UVSD 
model, this shows that the variance of the old item strength 
distribution is approximately 1.25 times that of the new 
item distribution. The UVSD model accounts for this old 
item variance effect by allowing the standard deviation of 
the old item strength distribution (σo) to be a free param-
eter, which can be greater than the standard deviation of 
the new item strength distribution (σn: typically set at 1). 
Thus, both the strength and variance of the old item distri-
bution can scale relative to the new item distribution. 
With the inclusion of σo, the UVSD model can be 
expressed as having parameters θ = {c1, c2, . . ., cI, d, σo}, 
where cI represents the highest decision criterion in terms 
of associated strength (Kellen et al., 2013). The probabil-
ity of a “hit” response (a correct “old” judgement) can be 
expressed as

P H
d ci( ) = −







Φ

σo
	 (1)

where Φ is the cumulative normal distribution function, 
and ci is a given strength criterion. The probability of a 
false alarm (an old item being incorrectly judged as “new”) 
is

P FA ci( ) = −( )Φ 	 (2)

The encoding variability account

One psychological explanation that has been put forward 
to explain why the variance of the old item distribution is 
greater than that of the new item distribution in the UVSD 
model is the encoding variability hypothesis (Jang et al., 
2012; Wixted, 2007). This is the idea that the strength of 
each old item is incremented by a variable, rather than a 
fixed, amount of strength at study (Wixted, 2007). 
Formally, the memory strength of an old item is the result 
of adding two Gaussian random variables, representing a 
baseline strength for all items and additional strength for 
old items, respectively (Jang et al., 2012). Using this defi-
nition, additional strength is assumed to be the result of 
psychological variables that affect memory strength at 
encoding (henceforth, encoding variables). Examples of 
encoding variables could presumably include the duration 
for which a participant studies a stimulus, the amount of 

attention paid to a stimulus, or some other form of stimu-
lus–participant interaction. As it is likely that the effect of 
these variables would vary from trial-to-trial, the UVSD 
model is arguably more plausible than an equal variance 
signal-detection model, which would explain the effect of 
these variables as being fixed (Wixted, 2007). The total 
memory strength of an old item can therefore be expressed 
as O = B + Y where B is the baseline memory strength of 
an item, and Y is strength added as a result of encoding 
variability. Both B and Y are assumed to be normally dis-
tributed random variables that are independent of each 
other, so that

B N baseline baseline~ ,µ σ( ) 	 (3)

Y N added added~ ,µ σ( ) 	 (4)

It is also important to note that this is only one explana-
tion for the unequal variance assumption—there is nothing 
inherent in the specification of the UVSD model that com-
pels this particular account, and a failure to support the 
hypothesis should not be equated with a failure to support 
the UVSD model.

The recollection account

Although our focus in this article is on the encoding vari-
ability account, we also give consideration to two other 
prominent models of recognition and their accounts of the 
old item variance effect. According to the dual process 
signal-detection (DPSD) model (Yonelinas, 1994), the old 
item variance effect arises because two independent mem-
ory processes, recollection and familiarity, drive recogni-
tion. When an item is presented at test, it has a chance of 
being recollected as a studied item if the memory strength 
associated with it is greater than a certain threshold. This is 
expressed parametrically as R, the probability that a stud-
ied item will be recollected, and as a result judged old with 
the highest degree of confidence. If an item does not sur-
pass this threshold, the recognition judgement is deter-
mined by familiarity, an equal variance signal-detection 
process (i.e., where σo = σn = 1). Familiarity represents 
cases where a stimulus seems familiar, but in the absence 
of remembering contextual details (Mandler, 1980). 
Despite this, “familiar” items can still receive the highest 
recognition confidence rating in the same way that any old 
item could in an equal variance signal-detection model. 
Because of the equal variance assumption, the mean dif-
ference between the new and old item distributions of 
familiarity (i.e., µo) is equivalent to d′, and represents 
memory strength within the familiarity process. The DPSD 
model has parameters θ = {c1, c2, . . ., cI, d′, R} (Kellen 
et al., 2013); the probability of a false-alarm response is 
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expressed in Equation 2, and the probability of a hit 
response is defined as

P H R R d ci( ) = + −( ) −( )1 Φ ′ 	 (5)

A relative increase in R results in a greater number of 
old items having high amounts of memory strength associ-
ated with them, and this would increase the variance (and 
mean) of the old item strength distribution relative to the 
new item distribution. Therefore, the adjustment of R can 
account for changes in old item variance. When the DPSD 
model was first conceptualised, Yonelinas (1994) described 
recollection as an “all or none” process; this has since been 
interpreted to suggest that recollected items are homoge-
neous in strength (Wixted, 2007). Parks and Yonelinas 
(2007) later clarified that recollected items are graded in 
memory strength. In further clarification, Koen and 
Yonelinas (2010) stated that the recollected and familiar 
item distributions do not overlap. However, the strict dis-
tributional assumption for recollected items remains 
unspecified; although commonly depicted as square, the 
distribution could take on any shape (Yonelinas et  al., 
2010). Without this information, it is not possible to deter-
mine a theoretical value of R that maximises old item vari-
ance without making several assumptions upon limited 
supporting evidence. Although this is not a major issue as 
one can still assume that R increases to an unknown value 
to account for greater levels of old item variance, this limi-
tation makes it more difficult to determine a precise rela-
tionship between old item variance and the value of R. As 
the distribution of old item strength in the DPSD model 
can be conceptualised as a mixture of the recollection and 
familiarity distributions, it can also be assumed that, given 
a fixed value of R, a lower d′ would also lead to greater old 
item variance, because this would increase the distance 
between the two distributions. Again, in the absence of 
clearly defined characteristics of the distribution of recol-
lected items, the extent of this effect is unknown. However, 
it is certain that both d′ and R help to determine both the 
mean and variance of old item strength.

The mixture account

A third prominent account of the old item variance effect is 
offered by the mixture signal-detection (MSD) model 
(DeCarlo, 2002). Like the DPSD model, recognition of 
new items is solely derived from a single distribution in this 
model. Old items are represented by multiple Gaussian dis-
tributions (unlike in the UVSD and DPSD models), which 
correspond to different levels of processing that items 
receive during encoding. A common example is that some 
items may be fully attended to during study, whereas others 
are only partially attended to. In the case where an item is 
only partially attended to, it would fall into a distribution of 
partially attended old items (A′). If an item is fully attended 

to, it is represented in a separate distribution of fully 
attended old items (A). Although A′ could have a greater 
mean strength value than the distribution of new items (N), 
this would still be less than the mean of A, because the 
items in A were encoded more strongly due to them being 
attended to at a higher level. The difference between the 
mean value of A′ and N is defined as dA′, which provides a 
measure of the comparative strength of the two distribu-
tions. This value can also affect key assumptions made by 
the model. For example, if dA′ = 0, this implies that items in 
A′ are not attended to at all in the study phase, since µA′ = µN 
(DeCarlo, 2002). This contrasts with higher values of dA′, 
which assumes that the A′ distribution still received a nota-
ble increment in strength in comparison with new items. 
Despite this, DeCarlo (2002) found that assuming dA′ = 0 
yields non-significant values of G2 and likelihood ratio test 
statistics when the MSD model is fitted to data with this 
assumption. This provides evidence that estimates from 
this constrained MSD model fitted the data adequately, 
suggesting that this parameter can be fixed.

In the MSD model, the parameter λ represents the pro-
portion of trials in which an old item was fully attended to 
in the study phase. With this parameter, the MSD model’s 
parameters can be defined as θ = {c1, c2, . . ., cI, dA, dA′, λ} 
(Kellen et  al., 2013); the probability of a false alarm is 
expressed in Equation 2, and the probability of a hit 
response can be formally described as

P H d c d ci i( ) = −( ) + −( ) −( )′λΦ λ ΦA A1 	 (6)

If λ = 1, then no items are assigned to the A′ distribu-
tion; conversely, if λ = 0, no items would remain in A, and 
all would be assigned to the less attended A′ distribution. 
As the variance of each distribution in the model is equal, 
the model is equivalent to a traditional equal variance sig-
nal-detection model in either case where all studied items 
fall into one distribution (DeCarlo, 2002). This also means 
that, for a given difference between A′ and A, the value of 
λ that produces the maximum amount of old item variance 
is 0.5, as this reflects the largest spread of items across A 
and A′. Given that the difference between the N and A dis-
tributions (dA) and dA′ also represent the relative strength 
of each old item distribution, the variance of the old item 
mixture distribution can also be influenced by these param-
eters. Therefore, the MSD model accounts for both mem-
ory strength and old item variance through a combination 
of adjustments to λ, dA, and dA′. For the purposes of this 
article, we will assume a fixed value of dA′ = 0 to focus on 
changes in λ and dA in the MSD model. This constraint 
eliminates a free parameter (dA′) from the MSD model, 
bringing the number of free parameters in line with the 
UVSD and DPSD models. In addition, it simplifies the 
interaction of the model’s parameters in their contribution 
to overall strength and old item variance, while still pro-
viding good fits to data (DeCarlo, 2002).
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Testing the accounts

In an attempt to test the encoding variability and recollec-
tion accounts of the old item variance effect, Koen and 
Yonelinas (2010) manipulated the duration for which old 
items were presented in the study phase. They did so by 
comparing a pure study condition, where items were pre-
sented for 2.5 s, to a mixed study condition where items 
were presented for either 1 or 4 s each. At test, participants 
gave responses on a 1 to 6 confidence rating scale and then 
made remember, know, or new judgements (Gardiner, 
1988; Tulving, 1985), which were then analysed for effects 
of encoding variability and recollection/familiarity, respec-
tively. Specifically, there was no difference in estimates of 
σo between each condition, and after subtracting estimates 
of recollection, the average z-ROC slope in both condi-
tions did not significantly differ from 1. Therefore, Koen 
and Yonelinas (2010) concluded that encoding variability 
did not contribute to the old item variance effect and their 
results were instead consistent with a dual process account.

This conclusion has been contested on methodological 
grounds (Jang et al., 2012; Starns et al., 2012). A criticism 
made by both Starns et al. (2012) and Jang et al. (2012) was 
that Koen and Yonelinas’s (2010) method did not actually 
have any relevance to the encoding variability hypothesis 
because the effect of presenting items for 1 and 4 s in one 
list at test was to create a mixture distribution of old item 
strength. That is, this manipulation creates a separate distri-
bution for both exposure durations used, and the underlying 
old item distribution is a mixture of these distributions, 
which is not Gaussian in form. In contrast, the encoding 
variability account asserts that memory strength is the sum 
of two Gaussian distributions (representing baseline 
strength and quality of encoding) and retains a Gaussian 
form. Because of this inconsistency, Koen and Yonelinas’s 
(2010) results did not test the encoding variability hypoth-
esis; instead, their results have more relevance to an MSD 
account. In addition, other issues such as a lack of experi-
mental power and use of an extended range to calculate 
z-ROCs in their analysis were raised (Jang et  al., 2012; 
Starns et al., 2012). Although Koen and Yonelinas (2013) 
addressed these issues in a response, they still could not 
conclude that encoding variability was an unsatisfactory 
explanation of old item variance.

Further research by Koen et  al. (2013) investigated 
encoding variability, recollection and attentional (mixture) 
accounts of old item variance, focusing on retrieval manip-
ulations to investigate the differential claims of each theory. 
These manipulations included speeding response times, 
dividing attention, reinstating the context of encoding at 
test, and increasing the delay between study and test phases. 
Estimates of the σo parameter in the UVSD model were 
found to be affected by these retrieval manipulations, which 
seems at odds with the encoding variability hypothesis. The 
recollection account was found to provide the most accu-
rate predictions, with inconsistent evidence being found for 

the mixture account. Although this shows that old item 
variance can be affected at the retrieval stage, no study has 
to our knowledge attempted to test the predictions of these 
accounts by manipulating old item variance in the study 
phase in a manner that would be suitable for the purposes of 
testing the encoding variability hypothesis (Rotello, 2017). 
In this study, we aim to provide methodologically valid 
tests of the encoding variability hypothesis in three experi-
ments. Each of these experiments was preregistered using 
the Open Science Framework. A full disclosure of our aims, 
experimental design, methods, and statistical indices for 
each experiment was uploaded prior to data collection for 
each respective experiment. Any deviations from the pre-
registration for each experiment were also stated and justi-
fied after each experiment was conducted.

Experiment 1

In this experiment, we attempt to test the encoding varia-
bility hypothesis by comparing estimates of σo following 
two encoding conditions; one in which items will be pre-
sented for a fixed duration (the fixed condition), and one in 
which items will be presented for variable durations, sam-
pled from a normal distribution (the variable condition). 
This manipulation was suggested by Jang et al. (2012) as a 
suitable means of testing the encoding variability hypoth-
esis because it is more likely to ensure that the underlying 
old item strength distribution retained a Gaussian form, 
rather than a mixture. Previous research confirms that 
increasing study duration improves memory accuracy 
(e.g., across durations ranging from 40 to 2,250 ms in 
Berry et al., 2017; 1 vs. 3 s in Jacoby & Dallas, 1981; 1 vs. 
10 s in Musen, 1991; 1, 3, vs. 6.5 s in Neill et  al., 1990; 
50–2,000 ms in von Hippel & Hawkins, 1994), therefore 
varying study duration within a set of old items would be 
expected to increase variation in strength. By making the 
exposure duration at study a Gaussian variable, this would 
seem the most likely way of manipulating encoding vari-
ability in such a way that is equivalent to adding two 
Gaussian distributions to create a Gaussian product (i.e., of 
manipulating σadded in Equation 4). This avoids the theo-
retical issues caused by mixing two discrete exposure 
duration classes to create a distribution which is not 
Gaussian, as Koen and Yonelinas (2010) did.

Jang et al. (2012) expressed that this method could have 
potential issues, such as participants rehearsing the more 
briefly presented items in the variable condition. To miti-
gate this concern, study trials in both conditions will 
advance automatically with the same inter-trial interval 
(ITI; 1 s) to minimise any potential window for rehearsal. 
This way, any increment in memory strength gained from 
further rehearsing an item into the next trial would be bal-
anced by the decrement to the memory strength of the next 
item (assuming that covert rehearsal even occurs at all). 
While the distribution of exposure durations in the variable 
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condition will be Gaussian, they will be selected in a way 
that the total duration of both the variable and fixed dura-
tion study phases will be equal. As a result, the total time 
to encode items in either condition will be the same. There 
is also the issue that, although study duration is a Gaussian 
variable, the resulting distribution of strengths may not be 
Gaussian. This is because the function that relates study 
duration and memory accuracy is likely to be negatively 
accelerated, rather than linear. It is difficult to confirm the 
distribution of memory strength as a latent variable; how-
ever, we would at the very least expect the variance of the 
resultant strength distribution to be greater as a result of 
this manipulation. We discuss this issue, and theoretical 
motivations for assuming a Gaussian product distribution 
in further detail in our “General Discussion.”

We hypothesise that our manipulation of study duration 
will increase the variability in old item strength in the vari-
able condition, relative to old item strength variance in the 
fixed duration condition. In accordance with the encoding 
variability hypothesis, we expect a greater estimate of σo 
in the variable condition when the UVSD model is fitted to 
the data. We will also fit the DPSD and MSD models to the 
data given their prominence, and for parity with previous 
research (Koen et  al., 2013). As explained above, the 
DPSD and MSD models can account for old item variance 
through changes in d′ and R, or dA and λ, respectively. 
Accordingly, when the DPSD model is fit to the data, we 
would expect estimates of R to be higher in the variable 
condition than the fixed condition, along with lower esti-
mates of d′. When the MSD model is fit to the data, we 
would expect estimates of λ to be closer to 0.5, or esti-
mates of dA to be higher (or a combination of both) in the 
variable condition than in the fixed condition. Parameter 
recovery simulations (see Supplemental Materials, 
Appendix A) confirm that it is theoretically possible for us 
to observe these trends in the parameter estimates, given 
that the UVSD model is the true generative model.

It should be made clear at the outset that, as the UVSD, 
DPSD, and MSD models can all account for the old item 
variance effect (albeit with unique parameters), they can-
not be discriminated purely on this basis (see Supplemental 
Materials, Appendix A). This applies to any situation in 
which an encoding variability manipulation is successful. 
Each model can however, in theory, be discriminated 
based on goodness of fit (GOF). Although the DPSD and 
MSD models can affect the variance of the old item dis-
tribution, they achieve this by making the distribution 
non-Gaussian. If, as suggested by Jang et al. (2012), the 
effect of presenting items for variable durations at encod-
ing is to produce an underlying strength distribution that 
is Gaussian in form, then, because the UVSD model also 
assumes that the underlying strength distribution is 
Gaussian, it seems reasonable to expect the UVSD model 
to provide a better quantitative fit to the data than the 
DPSD and MSD models. Model recovery simulations 

(see Supplemental Materials, Appendix B) suggest that it 
is theoretically possible for us to identify the true genera-
tive model from comparisons of the fit of the UVSD, 
DPSD, and MSD models with G2.

Method

Participants.  Forty participants (six males) with a mean age 
of 20.78 years (SD = 3.41) from a University of Plymouth 
Participation Pool took part in this experiment. This sam-
ple size was chosen (in this experiment and the next) to 
provide 80% power to detect a medium-sized effect (i.e., 
Cohen’s dz = 0.46) in a repeated-measures design with two 
levels (i.e., in a paired-samples t test). Each participant 
was fluent in English and received course credits in return 
for participation. One participant was excluded from the 
analysis for providing outlying results; their hit rates were 
very low (0.02 in the fixed condition, 0.12 in the variable 
condition) and false-alarm rates very high (0.88 in the 
fixed condition, 0.90 in the variable condition). This par-
ticipant consistently judged new items as old and old items 
as new, indicating that they misunderstood the confidence 
rating scale. Their data were replaced with that of a new 
participant who completed the same counterbalancing 
condition, to retain the initially planned sample size and 
achieve even counterbalancing. All analyses were per-
formed after this replacement was completed.

Materials.  The stimuli were 520 seven-letter nouns. Each 
word had a frequency of between 1 and 30 occurrences per 
million (M = 5.73, SD = 6.45; Kučera & Francis, 1967). 
These word types and frequencies were chosen to match 
those used by Koen and Yonelinas (2010) to enable a com-
parison with their method. Participants viewed the stimuli 
on Viglen computers running a custom MATLAB pro-
gram1 using the Cogent 2000 toolbox. They were pre-
sented in 40-pt Courier New font. Each stimulus in the 
fixed duration condition was presented for 3,000 ms. The 
exposure duration for each stimulus in the variable dura-
tion condition was randomly sampled from a normal distri-
bution with a mean of 3,000 ms and standard deviation of 
1,100 ms. The durations were sampled with the following 
constraints: (1) the minimum and maximum duration was 
500 and 5,500 ms, respectively; (2) the sum of the dura-
tions equalled the sum of the durations in the fixed condi-
tion (i.e., 3,000 ms × 130 trials = 390 s), which ensured that 
both study phase conditions lasted for the same length of 
time; and (3) the sample distribution did not significantly 
deviate from a normal distribution, as indicated by Kol-
mogorov–Smirnov, D(129) = 0.03, p = .97, and Anderson–
Darling, A(129) = 0.18, p = .92, tests. The upper and lower 
bounds were chosen to allow as much variance as possible 
across the sampled distribution (SD = 1,191 ms), while (1) 
mitigating participant fatigue as a result of a longer study 
phase, (2) ensuring that the duration was long enough for 
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identification to occur. One set of exposure durations was 
generated for the variable duration condition; this set was 
used for all participants (see Supplemental Materials).

Procedure.  Each participant completed both experimental 
conditions sequentially, in a within-subjects design. The 
order of the conditions was counterbalanced, such that half 
of the sample completed the fixed duration condition first, 
and the other half the variable duration condition first. The 
two sets of stimuli used in either condition were also coun-
terbalanced across participants. Half of the participants 
viewed set 1 in their first condition and set 2 in their sec-
ond condition; this order was reversed for the other half of 
the sample. This created a 2 (order) × 2 (stimulus set) 
counterbalancing design, with an equal number of partici-
pants assigned to each of the four possible counterbalanc-
ing conditions.

After providing informed consent, participants received 
instructions for the study phase. They were told that they 
would see a series of words, and that it was critical that 
they pay attention to each word for the full duration of its 
exposure. They were also told to try to memorise as many 
of the words as possible. In each study trial (130 trials in 
total), a fixation point appeared for 500 ms, after which a 
stimulus was presented. In the fixed duration condition, 
the stimulus was presented for 3,000 ms. In the variable 
duration condition, the stimulus was presented for a dura-
tion randomly sampled (without replacement) from the set 
of exposure durations. A blank inter-trial interval screen 
followed each stimulus presentation, lasting for 1,000 ms. 
After each study phase, a 3-min retention interval fol-
lowed, in which participants completed word fragments 
corresponding to countries of the world.

The test phase followed, in which participants were 
shown the 130 stimuli they saw during the previous study 
phase, randomly intermixed with 130 new stimuli. 
Participants were instructed to respond to each stimulus 
based on their confidence that the stimulus was new or old 
(using the scale “1 = sure new, 2 = probably new, 3 = guess 
new, 4 = guess old, 5 = probably old, 6 = sure old”). 
Participants were instructed to prioritise the accuracy of 
their decision making over the speed of their response and to 
use all confidence ratings. In each trial, the stimulus was 
presented after a fixation point (again shown for 500 ms) 
until a response was made. A static cue was displayed 
throughout each trial, which reiterated the question (“New 
or Old?”) and each confidence level on the rating scale. 
After a response was made, a blank inter-trial interval screen 
was presented for 500 ms before the next trial began.

Results

All analyses in this article were performed using the R sta-
tistical computing language (Version 3.4.1; R Core Team, 
2017). Bayesian statistics were calculated using the 

BayesFactor package by Rouder et al. (2009). All of the 
Bayes Factors we report are scaled JZS Bayes Factors in 
favour of the alternative (i.e., BF10). A detailed explanation 
of our model fitting procedure, including parameter con-
straints, and aggregate ROCs and z-ROCs for each experi-
ment, are available in our Supplemental Materials (in 
Appendices C and D, respectively).

Recognition performance.  The mean hit rate and false-alarm 
rate across participants are shown in Table 1. A 2 × 2 
within-subjects ANOVA with response (hit rate, false-
alarm rate) and condition (fixed, variable) as factors 
revealed a significant main effect of response, F(1, 
39) = 118.58, p < .001, ηp

2  = .75, BF = 1.22 × 1030, no sig-
nificant main effect of condition, F(1, 39) = 2.83, p = .10, 
ηp
2  = .07, BF = 0.21, or significant interaction, F(1, 39) < 1, 

p = .83, ηp
2  = .001, BF = 0.27. This indicated that partici-

pants were able to successfully discriminate old from new 
items, and that levels of discriminability did not reliably 
differ between conditions.2

Parameter estimates.  The parameters of the UVSD, DPSD, 
and MSD models were estimated for each participant 
using maximum likelihood estimation (Dunn, 2010); this 
procedure was used for all model fitting procedures in this 
article. The mean estimates are shown in Table 2. For the 
UVSD model, contrary to what might be expected accord-
ing to the encoding variability hypothesis, there was no 
significant difference between the mean estimates of σo 
between conditions,3 t(39) = −0.73, p = .47, d = 0.14, 95% 
confidence interval (CI) [−0.09, 0.20], BF = 0.22. There 
was also no significant difference between the mean esti-
mates of d between the fixed and variable conditions, 
t(39) = 0.53, p = .60, 95% CI [−0.21, 0.36], BF = 0.19. If 
anything, the mean estimates of σo and d across partici-
pants were numerically greater in the fixed condition.

With regard to the DPSD model, the mean estimate of R 
did not significantly differ between conditions, t(39) = 0.42, 
p = .68, 95% CI [−0.06, 0.08], BF = 0.19, nor did the mean 
estimates of d′, t(39) = 0.39, p = .70, 95% CI [−0.15, 0.10], 
BF = 0.18. For the MSD model, the mean estimate of λ did 

Table 1.  Mean hit and false-alarm rates (SE in parentheses) 
for the fixed and variable conditions in Experiments 1, 2, and 3.

Experiment and condition Hit rate False-alarm rate

Experiment 1
  Fixed 0.65 (0.02) 0.32 (0.03)
  Variable 0.63 (0.02) 0.30 (0.02)
Experiment 2
  Fixed 0.61 (0.02) 0.28 (0.02)
  Variable 0.56 (0.02) 0.26 (0.02)
Experiment 3
  Low variance 0.64 (0.03) 0.31 (0.03)
  High variance 0.62 (0.03) 0.34 (0.03)



1248	 Quarterly Journal of Experimental Psychology 73(8)

not differ between conditions, t(39) = −0.53, p = .60, 95% 
CI [−0.15, 0.09], BF = 0.19. The estimates of dA were 
extremely high (greater than 10) for seven participants—
four had extreme dA estimates in the variable condition and 
three had extreme estimates in the fixed condition. These 
participants were excluded listwise when calculating the 
mean values of dA (in Table 2). With these participants 
excluded, there was no significant difference between the 
mean estimates of dA in the fixed and variable conditions, 
t(32) = 0.12, p = .90, 95% CI [−0.87, 0.98], BF = 0.19, nor 
was there a significant difference between conditions 
when these outliers were included (according to a Wilcoxon 
Signed Ranks test, V = 437, p = .72).

Comparisons of fit.  GOF tests were performed upon model 
fits to each individual participant’s data, as well as aggre-
gated data across the sample. G2 was used to assess GOF 
in model fits to individual and aggregated data. When par-
ticipant-level model fits were assessed, the UVSD model 
was the best fitting model for the majority of participants 
in the fixed duration condition, followed by the MSD and 
DPSD models (see Table 3). In the variable duration con-
dition, the DPSD model was the best fitting model for the 
greatest proportion of participants; the UVSD model had 
the second largest proportion, and the MSD model, the 
third. In the case of the aggregate fits, the MSD model fit 
the data best in both conditions; the UVSD model 

provided the second best fit, surpassing the DPSD model 
(see Table 4). All model fits to aggregated data from the 
variable condition were rejected on the basis of a 95% sig-
nificance level; the DPSD model fit to aggregated fixed 
condition data was also rejected. It is worth noting that 
these rejections are likely due to the distortion of patterns 
found in individual data as a result of aggregation; there-
fore, the validity of each model should not be doubted 
purely on this basis. Regardless, the results of the model 
comparison are mixed and do not clearly allow the models 
to be discriminated.

Unplanned analyses.  As the results of Experiment 1 indi-
cated no significant differences between σo in either condi-
tion, further analyses (which were not stated in our 
preregistration) were performed to investigate the possibil-
ity that the lack of a significant difference in parameter esti-
mates between conditions was because exposure duration 
did not have any effect on recognition ratings at all. A Pear-
son correlation between the exposure duration of items and 

Table 2.  Means and standard deviations of parameter 
estimates in model fits to individual data in Experiment 1.

Model Parameter Fixed condition Variable condition

UVSD σo 1.47 (0.41) 1.42 (0.36)
d 1.27 (1.06) 1.19 (0.92)
C1 −1.21 (1.04) −1.02 (0.78)
C2 −0.12 (0.65) −0.04 (0.64)
C3 0.54 (0.52) 0.62 (0.50)
C4 1.08 (0.56) 1.13 (0.55)
C5 1.92 (1.06) 2.00 (1.43)

DPSD R 0.26 (0.22) 0.25 (0.19)
d' 0.56 (0.49) 0.58 (0.48)
C1 −1.14 (0.96) −0.97 (0.77)
C2 −0.12 (0.62) −0.05 (0.63)
C3 0.50 (0.50) 0.58 (0.48)
C4 1.03 (0.53) 1.09 (0.53)
C5 2.59 (1.99) 2.39 (1.94)

MSD λ 0.58 (0.30) 0.61 (0.29)
dA 2.60 (1.99) 2.38 (1.78)
C1 −1.25 (1.27) −1.01 (0.77)
C2 −0.14 (0.64) −0.05 (0.65)
C3 0.52 (0.52) 0.60 (0.51)
C4 1.08 (0.56) 1.12 (0.54)
C5 2.20 (1.53) 2.05 (1.55)

UVSD: unequal variance signal-detection; DPSD: dual process signal-
detection; MSD: mixture signal-detection.

Table 3.  Goodness of model fits to individual participant’s 
data in Experiment 1, assessed by G2.

Condition Model Sum of G2 Percentage of 
best fits

Percentage of 
rejected fits

Fixed
  UVSD 174.34 40 7.5
  DPSD 182.98 25 10
  MSD 155.64 35 7.5
Variable
  UVSD 177.59 37.5 10
  DPSD 181.20 42.5 12.5
  MSD 166.06 20 2.5

UVSD: unequal variance signal-detection model; DPSD: dual process 
signal-detection model; MSD: mixture signal-detection.
Fits rejected if p < .05.

Table 4.  Goodness of model fits to aggregate data in fixed 
and variable duration conditions (Experiment 1), assessed by 
G2.

Condition Model Order of 
best fit

G2 p value

Fixed
  UVSD 2 3.77 .44
  DPSD 3 49.79 <.01*
  MSD 1 0.53 .97
Variable
  UVSD 2 9.98 .041*
  DPSD 3 28.83 <.01*
  MSD 1 9.65 .047*

UVSD: unequal variance signal-detection model; DPSD: dual process 
signal-detection model; MSD: mixture signal-detection.
*p < .05.
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their subsequent recognition rating was calculated for each 
individual participant. The mean correlation was very 
weakly positive (M = .05, SE = .01), but was reliably greater 
than zero across participants, t(39) = 3.54, p < .01, 95% CI 
[0.02, 0.08], BF = 29.10. This suggests that items that were 
studied for longer tended to receive slightly higher confi-
dence ratings at test, confirming that exposure duration did 
affect recognition, albeit very weakly.

Discussion

The results of Experiment 1 failed to confirm the prediction 
of the encoding variability account: The mean estimate of 
σo did not reliably differ between the fixed and variable 
conditions; if anything, estimates of σo (and d) tended to be 
greater in the fixed condition (but not reliably so). Similarly, 
there was no evidence that old item variance increased in 
the DPSD or MSD model as a result of varied study dura-
tion. This means that manipulating study duration did not 
create additional encoding variability and result in greater 
old item variance, as hypothesised. Although the signifi-
cant positive correlation between exposure duration and 
recognition confidence ratings indicates some relationship 
between these two variables, the size of the correlation 
showed that the effect of study duration on recognition was 
very weak. Indeed, it is unlikely that this effect would have 
had a noticeable effect on σo, as we observed. Although 
these results do not rule out the encoding variability hypoth-
esis, they do at least suggest that varying study duration 
over the range we used in the variable condition is not a 
suitable means of manipulating encoding variability, and 
they necessitate the search for other encoding variables, 
which may affect old item variance.

As the old item variance effect was present even when 
study duration was fixed (e.g., as shown by estimates of σo 
being greater than 1 in the UVSD model in Experiment 1), 
other variables must affect old item variance at study if the 
encoding variability hypothesis holds true. Another factor 
that presents a wide scope for creating encoding variability 
at study is the level of attention paid to each stimulus. 
Despite attempts to control the effects of attention in the 
study phase of Experiment 1, it is highly likely that partici-
pants’ attention fluctuated within each study phase 
(Smallwood & Schooler, 2015). This natural variation 
could have contributed to the old item variance effect 
observed in both conditions, overshadowing any effect of 
varying the exposure duration. Indeed, it may be that trial-
to-trial variation in attention is a better proxy for encoding 
variability than trial-to-trial variation in exposure duration. 
We investigate this possibility next.

Experiment 2

In Experiment 2, we aimed to investigate the effects of 
trial-to-trial variations in attention at encoding to provide a 

further test of the encoding variability hypothesis. A com-
mon method of inducing experimentally controlled divided 
attention is the n-back paradigm, in which a stimulus from 
a given trial is held in memory until a response relating to 
that stimulus is cued “n” trials later. One possible variant 
of this procedure involves digits being presented in sequen-
tial trials; on each trial, the participant judges whether the 
digit from the preceding trial was odd or even. This proce-
dure can be modified so that the participant is instructed to 
make their judgement about the nth preceding trial, and at 
any point requires the participant to hold the nth digit in 
their working memory (or at least the response to it), as 
well as any successive digits (or responses). Thus, the 
n-back task4 can be used to divert attention from another 
concurrent task or stimulus presentation by presenting 
both tasks in different modalities (Barrouillet et al., 2004). 
For example, a stimulus could be presented visually, while 
each n-back digit could be presented auditorily. As a result, 
this method is able to mimic the fluctuation of attention 
between different modalities, as might be expected to 
occur in an ecologically valid situation, such as a learning 
episode (Kane et al., 2007).

The n-back task may be suitable for the purposes of 
testing the encoding variability hypothesis because the 
intervals between each digit presentation can be varied, for 
example, by randomly sampling the interval from a normal 
distribution. If the study duration of words on screen 
remains fixed during this manipulation, the presentation of 
visual and auditory n-back stimuli would become asyn-
chronous, with participants having to make n-back 
responses at irregular intervals throughout the trial proce-
dure. This would result in a fluctuation in the number of 
digit responses required in a set time. As this is directly 
related to working memory demands (Barrouillet et  al., 
2004), and as memory strength is related to sustained 
attention at encoding (DeBettencourt et  al., 2018), this 
may result in normally distributed trial-to-trial variability 
in attention to the target stimulus at encoding. This in turn 
would result in normally distributed strength being added 
to the baseline strength of old items in such a condition. 
When comparing estimates of σo between conditions with 
fixed (synchronous) and variable intervals, the effect of 
attention at study upon old item variance can be tested; we 
present this test in Experiment 2. Assuming that trial-to-
trial variability in attention is a suitable proxy for encoding 
variability, we hypothesise that estimates of σo will be 
greater in the variable interval condition than in the fixed 
condition.

Method

Participants.  Forty participants (four males) with a mean 
age of 20.55 years (SD = 4.02) participated in this experi-
ment in exchange for course credit. They were recruited 
from a University of Plymouth Participation Pool.
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Materials.  The stimuli were 520 images, each consisting 
of a familiar object presented against a white background 
(taken from Zago et al., 2005, and the Bank of Standard-
ised Stimuli, Brodeur et al., 2010). Each image was de-
saturated, resized to 256 × 256 pixels, and presented on 
Viglen computers using a MATLAB program. Audio 
clips of a female computer-generated voice speaking the 
digits 1 to 9 were used in the study phases of each condi-
tion. In the fixed interval condition, the interval between 
these digit presentations was 3,500 ms, the same duration 
of a complete trial (i.e., 2,500 ms object presentation, 
500 ms ITI and 500 ms fixation); this meant that each 
digit presentation was synchronised with the onset of a 
new object. In the variable interval condition, the inter-
vals between the onset of each digit presentation were 
randomly selected from a normal distribution with a 
mean of 3,500 ms (SD = 1,100 ms) with the constraints 
that (1) the minimum and maximum values were 1,000 
and 6,000 ms, respectively; (2) the sum of the values in 
the distribution were equal to the total length of the study 
phase (i.e., 3.5 s × 130 trials = 455 s); and (3) the distribu-
tion did not significantly deviate from a normal, 
D(129) = 0.03, p = .99; A(129) = 0.18, p = .91. The same 
sample of interval durations was used for all participants 
(see Supplemental Materials). The mean and standard 
deviation of the distribution of sampled intervals was 
3,500 and 1,117 ms, respectively.

Design and procedure.  Participants took part in both exper-
imental conditions sequentially in a within-subjects design. 
A 2 (stimuli order) × 2 (stimulus set) counterbalancing 
design with equal participants in each possible counterbal-
ancing condition was implemented, as in Experiment 1. 
Before each study phase, participants practised the one-
back task that they would perform in the study phase, but 
without having to memorise objects at the same time. On 
each practice trial, a neutral stimulus (an outline of a white 
square) was presented for 2,500 ms, followed by a 500 ms 
ITI and a 500 ms fixation point (a “+” symbol) preceding 
the next trial. A fixation point appeared before the first 
stimulus, prior to the trial procedure starting. In the fixed 
condition, a digit was presented with the onset of each 
object. Digits in the variable condition were presented at 
varying intervals from each other, meaning that they were 
not synchronised with stimulus presentation. These inter-
vals were randomly sampled from a normal distribution 
with constraints (see “Materials”). Participants were 
instructed to make a response with each spoken digit as to 
whether the preceding digit was odd or even. They made 
these decisions by pressing either the “Z” key (if the previ-
ous digit was odd) or the “M” key (if the previous digit 
was even). This response scheme was reiterated on screen 
as a static cue throughout the practice trials. Participants 
could proceed if they had made 10 consecutive correct 
responses. To ensure that participants understood the 

one-back task, if, in the first practice one-back phase, 40 
trials elapsed and the participant had not made 10 consecu-
tive correct responses, the task was re-explained to them 
by the experimenter before completing another 40 trials. 
All participants were prompted to see the experimenter if 
they had any questions about the task after completing the 
practice trials.

Each study phase trial (130 in total) had the same struc-
ture as the practice trials, except that an image of an object 
was presented on each trial, rather than a white outlined 
square. After each study phase, participants completed the 
same retention interval task used in Experiment 1 for 
3 min. The format and structure of the trials in the test 
phase were also identical to those in Experiment 1, 
whereby participants made 1 to 6 confidence ratings in 
response to 130 old and 130 new items, which were ran-
domly intermixed.

Results

Task performance.  The proportion of correct responses made  
in the n-back task in the study phase was calculated for each 
participant. The mean proportion of correct responses was 
significantly greater in the fixed condition (M = 0.94, 
SD = 0.10) than in the variable condition (M = 0.89, 
SD = 0.12), t(39) = 3.18, p < .01, 95% CI [0.01, 0.08], 
BF = 12. With regard to the recognition task, the mean hit 
rate and false-alarm rate across participants is shown in 
Table 1. A 2 × 2 within-subjects ANOVA with response 
(hit rate, false-alarm rate) and condition (fixed, variable) as 
factors revealed a significant main effect of response,  
F(1, 39) = 169.57, p < .001, ηp

2  = .81, BF = 2.96 × 1036, indi-
cating that participants tended to successfully discriminate 
old from new items. There was a significant effect of condi-
tion, F(1, 39) = 12.06, p = .001, ηp

2  = .24, BF = 0.30, indicat-
ing that participants tended to have a more liberal response 
criterion for responding “old” in the fixed than variable con-
dition. The Response × Condition interaction was not sig-
nificant, F(1, 39) = 2.82, p = .10, ηp

2  = .07, BF = 0.31.

Parameter estimates.  The mean estimates of the parameters 
from each model are shown in Table 5. In the UVSD model 
fits, the mean estimate of σo was significantly greater in the 
fixed condition than in the variable condition, t(39) = 2.33, 
p = .02, 95% CI [0.01, 0.19], BF = 1.89. The mean estimate 
of d was also significantly greater in the fixed condition, 
t(39) = 2.40, p = .02, 95% CI [0.03, 0.32], BF = 2.16. Simi-
larly, in the DPSD model fits, R was significantly greater in 
the fixed condition than in the variable condition, 
t(39) = 2.41, p = .02, 95% CI [0.01, 0.09], BF = 2.20. DPSD 
estimates of d′, however, did not significantly differ between 
conditions, t(39) = 0.44, p = .66, 95% CI [−0.10, 0.06], 
BF = 0.19. When the data were fit with the MSD model, λ 
did not significantly differ between the fixed and variable 
conditions, t(39) = 0.15, p = .88, 95% CI [−0.11, 0.09], 
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BF = 0.18. One participant’s data were excluded listwise 
from the analysis of the MSD model’s estimates of dA, as it 
contained a large outlying estimate greater than 10 
(dA = 164.93). The mean estimate of dA in the fixed condi-
tion was greater, but not reliably so, t(38) = 1.78, p = .08, 
95% CI [−0.06, 0.86], BF = 0.72. A Wilcoxon Signed Ranks 
test including the outlying value did, however, indicate a 
significant difference, V = 592, p < .01.

Comparison of fits.  GOF analyses (the same as in Experiment 
1) were performed on an individual participant level (see 
Table 6) and an aggregate level (see Table 7). The MSD 
model accounted for the greatest percentage of participant 
level best fits in both conditions, with the UVSD and DPSD 
models placing successively. Similarly, for the aggregate 
level fits, the MSD model was found to fit best to the data in 
both conditions, followed by the UVSD and DPSD models, 
respectively. All aggregate-level model fits were rejected 
based on a G2 significance level of .05 in the fixed condition; 
the DPSD model was also rejected in the variable condition. 
This indicates that the MSD model fit best on a participant 
level; although given that most fits to aggregated data were 
rejected, a model comparison on this level is inconclusive.

Unplanned analyses.  To test whether our attentional 
manipulation affected recognition within the variable 
condition, we conducted a one-factor (number of digits 

per trial at three levels; 0, 1, or 2 and 3) within-subjects 
ANOVA on mean confidence ratings. As there were very 
few cases where three distractor digits were presented in a 
single trial (N = 9 throughout the whole sample), these 
cases were combined into a single level with two distrac-
tor digits per trial (M number of trials across participants 
with 0 digits = 18.0, 1 digit = 94.3, 2 digits = 17.5, 3 dig-
its = 1.0). The Greenhouse–Geisser sphericity correction 
method was used. The mean recognition rating to items 
did not differ according to the number of digits that were 
presented at study, F(1.98, 77.31) = 0.29, p = .77, 
ηp
2  = .007, BF = .01 (M recognition rating for words stud-

ied with 0 digits = 3.87, 1 digit = 3.94, and 2 and 3 dig-
its = 3.90). The absence of a significant difference and a 
BF < 0.33 suggests that the number of distractor digits 
presented in each trial did not influence recognition confi-
dence ratings as we had expected.

Given our finding that estimates of σo were greater when 
estimates of d were greater in the UVSD model, we con-
ducted Pearson correlations between estimates of these 
parameters across participants to determine whether σo and 
d were also linked at the level of individual participants. In 

Table 5.  Means and standard deviations of parameter 
estimates in model fits to individual data in Experiment 2.

Model Parameter Fixed condition Variable 
condition

UVSD σo 1.49 (0.33) 1.39 (0.25)
d 1.14 (0.70) 0.97 (0.59)
C1 −1.54 (1.42) −1.32 (0.94)
C2 −0.31 (1.17) −0.17 (0.65)
C3 0.65 (0.47) 0.72 (0.46)
C4 1.25 (0.57) 1.26 (0.45)
C5 1.99 (0.81) 1.95 (0.59)

DPSD R 0.23 (0.14) 0.18 (0.13)
d' 0.52 (0.38) 0.54 (0.31)
C1 −1.52 (1.62) −1.33 (1.35)
C2 −0.35 (1.34) −0.16 (0.61)
C3 0.59 (0.43) 0.66 (0.41)
C4 1.14 (0.46) 1.18 (0.40)
C5 2.91 (2.22) 2.89 (2.15)

MSD λ 0.53 (0.23) 0.54 (0.24)
dA 2.46 (1.35) 2.05 (1.10)
C1 −1.48 (1.27) −1.33 (1.04)
C2 −0.32 (1.09) −0.19 (0.64)
C3 0.63 (0.49) 0.71 (0.48)
C4 1.27 (0.58) 1.34 (0.73)
C5 2.10 (0.85) 2.22 (1.23)

UVSD: unequal variance signal-detection; DPSD: dual process signal-
detection; MSD: mixture signal-detection.

Table 6.  Goodness of model fits to individual participant’s 
data in Experiment 2, assessed by G2.

Condition Model Sum of G2 Percentage 
of best fits

Percentage of 
rejected fits

Fixed
  UVSD 161.31 37.5 5
  DPSD 216.28 40 12.5
  MSD 118.54 22.5 2.5
Variable
  UVSD 138.28 35 2.5
  DPSD 178.10 35 5
  MSD 115.89 30 5

UVSD: unequal variance signal-detection; DPSD: dual process signal-
detection; MSD: mixture signal-detection.
Fits rejected if p < .05.

Table 7.  Goodness of model fits to aggregate data in fixed 
and variable duration conditions (Experiment 2), assessed  
by G2.

Condition Model Order of best fit G2 p value

Fixed
  UVSD 2 17.61 <.01*
  DPSD 3 56.25 <.01*
  MSD 1 10.45 .03*
Variable
  UVSD 2 5.40 .25
  DPSD 3 70.09 <.01*
  MSD 1 0.49 .97

UVSD: unequal variance signal-detection; DPSD: dual process signal-
detection; MSD: mixture signal-detection.
*p < .05.
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the fixed condition, there was a strong, significant, positive 
correlation between estimates of d and σo, r(38) = .80, 
p < .01, 95% CI [0.65, 0.89]. A strong positive correlation 
between estimates of d and σo was also found in the varia-
ble condition, r(38) = .56, p < .01, 95% CI [0.30, 0.74]. We 
also conducted Pearson correlations between estimates of 
the strength/variance parameters from the DPSD and MSD 
model fits. For the DPSD model, the correlation between 
estimates of d′ and R in the fixed condition was weakly 
positive, but not significant, r(38) = .20, p = .21, 95% CI 
[−0.12, 0.48]. Estimates of these parameters were signifi-
cantly positively correlated in the variable condition how-
ever, r(38) = .44, p < .01, 95% CI [0.15, 0.66]. As in the 
MSD model parameter analyses, an outlying value was 
excluded listwise from this analysis. The MSD model’s dA 
and λ parameters were significantly negatively correlated 
in the fixed condition, r(37) = −.53, p < .01, 95% CI [−0.72, 
−0.25]. Another significant negative correlation was found 
in the variable condition, r(37) = −.55, p < .01, 95% CI 
[−0.74, −0.28].

For comparison, we also conducted the same Pearson 
correlation between parameter estimates for Experiment 1. 
Strong positive correlations were found between d and σo 
in both the fixed condition, r(38) = .72, p < .01, 95% CI 
[0.53, 0.85], and the variable condition, r(38) = .69, p < .01, 
95% CI [0.48, 0.82]. Unlike in Experiment 2, there were 
also significant positive correlations between estimates of 
d′ and R in the fixed condition, r(38) = .48, p < .01, 95% CI 
[0.20, 0.69], as well as in the variable condition, r(38) = .39, 
p = .01, 95% CI [0.09, 0.62]. Seven participants were 
excluded listwise from the MSD model correlation analy-
ses for having outlying values of dA. As in Experiment 2, 
estimates of dA and λ were (significantly) negatively cor-
related in the fixed condition, r(31) = −.51, p < .01, 95% CI 
[−0.73, −0.20] and in the variable condition, r(31) = −.54, 
p < .01, 95% CI [−0.75, −0.24]. Thus, the direction and 
strength of each inter-parameter correlation was largely 
similar in both experiments.

Discussion

Estimates of σo were significantly greater in the fixed 
condition than the variable condition, contrary to what 
might be expected according to the encoding variability 
hypothesis. Estimates of d in the UVSD model were also 
significantly greater in the fixed condition, indicating 
that the mean memory strength for old items in this con-
dition was also higher. In the DPSD model fits, although 
the R parameter was greater in the fixed condition, indi-
cating higher old item variance, the model’s estimates of 
d′ did not differ between conditions. As R affects both 
overall recognition strength and old item variance, an 
increase in this parameter with no change in d′ implies 
that both memory strength and old item variance were 
greater in the fixed condition. The estimates of the MSD 
model’s parameters also showed a similar trend; although 

λ did not differ between conditions, dA was marginally 
greater in the fixed condition (albeit not reliably so), 
which produces greater old item strength overall and 
greater old item variance. Therefore, according to all 
models, contrary to what might be expected under the 
encoding variability hypothesis, there was at least a 
numerical trend for both old item variance and overall 
levels of old item strength to be greater in the fixed than 
variable condition, with no evidence that old item vari-
ance was greater in the variable condition.

One explanation for why overall levels of memory 
strength were greater in the fixed condition could be that 
participants found the one-back task easier to perform in 
this condition. Indeed, performance in the one-back task 
was significantly greater in the fixed condition. If the one-
back task was easier, this could have resulted in more 
attention being paid to the objects being presented in the 
fixed condition, leading to stronger encoding of items in 
general and therefore greater strength associated with 
these items at test (DeBettencourt et al., 2018).

The co-occurrence of greater overall memory strength 
and old item variance has also been shown in previous 
research in patients with hippocampal lesions (Wais et al., 
2006). In a method where these patients were tested at dif-
ferent retention intervals, it was found that increases in 
memory strength over shorter retention intervals were 
reflected in a decrease in the slope of the z-ROC. As the 
slope of the z-ROC reflects the ratio of new and old item 
variance, an increase in memory strength can be associated 
with an increase in old item variance. Glanzer et al. (1999) 
also found that the slope of the z-ROC was linked to 
changes in recognition accuracy, again indicating that old 
item variance increases with overall strength. Indeed, 
results from Koen et  al. (2013) showed the same trend; 
estimates of old item variance and strength in the UVSD 
model decreased or increased simultaneously in each of 
their experiments.

The notion that old item variance increases with over-
all strength is also supported by inter-parameter correla-
tions from each considered model; particularly, strong 
positive correlations between d and σo in the UVSD 
model. As mean old item strength and variance are inde-
pendently represented by d and σo, respectively, this indi-
cates that both are strongly linked in the UVSD model. In 
the DPSD model, d′ and R can affect overall strength and 
old item variance; increases in d′ increment overall 
strength and decrease old item variance, and increases in 
R increment both overall strength and old item variance. 
As positive correlations between both parameters were 
observed in Experiments 1 and 2 (and all but one being 
significant), an increase in overall memory strength can 
be assumed. Due to the lack of assumptions specified for 
the recollection distribution, it is difficult to judge how 
well either parameter could compensate for changes in old 
item variance resulting from the other. Therefore, the evi-
dence for whether the DPSD model’s parameters showed 
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a relationship between strength and old item variance is 
inconclusive. In the MSD model, dA and λ had strong 
negative correlations in both conditions, demonstrating 
another co-occurrence of overall strength and old item 
variance. As λ decreases, a greater proportion of items is 
assigned to the A′ distribution, resulting in a reduction of 
total old item strength. As dA increases, both strength and 
old item variance become greater. Therefore, by taking on 
higher values, dA can compensate for any decreases in 
strength and changes in variance that occur as a result of 
λ having a lower value. Thus, a negative correlation 
between values of dA and λ aligns with an account where 
strength and old item variance are related.

It is also relevant to note that the MSD model emerged 
as the best fitting model when GOF to individual and 
aggregated data was compared. Because each model was 
shown to be recoverable at numbers of trials equivalent to 
those in participant- or aggregate-level analyses of fit (see 
Supplemental Materials, Appendix B), the MSD model 
can be selected as the best fitting model across individual 
participants. However, as several aggregate-level fits 
were rejected in Experiment 2, it is difficult to advocate 
the superiority of any model in this case. It should also be 
mentioned that the mean confidence ratings did not differ 
according to the number of digits presented at encoding. 
Although this suggests that our manipulation did not 
affect encoding variability, it is a possibility that the num-
ber of digits per trial is not a good proxy by which to 
measure the effectiveness of our manipulation. Our aim in 
the present experiment was to vary attention continuously 
across the study phase in the variable condition. It is 
therefore difficult to measure the effectiveness of our 
manipulation at the level of individual trials. In this way, 
it is still possible that our manipulation contributed in 
some way to the observed effects upon old item variance 
and memory strength, but not according to the number of 
distractor digits presented per trial.

Although there is no evidence that trial-to-trial varia-
tion in attention is responsible for producing increases in 
old item variance consistent with the predictions of the 
encoding variability hypothesis, there is still a possibility 
that these predictions could be elicited by other variables. 
This could be the case if a variable with a stronger effect 
on encoding variability was found. Thus, the search for a 
method which induces encoding variability can be 
extended to word frequency.

Experiment 3

Experiment 3 aims to manipulate old item variance by 
using word frequency as a potential encoding variable. The 
finding that low-frequency words (those less likely to 
appear within a given lexical corpus) elicit more accurate 
recognition judgements at test than more common words 
has been widely reported (Glanzer & Bowles, 1976). This 

applies for both types of item classes; when low-frequency 
words are presented as either old or new stimuli, they are 
more likely to be judged correctly as such. This “mirror 
effect” has promising implications for encoding variability. 
If recognition memory has a negative relationship with 
word frequency (Gorman, 1961), then an encoding varia-
bility account would predict that varying this according to 
a normal distribution would increase σo in the UVSD 
model. Furthermore, if the mean of this distribution were 
constrained to be approximately equal to that of a compara-
tive set of words with a low variance in their frequency, the 
overall recognition performance for either set of words 
would be unlikely to differ. Thus, a “clean” test of encoding 
variability in which recognition strength is theoretically 
unlikely to differ across conditions could be achieved.

Several considerations must be made when manipulat-
ing word frequency as an encoding variable; one of the 
foremost is choosing an appropriate measure of word fre-
quency. Historically, the commonality of a word was 
assessed by its occurrence in a corpus of one million words 
in total. Many researchers have used the Kučera and 
Francis (1967) word frequency measure, which works in 
this way; indeed, we adopted this metric in Experiment 1 
to enable a comparison with Koen and Yonelinas’s (2010) 
method. However, there are problems with this measure. 
First, the corpus from which Kučera and Francis (1967) 
derived their word frequencies is unlikely to be representa-
tive of contemporary language, both due to the time in 
which it was selected, and its literary format. Second, the 
measure is unable to account for very low–frequency 
words (<1 frequency per million) which make up around 
80% of the lexicon (Van Heuven et al., 2014).

In Experiment 3, we chose stimuli from the SUBTLEX- 
UK database (Van Heuven et  al., 2014) and adopted the 
associated Zipf unit measure of word frequency. With word 
frequencies indexed from large, contemporary, televised 
British-English corpora, the SUBTLEX-UK database has a 
better chance of accurately representing word frequency 
than older measures like Kučera-Francis. In addition, the 
Zipf scale provides a logarithmically transformed measure 
of word frequency that can account for the whole lexicon 
on a scale of 1 to 7. From this, it is possible to sample a 
Gaussian distribution with a moderate frequency mean 
(e.g., 3.5) which, in theory, has a good chance of adding 
variance to memory strength.

It is also important that a set of old items chosen accord-
ing to a Gaussian Zipf score distribution is accompanied at 
test by a closely matched new item distribution with the 
same constraints. If this was not the case and the new item 
word frequency distribution had a notably lower variance, 
then old words with high or low frequencies could stand 
out and be more identifiable in comparison. Similarly, it is 
important that the means of the new and old item distribu-
tions are equal, as a difference could artificially alter the 
overall memory strength for either stimuli set. Therefore, 



1254	 Quarterly Journal of Experimental Psychology 73(8)

the use of matched old and new item Zipf score distribu-
tions ensures that task performance is controlled.

In accounting for these potential pitfalls, we present a 
manipulation which stands a good chance of providing a 
theoretically sound encoding variability effect without 
affecting overall memory strength. Assuming that word 
frequency is a suitable proxy for encoding variability, we 
hypothesise that estimates of σo will be greater in a high 
word frequency variance condition than in a low word fre-
quency variance condition.

Method

Participants.  Forty participants (six males) with a mean age 
of 21.7 years (SD = 5.99) participated in this experiment in 
exchange for course credit. They were recruited from a Uni-
versity of Plymouth Participation Pool. Each participant 
spoke English as their first language and was non-dyslexic.

Materials.  A total of 400 five-letter nouns from the SUB-
TLEX-UK (Van Heuven et al., 2014) database were used 
as stimuli; names and hyphenated words were excluded 
from consideration. Two sets of stimuli (N = 100 per set) 
were used in each item variance condition. Each set of 
items in the low-variance condition had Zipf unit means of 
3.48, lower bounds of 3.41, and upper bounds of 3.59. 
These scores represent moderate word frequency (Van 
Heuven et  al., 2014), and are the equivalent of approxi-
mately three occurrences per million words. In the high-
variance condition, each set of words (H1 and H2) had a 
Zipf score distribution adhering to a truncated normal 
shape. These distributions adhered to the following con-
straints: (1) both distributions had a mean of 3.5 and simi-
lar standard deviations (H1: SD = 1; H2: SD = 0.99), (2) 
each distribution had a lower bound of 1.17 and a higher 
bound of either 5.83 (H1) or 5.84 (H2), and (3) were found 
not to significantly deviate from a normal distribution by 
Anderson–Darling tests (H1: A = 0.19, p = .90; H2: A = 0.11, 
p = .99) and Kolmogorov–Smirnov tests (H1: D = 0.04, 
p = .93; H2: D = 0.03, p = .99).

Procedure.  Participants took part in both experimental con-
ditions sequentially in a within-subjects design. A 2 (condi-
tion order) × 4 (old/new stimulus set) counterbalancing 
system was implemented, with an equal number of partici-
pants being assigned to each counterbalancing condition. 
After giving consent, participants completed either the 
high- or low-variance condition. In both study phases, each 
trial (N = 100) was comprised of a fixation point (a “+” 
symbol) presented for 500 ms, followed by a randomly 
selected old stimulus which was presented for 2,000 ms, 
and a 500 ms ITI preceding the next trial. As in Experiment 
1, participants were instructed that it was important to pay 
sustained attention to each stimulus during the study phase. 
After the study phase had elapsed, participants completed 

the retention interval task from Experiments 1 and 2 for 
3 min. The successive test phase procedure was also the 
same as in Experiment 1, with the sole difference being the 
number of stimuli presented (100 old and 100 new).

Results

Recognition performance.  The mean hit and false-alarm 
rates in both conditions are presented in Table 1. A 2 × 2 
within-subjects ANOVA with response (hit rate, false-
alarm rate) and condition (fixed, variable) as factors 
revealed a significant main effect of response, F(1, 
39) = 109.33, p < .001, ηp

2  = .74, BF = 1.80 × 1021, indicat-
ing that participants tended to successfully discriminate 
old from new items. There was no significant effect of 
condition, F(1, 39) = 0.07, p = .79, ηp

2  = .002, BF = 0.17, 
nor was the Response × Condition interaction significant, 
F(1, 39) = 2.44, p = .13, ηp

2  = .06, BF = 0.42. Thus, the abil-
ity to discriminate old and new items in each condition 
was approximately equal.

Word Frequency effect.  To gauge the degree to which our 
manipulation of word frequency influenced recognition 
confidence judgements, Pearson correlations between Zipf 
scores and recognition confidence judgements for old 
items were calculated for each participant. The mean cor-
relation r value was −.10 (SE = 0.03); this was significantly 
lower than zero, t(39) = −3.86, p < .01, 95% CI [−0.15, 
−0.05], BF = 60.24. This suggests that lower frequency 
words received higher confidence ratings, although this 
relationship was weak.

Parameter estimates.  All mean parameter estimates for 
both low- and high-variance conditions are found in  
Table 8. Mean estimates of σo in the UVSD model did not 
significantly differ between conditions, t(39) = −0.21, 
p = .83, 95% CI [−0.22, 0.17], BF = 0.17. Mean UVSD esti-
mates of d were also not significantly different between 
conditions, t(39) = 1.20, p = .24, 95% CI [−0.14, 0.53], 
BF = 0.33. In the DPSD model, mean estimates of R did 
not differ significantly between conditions, t(39) = −0.13, 
p = .90, 95% CI [−0.07, 0.06], BF = 0.17, nor did mean esti-
mates of d′, t(39) = 1.52, p = .14, 95% CI [−0.04, 0.26], 
BF = 0.49. In the MSD model, mean estimates of λ did not 
differ between groups, t(39) = −0.52, p = .60, 95% CI 
[−0.15, 0.09], BF = 0.19. Fits to four participants’ data 
were excluded listwise from subsequent analyses for hav-
ing outlying estimates of dA (greater than 10). dA tended to 
be greater in the fixed condition, t(35) = 2.04, p = .05, 95% 
CI [0.003, 1.31], BF = 1.13. A Wilcoxon Signed Rank test 
which included the outlying estimates of dA did not sup-
port this conclusion, however, V = 469, p = .44.

Comparison of fits.  As in the previous experiments, GOF 
comparisons were performed at individual (see Table 9) 
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and aggregate (see Table 10) levels. The DPSD model 
gave the greatest percentage of best fits to individual par-
ticipant’s data in the low-variance condition, with the 
UVSD coming a close second, and the MSD third. In the 
high-variance condition, the UVSD and DPSD models 
provided the joint greatest percentages of best fits, with 
MSD again following in succession. When fitted to aggre-
gated data from the low-variance condition, the UVSD 
model provided the best fit, followed by the MSD and 
DPSD models; the DPSD model fit was rejected on a G2 
significance level of .05. When fitted to aggregated data 
from the high-variance condition, the DPSD model gave 
the best fit, followed by the MSD and UVSD models. 
However, all of these fits were rejected. With no clear 
GOF hierarchy emerging, these model comparison results 
are inconclusive, as in previous experiments.

Inter-parameter correlations.  Following on from our 
unplanned analyses in Experiment 2, we conducted the 
same Pearson correlation analyses on parameter estimates 
in each model in Experiment 3. In the low-variance condi-
tion, there was a strong, significant correlation between 
values of d and σo, r(38) = .84, p < .01, 95% CI [0.71, 
0.91]. A moderate positive correlation also emerged 
between these parameters in the high-variance condition, 
r(38) = .42, p < .01, 95% CI [0.12, 0.65]. In the DPSD 

model, there was no significant correlation between d′ and 
R in the low-variance condition, r(38) = .16, p = .31, 95% 
CI [−0.16, 0.45]. Despite this, these parameters showed a 
significant positive correlation in the high-variance condi-
tion, r(38) = .36, p = .02, 95% CI [0.05, 0.60]. MSD model 
parameters dA and λ were significantly negatively corre-
lated in the low-variance condition, r(34) = −.57, p < .01, 
95% CI [−0.75, −0.29], and in the high-variance condition, 
r(34) = −.58, p < .01, 95% CI [−0.76, −0.30].

Discussion

There were no significant differences in σo between the 
high- and low-variance conditions, indicating that the 
UVSD model predicted no change in old item variance 
when fit to the data. Similarly, d did not significantly differ 
across conditions, indicating an equivalence in memory 
strength. These predictions were echoed by the DPSD 
model, in which neither R nor d′ differed significantly 
across conditions. In the MSD model, λ remained 

Table 8.  Means and standard deviations of parameter 
estimates in model fits to individual data in Experiment 3.

Model Parameter Low-variance 
condition

High-variance 
condition

UVSD σo 1.41 (0.55) 1.43 (0.56)
d 1.18 (1.16) 0.98 (0.81)
C1 −1.09 (1.05) −1.08 (1.19)
C2 −0.08 (0.67) −0.19 (1.14)
C3 0.57 (0.56) 0.39 (1.17)
C4 1.35 (1.54) 1.07 (0.98)
C5 1.90 (1.47) 1.74 (1.16)

DPSD R 0.22 (0.20) 0.22 (0.19)
d' 0.55 (0.45) 0.44 (0.40)
C1 −1.03 (1.00) −0.99 (0.96)
C2 −0.09 (0.65) −0.12 (0.80)
C3 0.54 (0.54) 0.45 (0.80)
C4 1.21 (1.06) 1.11 (1.26)
C5 2.41 (2.02) 2.03 (1.67)

MSD λ 0.60 (0.28) 0.65 (0.27)
dA 2.44 (1.68) 1.79 (1.12)
C1 −1.07 (1.02) −1.02 (0.94)
C2 −0.04 (0.60) −0.08 (0.73)
C3 0.57 (0.59) 0.54 (0.70)
C4 1.26 (1.31) 1.12 (1.01)
C5 2.01 (1.42) 1.89 (1.17)

UVSD: unequal variance signal-detection; DPSD: dual process signal-
detection; MSD: mixture signal-detection.

Table 9.  Goodness of model fits to individual participant’s 
data in Experiment 3, assessed by G2.

Condition Model Sum of G2 Percentage 
of best fits

Percentage of 
rejected fits

Low variance
  UVSD 156.22 37.5 7.5
  DPSD 151.70 40 5
  MSD 154.73 22.5 2.5
High variance
  UVSD 176.07 35 5
  DPSD 171.69 35 7.5
  MSD 167.55 30 7.5

UVSD: unequal variance signal-detection; DPSD: dual process signal-
detection; MSD: mixture signal-detection.
Fits rejected if p < .05.

Table 10.  Goodness of model fits to aggregate data in fixed 
and variable duration conditions (Experiment 3), assessed  
by G2.

Condition Model Order of 
best fit

G2 p value

Low variance
  UVSD 1 1.25 .87
  DPSD 3 14.48 <.01*
  MSD 2 2.21 .70
High variance
  UVSD 3 13.28 <.01*
  DPSD 1 10.32 .04*
  MSD 2 12.54 .01*

UVSD: unequal variance signal-detection; DPSD: dual process signal-
detection; MSD: mixture signal-detection.
*p < .05.
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unchanged while dA estimates were greater in the low-vari-
ance condition (although the Bayes Factor for this evidence 
indicated inconclusive evidence). This is indicative of 
greater memory strength and old item variance in this con-
dition, which, if anything, is not in the direction predicted 
by the encoding variability hypothesis. Therefore, on the 
basis of these results, there is no evidence for the encoding 
variability hypothesis in Experiment 3. It should be noted 
that this lack of evidence reflects the strength of the correla-
tion between word frequency and recognition confidence. 
This correlation was significant and negative (mean r = −.10 
across participants), which was expected given the previ-
ously reported negative function of word frequency against 
memory strength (Gorman, 1961). However, it is possible 
that realistically, the variance accounted for in this correla-
tion was too small to affect σo, mirroring the lack of a siz-
able effect of study duration and trial-to-trial attention in 
Experiments 1 and 2. Once again, despite our best efforts to 
create a high-variance manipulation of the encoding varia-
ble at hand, no such increase in the variance of old item 
memory strength occurred as a result.

The present model comparison results are also incon-
clusive, placing the UVSD and DPSD models in close 
competition as the best model to fit both individual and 
aggregated data. This comes in contrast with the results of 
Experiment 2, in which the MSD model was compara-
tively better than both the UVSD and DPSD models. That 
these GOF results were not conclusive, both within 
Experiment 3 and in comparison with Experiment 2, is not 
surprising given that all three models have been reported 
to provide fits of similar quality (Yonelinas & Parks, 
2007). The present results can serve to reinforce the con-
clusion that in the future, it would perhaps be more benefi-
cial to test differential predictions of competing models, 
rather than exclusively assessing their GOF.

Although there were difficulties in testing the encoding 
variability hypothesis and discriminating between mod-
els, it is clear that there is a common trend in the relation-
ship between strength and old item variance. As in 
Experiments 1 and 2, inter-parameter correlations in the 
UVSD model showed that the model’s measure of mem-
ory strength increased along with old item variance in a 
strong relationship. The DPSD model’s parameters were 
also positively correlated, albeit not significantly in the 
low-variance condition. As previously stated, it is difficult 
to assess the implications of these correlations upon the 
relationship between memory strength and old item vari-
ance, due to the loosely defined nature of the recollected 
item distribution. However, the present correlations are 
similar to those observed in Experiments 1 and 2, indicat-
ing a common weak to moderate positive relationship 
between the parameters. Inter-parameter correlations in 
the MSD model also echoed previously observed trends, 
showing a strong negative relationship which predicts 
simultaneous increases in memory strength and old item 

variance. These results help to reinforce the positive asso-
ciation between memory strength and old item variance.

General discussion

Despite the UVSD model’s decades-long prominence as a 
signal-detection model of recognition memory, the psy-
chological explanation for the old item variance effect has 
yet to be verified. The encoding variability hypothesis has 
been proposed as one explanation for the effect (Jang et al., 
2012; Wixted, 2007); however, despite its intuitive appeal, 
we failed to provide confirmation of it in our study. The 
results of Experiment 1 show that varying study duration 
from trial to trial had no effect on old item strength vari-
ance, compared with when study duration was fixed. In 
Experiment 2, we found no evidence that varying attention 
from trial to trial affected old item variance, compared 
with when attention was relatively constant across trials. 
Instead, increasing variability in attention actually led to a 
decrease in old item variance, although Bayes Factors sug-
gested that evidence for this effect, though significant, was 
inconclusive. In Experiment 3, word frequency did not 
affect old item variance. Under the encoding variability 
hypothesis, we expected old item variance to be greater in 
each variable condition, which it was not. Although our 
manipulations do not provide evidence against the hypoth-
esis, they demonstrate that, if the hypothesis is indeed cor-
rect, it is surprisingly hard to influence old item variance in 
line with its predictions.

Instead, old item variance tended to be linked to overall 
strength, such that variance tended to increase with overall 
strength. The existence of such a link seems intuitive: if 
the average signal strength for a set of old items is greater, 
then those items can take on a potentially broader range of 
strength values, thus increasing variance. In this way, as 
old item strength is assumed to be greater than new item 
strength, the variance of the old item distribution will tend 
to be greater than that of the new item distribution. In 
Experiments 1 and 3, this was the case; however, as overall 
memory strength did not differ between each condition, 
neither did old item variance. In Experiment 2, estimates 
of memory strength were predicted to be greater by each 
model in the fixed condition, along with old item variance. 
Although the encoding variability hypothesis could not 
account for this effect, when given context by an increase 
in strength, it can be explained. Despite an initial generali-
sation that the slope of the z-ROC (signifying the ratio of 
new/old item variance) was unaffected by memory strength 
(Ratcliff et  al., 1992), later evidence has contested this 
claim based on slopes changing with accuracy manipula-
tions in both previous and new experiments (Glanzer et al., 
1999). On balance, these and our findings are consistent 
with the idea that old item variance is usually linked to the 
overall level of memory strength, rather than encoding 
variability per se.
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It is important to note here that we assumed that any 
additional variance created by our manipulations was 
Gaussian in form. Yet, despite this assumption being 
reflected in our methods, there is no way of conclusively 
confirming this due to memory strength’s nature as a 
latent variable (Rouder et al., 2010). Considering this in 
Experiment 1, we chose our manipulation of study dura-
tion as it would not obviously create a mixture distribu-
tion (a view supported by Jang et al., 2012). Our methods 
in Experiment 2 and Experiment 3 also do not create obvi-
ous mixture distributions. Moreover, if our addition of 
variance was not Gaussian, it is still possible that the old 
item distribution retains a Gaussian form due to the cen-
tral limit theorem. This states that even the sum of inde-
pendent random non-Gaussian variables will be Gaussian 
in form as the number of such variables increases. When 
applied to the present experiments, even if either manipu-
lated encoding variable was non-Gaussian, the large num-
ber of other potential encoding variables might be 
expected to push the added strength distribution towards a 
Gaussian form. For this reason, the assumption that the 
total old item strength is Gaussian is made, which also 
allows for the derivation of otherwise computationally 
difficult or impossible mathematical results (Wixted & 
Mickes, 2010).

It should also be salient that our failure to provide sup-
porting evidence for the encoding variability hypothesis 
should not be taken as support for a model of recognition 
memory where incremental strength added at study does 
not vary. Indeed, based on the aggregated effects of many 
factors that affect memory strength during study, the addi-
tion of variable strength to old items is plausible. However, 
it is also possible that the variance contributed by these 
aggregated factors is not the primary causal contributor to 
the old item variance effect. In this case, variable strengths 
could be added to old items at encoding, but this alone may 
not result in observable effects upon encoding variability. 
Other possible explanations of the old item variance effect 
(such as a strength scaling account) are not incompatible 
with the idea that variable increments of strength are added 
at study; instead, they dispute the idea that this added vari-
ance is the sole cause of the old item variance effect.

Based on our attempts, the difficulty in manipulating a 
potential encoding variable enough to cause a substantial 
effect on recognition confidence is clear. Indeed, in the 
present experiments, no single encoding variable was able 
to account for a large proportion of added old item vari-
ance. We cannot rule out the possibility that there were 
small effects of our manipulations on old item variance, 
which we did not have sufficient power to detect. 
However, a very large (and likely impractical) number of 
participants would be required to detect such effects. 
Although this result is unfortunate, the encoding variabil-
ity hypothesis posits an overall increase in old item vari-
ance as a result of the compounded effect of many different 

variables. Therefore, if manipulating a single encoding 
variable fails to increase old item variance, compounding 
the effects of multiple encoding variables in a single study 
phase may add old item variance successfully. Based on 
our results, it seems that a new experimental approach 
based upon this concept could provide a better chance of 
finding a strong test of encoding variability. Further 
research could explore this possibility, although this 
would require many theoretical and methodological con-
siderations to implement experimentally.

It is possible that encoding variability could still affect 
old item variance by manifesting itself in a way that has 
yet to be tested. However, irrespective of methodology, 
there are several theoretical considerations which work 
against efforts to test the hypothesis. First, despite the spe-
cific mathematical assumptions made by the hypothesis, 
the definition of an encoding variable as any factor affect-
ing memory strength remains broad and could encompass 
a wide range of variables and processes. For example, 
attention could be affected not only by simultaneous task 
demands as in Experiment 2, but by other cognitive factors 
or a variety of sensory distractions. Although this presents 
many possibilities for further study, the task of exhaus-
tively testing every possible encoding variable to deter-
mine its effect (if any) on old item variance quickly 
becomes a difficult challenge. Therefore, the encoding 
variability hypothesis becomes difficult to falsify in its 
current conceptualisation.

Second, some of these possible encoding variables, 
such as the previous example of cognitive factors in atten-
tion, are difficult to experimentally manipulate due to the 
distributional assumptions of the hypothesis. In order to 
avoid the inclusion of mixture distributions as Koen and 
Yonelinas (2010) encountered, normally distributed varia-
bility has to be added experimentally across a study phase, 
as we attempted in our methods. Indeed, even if additional 
variance is non-Gaussian, it is still essential that this vari-
ance is added across a study phase so as not to confound 
any other given distributional assumption through mix-
ture. There are a multitude of variables which have been 
shown to affect memory strength, but may be problematic 
to manipulate in this way; plausible examples could 
include emotion regulation (Richards & Gross, 2000), 
emotional content of stimuli (McCloskey et al., 1988), the 
“bizarreness” of stimuli (McDaniel et al., 1995), and many 
likely others. This would make the already difficult task of 
exhaustively testing the encoding variability hypothesis 
even more challenging.

Third, in any recognition memory experiment, it can be 
assumed that the baseline variability of memory strength is 
already quite high. Regardless of the method, attention to 
the task at hand is likely to show some fluctuation through-
out a study phase, as previously discussed in Experiment 1. 
The time between the presentation of each stimulus at study 
and at test will vary as well, which may also add variation 
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in memory strength. The memorability of stimuli will also 
vary according to a multitude of factors. Based on each of 
these points, any further experimentally added variance 
would have to be very strong to have a significant increase 
on the total old item variance, on top of the baseline amount.

Finally, it is reasonable to assume that the correlation 
between the baseline memory strength of a stimulus and 
the strength added to it during study is negative. In meth-
ods that work to experimentally increase old item vari-
ance, the variance of the old item distribution in the UVSD 
model can be expressed as

σ σ σ ρσ σ2 2 2 2o B Y Y B= + + 	 (7)

where B and Y represent the baseline and added strength 
distributions as defined in Equations 3 and 4, and ρ is the 
correlation between baseline and added strength. A nega-
tive value of ρ in this equation therefore works against any 
attempt to add variance with an experimental manipula-
tion. This possibility has been previously considered by 
Jang et al. (2012), who stated that the encoding variability 
hypothesis assumes that any such negative correlation is 
too small to counteract attempts to add variance. Whether 
this is the case is debatable, although it holds that added 
variance is mitigated to some degree even in the case of a 
small negative correlation. This issue, compounded by the 
other practical and theoretical shortcomings, limits the 
testability of the encoding variability hypothesis.

Even though no experimental evidence of the encoding 
variability hypothesis exists as of yet, this alone does not 
damage the UVSD model’s legitimacy. As the model does 
not depend upon the encoding variability hypothesis being 
correct, a lack of evidence for this hypothesis does not 
impair its functionality. It is also still possible that added 
strength at encoding varies in some way. The results of this 
study do, however, present a challenge for proponents of 
the encoding variability hypothesis—to find a set of cir-
cumstances in which a valid method can lead to an increase 
in old item variance, as a result of encoding variability. 
Alternatively, proponents could reconceptualise the encod-
ing variability hypothesis (or suggest a new explanation 
altogether) to explain the results of the present study and 
previous work that finds no evidence for its current concep-
tualisation (Koen et al., 2013). It has been speculated that a 
separate process during the retention interval between 
study and test is responsible for mitigating or reversing the 
effects of encoding variability (Koen et  al., 2013); how-
ever, this has not been tested. Any unique predictions relat-
ing to old item variance made by the DPSD or MSD models 
could also be identified and tested further. Equally, the sug-
gestion of an association between strength and variance 
could provide an alternative explanation, though again, fur-
ther research is needed to fully evaluate this claim.

To conclude, we were unable to find evidence for the 
encoding variability hypothesis in any of our experiments 

as a result of manipulating study duration (Experiment 1), 
attention through simultaneous task demands (Experiment 
2), or word frequency (Experiment 3). In fact, in Experiment 
2, old item variance was predicted to be greater as a result 
of encoding variability in the variable condition, but it was 
actually significantly greater in the fixed condition, along 
with memory strength. Inter-parameter correlations in each 
experiment also supported a positive relationship between 
old item variance and memory strength. These results are 
compounded by the inherent difficulty in testing the 
hypothesis, from both experimental and theoretical per-
spectives. Thus, future efforts could use new methods to 
test the encoding variability hypothesis, or suggest a new 
explanation for the old item variance effect in the UVSD 
model. The link between memory strength and old item 
variance could also be explored further as an explanation.
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Notes

1.	 MATLAB programs used to run this, and each other experi-
ment in this article are available on our OSF project page.

2.	 In our preregistration, we stated that statistical indices d' and 
C would be calculated to measure recognition accuracy and 
bias, respectively, on the basis that previous researchers had 
also reported them. However, these indices assume that new 
and old item variances are equal. As this assumption has 
been conclusively rejected by the UVSD model’s superiority 
over an equal variance signal-detection model, hit and false-
alarm rates were instead used to provide a broad assessment 
of recognition performance before fitting each model.

3.	 Estimates of σo calculated from z-ROC slopes (derived from 
aggregated data) and fits to aggregated data supported this 
conclusion. The value of σo calculated from z-ROC slopes 
was marginally lower in the variable condition (σo = 1.28) 
than in the fixed condition (σo = 1.35). When models were 
fitted to aggregate data, the same trend emerged; the UVSD 
model predicted slightly lower old item variance in the vari-
able duration condition (σo = 1.29) than in the fixed duration 
condition (σo = 1.36).

4.	 We acknowledge that the manipulation which we present in 
Experiment 2 differs from a traditional n-back task. As the 
“odd or even” decision is the same in each trial, it is possible 
for a participant to hold only the response associated with 
the stimulus in memory to the complete the task and not the 
stimulus itself. In contrast, the identity of the stimulus itself 
is required to perform the associated response in a standard 
n-back task. However, as the participant still has to retain 
some information about a target stimulus (despite this not 
necessarily including the numeric identity of the stimulus) 
from a preceding trial, we henceforth refer to our experi-
mental manipulation as an “n-back task.”
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