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Abstract: The continuous evolution in preventive medicine has anointed vaccination a versatile,
human-health improving tool, which has led to a steady decline in deaths in the developing world.
Maternal immunization represents an incisive step forward for the field of vaccination as it provides
protection against various life-threatening diseases in pregnant women and their children. A number
of studies to improve prevention rates and expand protection against the largest possible number of
infections are still in progress. The complex unicity of the mother-infant interaction, both during and
after pregnancy and which involves immune system cells and molecules, is an able partner in the
success of maternal immunization, as intended thus far. Interestingly, new studies have shed light on
the versatility of maternal immunization in protecting infants from non-infectious related diseases,
such as allergy, asthma and congenital metabolic disorders. However, barely any attempt at applying
maternal immunization to the prevention of childhood cancer has been made. The most promising
study reported in this new field is a recent proof of concept on the efficacy of maternal immunization
in protecting cancer-prone offspring against mammary tumor progression. New investigations into
the possibility of exploiting maternal immunization to prevent the onset and/or progression of
neuroblastoma, one of the most common childhood malignancies, are therefore justified. Maternal
immunization is presented in a new guise in this review. Attention will be focused on its versatility
and potential applications in preventing tumor progression in neuroblastoma-prone offspring.

Keywords: maternal immunization; childhood cancer; neuroblastoma; DNA vaccination;
cancer prevention

1. Introduction

Vaccines have provided one of the most significant contributions to the control and eradication of
infectious diseases ever since the late 18th century and the first successful vaccines against smallpox
and poliomyelitis. A number of differing and innovative vaccination strategies have been developed
since that time, meaning that many life-threatening infectious diseases, including meningitis, rabies,
diphtheria, tetanus, pertussis, tuberculosis, hepatitis A, mumps, rubella, measles and varicella, have
become preventable in the majority of the world’s population [1-3].
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A crucial, although less resonant, step forward in preventive medicine concerns maternal
immunization; a vaccination strategy designed for women of childbearing age which is able to
significantly decrease susceptibility to microbial and viral infections and lower correlated mortality in
infants and their mothers, thanks to the passage of maternal antibodies through placenta and milk.

The scientific world has more recently begun to conceive vaccination as a novel strategy with
which to fight cancer formation, progression and spread. These types of vaccines can be therapeutic
cancer vaccines or prophylactic cancer vaccines; the former are aimed at treating existing cancer by
bolstering the host’s immune response, while the latter are intended to prevent cancer formation
or relapse. Unfortunately, the presence of immunoedited tumor cells, diffuse tumor burden [4,5]
and the negative setting of the immunoregulatory mechanisms [6], makes it difficult to succeed with
cancer vaccines within the setting of advanced disease. However, redirecting cancer vaccines towards
preventing tumor relapse or minimizing pre-malignant lesions may be the right direction to move
forward [7]. The major goal achieved in the field of prophylactic anti-cancer vaccines so far is the
prevention of cancers associated with chronic-infections, such as Hepatitis B Virus (HBV) related
hepatocellular carcinoma [8] and Human Papilloma Virus (HPV) driven carcinomas [9]. Numerous
studies, over the last 30 years [10], have tackled the ambitious aim of preventing initiation even
in virus-unrelated cancer; this field is still very much alive with some vaccines now in preclinical
phases or clinical trials [11-13]. It is now clear that the vaccine-driven prevention of tumor onset
and expansion rests on the coordinated action of multiple mechanisms, such as the activation of
cytotoxic T lymphocytes (CTLs) and CD4* T-helper (Th) cell, the release of interferon (IFN)-y and the
induction of a potent humoral immune response against a specific tumor associated antigen (TAA) and
a strong immune memory [5,13-15], which are some of the features required of a prophylactic cancer
vaccine. The parallels between the key role of specific vaccine-elicited antibodies in controlling tumor
progression and the induction of high antibody levels as the foundation of the maternal immunization
strategy, opens up new possibilities for the use of maternal immunization to prevent the occurrence
of neoplasms that typically occur in fetuses and neonates, such as neuroblastoma (NB). This review
will focus on the versatility of the maternal immunization approach, highlighting the link between the
concept of maternal immunization and neonatal cancer prevention and describing the new potential
role of maternal immunization as a NB-fighting tool.

2. Maternal Immunization

2.1. The Original Concept

The reciprocal immune interactions occurring at the maternal-fetal interface have been well
established over time [16,17] and, together with the fetomaternal microchimerism [17,18], underpins
the mother’s tolerance to the fetus and have implications for the immune status of both parties [19].

A central issue for the intimate relationship between mother and offspring is the protection
provided to the baby against various pathogens by the transfer of passive immunity, both before and
after birth. However, women of childbearing potential are less exposed to infectious agents nowadays
than they were in the past and, in some cases, may have suboptimal immune reactions to external
solicitations. As a consequence, they produce fewer protective antibodies ready to be transferred to
their offspring, which results in inadequate protection against various pathogens and diseases in the
first period of life characterized by a budding immune system [20,21].

The last decade has seen maternal immunization emerge as a trump card with which to tackle
this issue, as it has proven itself to be a safe and effective strategy for the prevention of both vertically
transmitted infection risk during pregnancy and life-threatening infections in newborn infants. This is
thanks to the active immunity elicited in the mother during pregnancy then passively conferred to
the offspring. Indeed, the introduction of vaccination with the vaccinia virus during pregnancy in
the late 19th century demonstrated the techniques ability to confer protection in young infants [22],
paving the way for other successful attempts leading to the introduction of antenatal vaccines against
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pertussis [23], neonatal tetanus [24,25], influenza virus [26,27] and of the combined tetanus, diphtheria
and acellular pertussis (Tdap) vaccine [28-30]. Despite the increasing prejudices against the pre-birth
vaccination practice, a copious amount of data has proven that it is harmless and beneficial [31-33],
so much so that the above mentioned vaccines are currently recommended for use on all expectant
mothers (Table 1). Other vaccines, such as those against Hepatitis A and B viruses, Pneumococcus,
Meningococcus, Smallpox, Varicella, Rubella and additional live-attenuated vaccines are instead
tailored for pregnant women that are subjected to specific risk factors or are indicated only postpartum
(Table 1).

Table 1. Summary of recommended vaccines for pregnant and postpartum women.

Target Population Vaccine Type/Form Recommendation

. 1 dose administered during flu at any
Influenza Inactivated .
All pregnant women gestational ages

Tetanus, Diphtheria and
acellular Pertussis (Tdap)

1 dose ideally between 27 and

Toxoid/inactivated bacteria 36 weeks of gestation

2 doses; allowed in

Hepatitis A Inactivated whole-cell viral X
some circumstances
.. Inactivated viral recombinant 3 doses; allowed in
Hepatitis B . .
subunit some circumstances
Pneumococcal Inactivated bacteria polysaccharide 1 dose if there is risk factor
. Inactivated bacteria polysaccharide
Meningococcal poly 1 dose if there is risk factor

Conjugate

1 doses during epidemics and in case
Yellow fever Live-attenuated viral of travel to endemic regions. (Should
be avoided during breastfeeding)

Pregnant women with 1 doses during epidemics and in case

specific risk factors Japanese Encephalitis Live-attenuated viral of travel to endemic regions
Typhoid L1ve—attenuat?d bacterial Insufficient data for reccommendation
recombinant
Post-exposure prophylaxis;
Anthrax Inactivated subunit pre-exposure prophylaxis is
not recommended
Post-exposure prophylaxis; consider
Rabies Inactivated whole-cell viral pre-exposure prophylaxis if risk of
exposure is very high
Tetanus and Diphteria (Td) Inactivated bacterial toxoids Allowed in some circumstances
(Tdap preferred)
Post-exposure prophylaxis;
Smallpox Live-attenuated viral pre-exposure prophylaxis is
not recommended
Postpartum women MMR Live-attenuated viral 1 dose 1mmed}ately postpartum if
(contraindicated in (Measles, Mumps, Rubella) susceptible to rubella

pregnancy) 1 dose immediately postpartum

Varicella Live-attenuated viral . .
if susceptible

List of vaccines already recommended during pregnancy or currently used in case of specific
infection risk. Sources: Centers for Disease Prevention and Control (www.cdc.gov/vaccines); World
Health Organization (www.who.int); updated to March 2017.

Moreover, new antenatal vaccines that are designed to potentially control infections driven
by major neonatal pathogens, such as group B streptococcus, respiratory syncytial virus and
cytomegalovirus, are currently in the developmental phase [34-38] and included in ongoing
or completed clinical trials (GBS: [39,40]; RSV: [41], NCT02247726, NCT02624947; CMV: [36],
NCTO00133497). Other vaccines against Rotavirus and Vibrio Cholerae are under investigation for
antenatal application [42,43]. More recently, the concern about the harmful results on the fetal brain
caused by Zika virus exposure during pregnancy [44,45] triggered the effort to develop a new vaccine
for pregnant women, stirring up the debate about the necessity and safety to include pregnant woman
in maternal immunization clinical trials [45].
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What is certain is that maternal immunization presently appears to be a unique approach
in covering the gap between birth and the maturation of the immune system, when children
can receive active immunization against several pathogens as per pediatric vaccination schedules
(http/ /www.cdc.gov/vaccines/acip). It is also an example of how to take advantage of the immune
interaction between mother and offspring.

2.2. Milestones, Claims and New Insights

The mainstay of the success of maternal immunization rests on the ability to stimulate protective
innate, cell-mediated and humoral immunity in the mother and the consequent production of a high
dose of specific antibodies, which confer protection to the offspring.

In humans and other mammals, systemic immunoglobulin (Ig)G produced during pregnancy,
upon exposure to a pathogen through either disease or maternal immunization, are passively
transferred to the fetus through the placenta with the greater amount passed during the third trimester
of gestation in humans [46]. Moreover, mucosal IgG, IgA and IgM are secreted into breast milk and
ingested by the newborn through lactation [47].

The mechanism of pre- and post-natal nondegradative transport of IgG, which is the major Ig
isotype induced by vaccination, implicates the neonatal Fc receptor (FcRn). This specific receptor is
widely expressed by the syncytiotrophoblast and gut in humans, as well as by the yolk sac endoderm
and, more efficiently, by the proximal small intestine in animal models commonly used for maternal
immunization studies, such as rodents [48-50]. Interestingly, the FcRn-mediated transfer of IgG may
permit the passage of other Ig isotypes. This possibility was demonstrated in mice and humans in the
IgE antibody class that can enter the circulation of offspring in the form of IgG anti-IgE/IgE immune
complexes through transplacental passage and lactation from allergic mothers [51,52].

The transport of IgA and IgM occurs postnatally by retro-transcytosis via polymeric Ig receptor
(pIgR) which is expressed in the apical portion of neonatal intestinal mucosa [53]. IgA can also undergo
retrograde transport across the microfold cells (or M cells) in the gut-associated lymphoid tissue of
infant intestines via an unknown receptor [54]. Moreover, a new means of retrograde transport of IgA,
which is linked to the transferrin receptor [55-57], also known as CD71, has been identified.

Another member of the immunoglobulin family to be unexpectedly transferred from mother to
offspring is the IgD antibody class. Evidence for this was demonstrated a long time ago by a number
of studies showing the presence of maternally-derived specific IgD in amniotic fluid, cord blood
and breast milk following maternal immunization against Rubella [58-60]. Despite the mechanism
of IgD passive influx during and after pregnancy still being unknown, the finding concerning the
materno-fetal transfer of IgD early in the phylogenetic evolutionary process [61] suggests that IgD
is significantly involved in the protection of the newborn. For example, this class of antibody can
supply to mucosal immunity in the case of IgA deficiency and can potentiate immune surveillance by
activating proinflammatory programs against pathogens of the respiratory tract [62].

The IgE antibody isotype was also found in the amniotic fluid [63], justifying the interest in their
role in awaking the immune system against parasites after birth.

Overall, the Ig component of breast milk allows mucosal defense against harmful bacteria of the
luminal tract to occur by direct neutralization, inactivation of toxins and other virulent factors and the
inhibition of their adherence to epithelial cells. Moreover, the antibodies present in milk can transport
some antigens across the neonatal intestinal mucosa with the involvement of mucosal dendritic cells
(DCs), which bind IgA- or IgG-transporting antigen via FcaRI or FcyRs, inducing both immunity
against pathogens and tolerance towards commensal microbiota [47,64—66]. This is in line with the
idea that maternal immunization, rather than neonatal vaccination, can favor immune adaptation to
microbial colonization shortly after birth, while avoiding any disturbance to the intestinal host-microbe
homeostasis [47,67-70].

Conversely, some evidence has highlighted the inhibitory role that maternal antibodies can play
in the generation of an effective humoral response in offspring following active immunization. The
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inhibition of seroconversion after vaccination has been shown in several cases of offspring from
vaccinated mothers, such as those against measles [71,72], HBV [73], pneumococcus [74], tetanus
and pertussis [74-77]. However, the inhibition of B cell responses by maternal antibodies shall cease
with the decline of maternal antibodies in offspring sera [78,79], suggesting that monitoring maternal
antibody concentration would allow the correct timing for vaccination in infants to be scheduled. This
problem might be overcome by a number of strategies, such as an increase in the vaccine antigen
dose [80,81], and other approaches which have been comprehensively reviewed [82]. Moreover, it has
been recently demonstrated that heterologous maternal-infant immunization can abolish the negative
effects of maternal antibodies on offspring immune responses [83,84]. This is in line with observations
about the protective role of plasmid DNA-based vaccines encoding for viral antigens in infant animals
born from mothers immunized with a different vaccine formulation [85,86].

2.3. Maternal Immunization can Confer Active Immunity to Offspring via Breastfeeding

Evidence proving that immunization during or after lactation results in better humoral and
cellular immune responses in children who have benefited from breastfeeding [87-89], point to the role
that maternal milk has to play in active immune simulation in infants. One of the mechanisms proposed
to explain this issue is the passage of anti-idiotype maternal antibodies against pathogen antigens that
can specifically prime an infant’s immune system [87,90]. Moreover, the presence of cytokines such as
IFN-y in maternal milk can contribute to Th2-like bias shaping the neonate immune system [91,92].
The most recent findings [93] have demonstrated the protective role that maternally derived cytokines,
such as tumor necrosis factor (TNF)-«, IFN-vy, interleukin (IL)-6, IL-8 and IL-12/IL-23p40, play in
a pertussis model. The authors showed that the passive transfer of cytokines during the suckling
period in piglets fed by mothers immunized with heat-inactivated Bordetella pertussis, substantially
contributes to protecting offspring, possibly by regulating their immune repertoire [93].

In addition, the presence of live activated leukocytes, including neutrophils, macrophages and
lymphocytes [94], has been categorically demonstrated in milk. Interestingly, maternal lymphocytes do
secrete specific factors that are able to support the humoral immune response in newborns in both T-cell
dependent and independent pathways [95]. After maternal transfer, lymphocytes are taken up and
found in the intestinal mucosa and Peyer’s patches in neonates upon breastfeeding [96,97] where they
can induce active immunization as demonstrated in lambs fed by sheep mothers immunized against
tetanus [98]. Moreover, Bandrick et al. [99] have demonstrated for the first time that colostrum-derived
lymphocytes, passively transferred from vaccinated mothers to their offspring, are able to proliferate
and participate in a functional response to a Mycoplasma hyopneumoniae antigen. Indeed, they
showed an antigen-specific in vivo delayed-type hypersensitivity response in breastfed offspring
and lymphocyte proliferation in vitro [99].

Furthermore, the active immunization of newborns can occur via the passage of antigens
associated to specific IgG, as demonstrated in experimental models in various studies and described
in the next paragraph. Immune complexes (ICs) formed by antigen and specific IgG can undergo
FcRn-mediated uptake [100] at the intestinal mucosal surface. They will be shipped into vesicles,
where processing of the complexed antigen releases peptides that are loaded onto MHC class I (MHC-I)
and class II (MHC-II) molecules of antigen presenting cells, thus stimulating the activation of cognate
CD8* and CD4" T cells.

Overall, the evidence described so far make maternal milk and breastfeeding irreplaceable
immunity sources which confer passive immunity and actively stimulate the infant immune system.

3. Maternal Immunization can Prevent Non-Infectious Diseases in Offspring

The effectiveness of maternal immunization against infectious harmful agents has been largely
proven and this research field is still actively productive. However, new approaches have been
explored which have maternal immunization against non-infectious antigens as their main focus,
further expanding upon the versatility of this vaccination strategy.
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A curious and elegant approach was devised by Yamashita et al. [101] during the study of maternal
immunization against an antigen prevalent in atherosclerotic lesions (oxidized LDL; oxLDL) which
was performed in rabbits and mice with the aim of preventing in utero atherogenic programming
driven by maternal hypercolesterolemia. They displayed a significant reduction in atherogenesis in
adulthood in animal offspring born from anti-oxLDL immunized mothers and explained this effect by
the passage of specific ICs, containing anti-OxLDL IgM and LDL, to the fetus. These ICs were able to
remove LDL particles from fetal blood circulation and trigger specific IgM and IgG responses upon
challenge with oxLDL in adult animals born from immunized mothers [101]. In parallel with this study,
the same group demonstrated the inhibition of the in utero programming of diabetic conditions in mice
following maternal immunization with OXxLDL [102]. This approach has achieved to eliminate the risk
of insulin resistance and type-2 diabetes in both mother and offspring, consistent with a regulatory
effect on the expression of genes relevant to diabetes and oxidative stress [102].

A more consistent number of investigations in rodent models has focused on preventive
vaccination against allergens that make use of maternal immunization. One of these studies has
demonstrated how the vaccination of female mice with OVA and Al(OH)s, used as an adjuvant,
during pregnancy and soon after delivery, can induce OVA-specific IgE suppression in offspring which
received the same allergen as young adults compared to those from non-immunized mothers [103].
In contrast to IgE, the level of allergen-specific IgGG2a was found to be unaffected in the offspring
of immunized mothers, as compared to controls, after OVA-immunization in the presence of an
adjuvant [103]. Other studies have observed IgE inhibition in the offspring of allergen-immunized
mothers but an enhanced IgG response [104,105]. This evidence can be explained by the hypothesis of
the induction of allergen-specific Th1-like immunity in offspring. These effects may be translated to a
reduced incidence of allergy thanks to the crucial role that IgE plays in mediating the mechanism of
the type-1 hypersensitivity response. Indeed, independent studies have demonstrated an inhibitory
effect on the development of allergic reactions and asthma in neonates exposed to OVA after the
immunization of their mothers with the same allergen [104,106,107]. One proposed mechanism for the
effectiveness of maternal immunization in preventing neonatal allergy was the upregulation of the
expression of the inhibitory receptor FcyRIIB on offspring B cells, leading to the inhibition of B cell
proliferation, avoiding skewed Th2 responses and therefore the development of allergic disorders [108].

As in the case of atherosclerosis, mentioned earlier, the prevention of allergy in mouse models
required the formation and transfer of specific ICs by breastfeeding. This concept has been well
described by Mosconi et al. [105], who showed that maternal exposure and sensitization to OVA during
lactation induced oral tolerance in breastfed pups, preventing allergic asthma development thanks to
the uptake of specific IgG1-OVA ICs. The protection conferred against allergic airway inflammation in
the progeny of antigen-exposed sensitized mothers was dependent upon the expansion of OVA-specific
T regulatory (Treg) cells and persisted up to 14 weeks after birth, at which point maternal IgG had
disappeared from circulation, demonstrating the induction of an active tolerance to the antigen [105].
These data are in accordance with other studies that have demonstrated the induction of tolerance
towards allergens upon maternal immunization which is caused by the presence of high levels of
regulatory cytokines in the amniotic fluid [109]. Moreover, the transfer of specific IgG1 antibodies from
mother to offspring is able to inhibit anaphylactic IgE and IgG1 antibody responses in immunized
offspring [107]. It has been also demonstrated that preconceptional immunization determines the
profile of DC and Treg generation in the progeny [109-111]. The generation of regulatory or memory T
cells may explain the long-lasting effect of the tolerance status of offspring.

This abundance of evidence has now made it clear that the liability of the immunological shaping
of the progeny is delegated to the mother before and in the period soon after birth. Moreover, the
immunological link established between mother and offspring during pregnancy and lactation has
been proven to be an invaluable source of protection for the newborn, even against non-infectious
diseases. On those grounds, we believe that this complex and unique relationship can be exploited for
the immune prevention of childhood cancer.
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Sandler and colleagues [112] performed the first attempt at this goal via the passive
immunization of female rats, before mating, with polyclonal IgG directed against the soluble 53 kDa
(s53) TAA. They demonstrated that maternal passive immunization conferred protection against
dimethylbenzantracene-induced tumorigenesis in offspring [112]. The reduced risk of tumor formation
noted in the adult rats born from vaccinated mothers was due to the direct stimulation of their immune
system, as proven in a subsequent study [113] by the expansion of the progeny’s splenic follicles and
germinal centers following s53 maternal immunization.

Although lacking somewhat from the conceptual point of view, because of the passive
immunization technique used and the poor translational value of the dimethylbenzantracene model,
these studies represent a first step towards the application of maternal immunization to prevent cancer
in offspring.

4. Maternal Immunization Against Tumor Associated Antigens: The Potential of DNA
Vaccination

Despite the wealth of positive clinical evidence demonstrating the safety and efficacy of maternal
immunization for the prevention of infectious diseases, including infection-related tumors in newborn
children, its use as active immunization against TAA is not an overly explored field. Indeed, very little
preclinical effort to prevent congenital tumors by maternal vaccination has been made so far.

In the last century, the characterization of several TAA in non-infection-related cancers [114],
together with evidence that immune responses against these antigens could be spontaneously mounted
by a patient’s immune system [115-118], has provided the rationale for the development of specific
anti-TAA vaccines for cancer management. However, despite the encouraging results in preclinical
studies [119-124], the overall clinical benefit has been so far limited [125].

In terms of clinical setting, one problem is that anti-cancer vaccination studies are commonly
carried out when high tumor load is already present, bringing with it all the immunosuppressive
phenomena that can impair and/or elude the immune response. Studies are therefore moving into
earlier disease stages, since true primary cancer prevention is still a futuristic goal [15,125] and the
removal or avoidance of cancer risk factors by vaccinating healthy individuals for the prevention of
non-infectious related cancers is still far from being reality. However, the repositioning of preventive
anti-cancer vaccination into the field of maternal immunization could renew the original concept and
pave the way for a pioneering approach to the management of congenital tumors.

Among the TAA-targeted vaccination strategies, DNA mediated immunization is the youngest
but most-rapidly developing technology in the immunology field. Since the characterization of
the first tumor antigen, named melanoma antigen (MAGE)-1, in 1991 [126], the identification of
a growing number of TAA has prompted the extensive evaluation of targeted DNA vaccines for
the treatment of cancers in both preclinical and clinical studies [127-129]. DNA vaccination brings
with it several advantages over other immunization techniques, among them, the ability to induce a
complete and robust humoral and cellular immune response [5]. Moreover, more logistic advantages
of DNA vaccines include the relative ease and low cost of production and transportation as well as the
possibility of being applied to a wide population, independently from the immune histocompatibility.
However, only a few steps forward have been taken along the path of translating DNA vaccination to
the field of maternal immunization.

Some evidence has suggested that neonates, born from DNA-immunized mothers, can
elicit effective immune responses against viruses even in the presence of potentially inhibitory
maternally-derived Ab. The explanation probably lies in the ability of DNA plasmids to directly
transfect cells in vivo and induce antigen expression after the physiological decline of maternal
antibody levels. Consequently, the viral antigen is not readily available to maternal IgG binding, which
may induce a cross-link between FcyRIIB (engaged by antigen specific IgG) and the B Cell Receptor
(which recognize the same antigen) on B cells, thus inhibiting their activation [82].
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Independent studies have demonstrated the efficacy of DNA immunization, as applied in both
mothers and offspring, in priming the offspring immune system against the influenza virus [130-132],
herpes virus [133,134], measles virus [135], rabies and pseudorabies virus [86,136]. The most recent
finding in this field has demonstrated that preconceptional DNA immunization against an HIV-1
antigen (the LAMP/gag DNA chimeric vaccine) was effective for the transferring of high levels of
maternal Ig, via the transplacental and breastfeeding routes, to offspring. This event leads to the
temporary inhibition of the offspring immune response when vaccinated with the same construct,
but surprisingly it does not affect later T- and B-cell responses, demonstrating the granting of
immunological memory to the pups. Therefore, maternal DNA vaccination was found to be a good
strategy for effective maternal and newborn vaccination, even if further investigations are needed to
set up an effective and safe immunization protocol. All this knowledge could be successfully translated
into the field of maternal immunization against TAA for the prevention of neonatal tumors.

4.1. Maternal Immunization can Confer Anti-Tumor Immunity Against Her2-neu

The stepping-stone in the development of a successful anti-tumor DNA vaccine is the
identification of the best target antigen. Several studies have attempted to define the ideal features
of a TAA to be used for DNA vaccination. Our group coined the term “oncoantigens” [5] for TAAs
that drive the progression of a neoplastic lesion from one stage to the next and can be expressed
on the membrane or in the cytoplasm of a tumor own cell, or be secreted by the non-neoplastic
cells surrounding the tumor that form the tumor microenvironment [6,137]. Oncoantigens can be
classified into three classes, according to their localization: (i) class I, antigens expressed on the cell
surface; (ii) class II, antigens of the tumor microenvironment; (iii) class III, antigens confined in the
intracellular compartment [138]. Some selected characteristics of oncoantigens make them useful
targets for immunotherapy. First of all, the stable expression of oncoantigen throughout the various
tumor development stages makes them unsusceptible to immunoediting, with the impairment of
tumor progression if they come lost. Moreover, the common and high expression levels in transformed
cells and /or within the tumor microenvironment, coupled with poor expression in normal cells, is a
crucial feature. Finally, the susceptibility of an oncoantigen towards both T cell-mediated and antibody
responses is an appealing feature [138].

Of the well-known and characterized TAAs identified so far, Her2-neu (neu) is considered to
be an “ideal” oncoantigen for cancer immunotherapeutic studies. The efficacy of DNA vaccination
against neu was studied exploiting a preclinical mouse model of neu-positive breast cancer called
BALB-neuT [139-142]. They are BALB/c mice heterozygous for the transforming form of the rat
neu transgene under the transcriptional control of the mouse mammary tumor virus promoter; then
predestined to develop mammary tumors in all their mammary glands [139]. Our group demonstrated
that anti-neu DNA vaccination effectively inhibits carcinogenesis in BALB-neuT female mice, with
better results when followed by electroporation [143-146]. The success of this DNA electrovaccination
technique rested on the induction of a strong anti-neu antibody response [143,147].

Since the success of maternal immunization relies on the same principles, the evaluation of the
efficacy of active DNA maternal immunization against neu has recently been performed in order
to hamper spontaneous mammary tumor progression in BALB-neuT offspring [148]. Importantly,
maternal immunization against neu has proved to be well tolerated, without any side effects reported
to both mother and offspring during and after pregnancy [148]. Indeed, despite the expression of neu
in the embryonic tissues [149], the fertility ratio, the number of the litter and newborn size were not
affected in the case of maternal immunization against neu [148]. Possible explanations underlying this
phenomenon are the larger amount of antibodies passed through lactation in rodents compared to the
transplacentar passage [48] and the evidence that the specific anti-rat neu antibodies induced by DNA
vaccination are not cross-reactive to the murine orthologue molecule [150].

The significant extension of tumor-free and overall survival observed in BALB-neuT offspring
born from and fed by mothers electrovaccinated against neu, as compared to those from control
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mothers, was related to the passive transfer of maternally-derived anti-neu IgG to newborns [148].
More specifically, the most abundant IgG subclass found in the milk and sera of neu-vaccinated
mothers and in the sera of their pups have been demonstrated to be IgG2a [148]. Clearly, maternal
immunization against neu is able to activate Th cells producing IFN-vy, the primary switch factor for
IgG2a, according with previous findings [151]. Since IgG2a activate the complement and interact
in an efficient manner with the Fcy receptors on various effector cells [152], it is conceivable that
upon maternal immunization against neu, important immune reactions, such as antibody-dependent
cell-mediated cytotoxicity, may take place borne by the offspring. This hypothesis was confirmed by
the failure of maternal immunization against neu in protecting BALB-neuT female mice from tumor
progression when they were born to and fed by FcyRI/III-knock out BALB/c mothers [148].

However, the anti-tumor protective effect recognized in BALB-neuT offspring after maternal
immunization was also due to an active immune response triggered in newborns against the neu
oncoantigen. Indeed, even if tolerant of the neu immunodominant peptide because of its expression
in the thymic stroma as a self-peptide [153], BALB-neuT offspring born from and fed by vaccinated
mothers were able to develop an in vivo cytotoxic response against the same peptide (p63-71). The
observation of the expansion of specific CD8* T cells bearing the specific T cell receptor rearrangement
against the p63-71 BALB-neuT offspring born from and fed by vaccinated mothers left out the
possibility of the passive transfer of this reactive pool of T cells [148].

Moreover, neu-specific IgM*™ memory B cells have been found in the spleens of offspring from
vaccinated mothers as compared to control offspring. Indeed, the pups displayed anti-neu IgM in their
sera despite the little amount of this antibody class revealed in the milk of their vaccinated mothers.

The activation of immune responses in offspring upon maternal immunization against neu could
be explained by the principle of DNA vaccination. After DNA electrovaccination against neu, the
transfected muscle cells of immunized mothers produce, by themselves, the neu protein that then
could be shed [154], delivering the extracellular portion of neu protein (EC) to the blood stream.
According to the FcRn-mediated mechanism described above, the anti-neu vaccine-induced IgG and
the EC portion were transferred, in the form of specific ICs, to the offspring in the suckling period [146],
stimulating the expansion of a specific T cell response following the cross-presentation of EC peptides
onto the MHC-I and MHC-II expressed by DCs (Figure 1). Results reported in this study demonstrated
that maternal immunization has the potential to hamper mammary cancer in genetically predestined
offspring, in a prototype preclinical model. These findings have stimulated enthusiasm for the use
of maternal immunization against oncoantigens towards the prevention and/or treatment of lethal
neonatal cancer diseases.
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Figure 1. Schematic representation of the mechanism underlying maternal immunization-induced
immune protection in offspring. (A) Maternal immunization schedule providing a prime-boost DNA
electrovaccination strategy in BALB/c female mice, which then mated with a transgenic BALB-neuT
male. (B) Maternal DNA immunization leads to high levels of anti-neu IgG antibodies in mother’s
sera being passed to offspring mainly through colostrum and milk. Maternally-derived IgG alone, or
complexed with the EC portion of neu, bind the FcRn on the surface of the pup’s enterocytes. The
antibody-receptor complex can be internalized and then released into the intestinal lumen. The IgG-neu
ICs interact with DC through Fcy receptors. The DC can then internalize the ICs and load neu peptides
onto the MHC-I or MHC-IL. The binding of CD8" T cells that express specific TCR against p63-71 with
the MHC-I-neu peptide complex on DCs leads to the expansion of this specific CD8* T cell clone into
the lymph nodes of offspring born from and fed by anti-neu vaccinated mothers, activating an effective
cytotoxic T cell response. (C) List of pictures and related abbreviations.

10 of 24

5. The Rationale for the Application of Maternal Immunization Against Childhood Cancer

Neonatal cancer comprises a heterogeneous group of neoplasms. Almost all types of pediatric

cancer are rare but can occur early in fetuses and neonates, ruling out the possibility of major

lifestyle-related or environmental risk factors that may influence the onset of cancer as can happen

in many cancers that arise in adulthood. Nevertheless, maternal exposure to risk factors may be an

indirect cause of neonatal cancer [155,156].

About 10% of cancers that arise in childhood are related to a cancer predisposition
syndrome [157-159] that may be associated with developmental defects [160]. This proportion might
readily increase with advances in the understanding of the genetics of cancer. This being said, it would
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not be surprising if childhood cancers were found to have a prenatal origin. Indeed, they are often
the result of DNA mutations in cells that sometimes even take place before birth [161]. A unique
characteristic of certain childhood cancers is the development of hyperplasia in embryonic cells that has
a natural disposition to spontaneously regress through cell death [162,163]. In some instances, some
embryonic cells can resist the cell death signals thanks to trophic factor withdrawal, which normally
occurs for deleting cells that are in excess after the completion of organogenesis [161]. These cells can
later acquire additional alterations leading to malignant transformation and cancer progression.

According to the American Cancer Society, the most common cancers diagnosed in children are
leukemia, lymphoma (including both Hodgkin and non-Hodgkin), Wilms’ tumor, rhabdomyosarcoma,
retinoblastoma, bone cancer, brain and other central nervous system tumors and NB
(http:/ /www.cancer.org/cancer/cancerinchildren/). Of these, NB, Wilms’ tumor, retinoblastoma and
B-cell lineage acute lymphocytic leukemia have been identified as arising prenatally [161].

The identification and diagnosis of such types of cancer might thus occur before birth via direct
detection on ultrasound [164,165], magnetic resonance imaging (MRI) [166,167] or indirectly in view
of fetal complications. Moreover, it can be argued that prenatal diagnosis of cancer will soon come
from next generation sequencing technology, as has already happened for aneuploidy and other
abnormalities [168-173]. Either way, genetic testing to characterize a heritable germline mutation
of cancer susceptibility genes may be required [174,175], especially when there is a risk of perinatal
malignancies strongly associated with a cancer predisposition syndrome.

The therapeutic decisions made when managing childhood cancer must consider the vulnerability
of neonates, as well as the type and stage of the cancer, and should avoid aggressive therapies. The
standard therapeutic options for pediatric cancer have included surgery, radiation-based strategies
and chemotherapy for a long time, sometimes used in combination to achieve better results. Although
these standard approaches lead high response rates in some cases [176-178], the progress in their use
has reached a plateau over the last decade. Moreover, chemo-resistance and toxicities associated with
increasing doses of some conventional drugs block the way to further therapy improvements and, in
most cases of advanced disease, do not lead to a favorable outcome [160].

Immunotherapy approaches that have recently shown increasing promise in the field of adulthood
cancer therapy seem to be viable options for improving the treatment of childhood cancer by means
of chimeric monoclonal antibodies [179,180], chimeric antigen receptor T cells [181-184], and cancer
vaccines [185-187]. Similar to the results in adults, the first two approaches are not free of side
effects [182,188-190], while pediatric cancer tumor vaccines are safe to administer but tumor regression
has so far been rarely observed [186,187,191]. These kinds of treatments could become an interesting
approach in the setting of minimal residual disease burden and diminish recurrence in high-risk cases.
However, the aggressive nature of many infant cancers could make the slowing of the tumor growth
rate challenging even without contributing to meaningful clinical benefits. Therefore, it becomes clear
that a readily workable prevention strategy for childhood malignancies is not available at the time. For
this reason, it would be of great interest to develop a strategy of prevention within the antenatal setting.

Towards the Application of Maternal Immunization against Neuroblastoma

Of the known childhood embryonal malignancies, NB is one of the most commonly diagnosed
in the first year of life [192]. It is an extracranial solid tumor arising from the sympathetic nervous
system with a wide range of clinical phenotypes [193]. NB accounts for sporadical or familial cases,
being responsible for 15% of cancer-related deaths in children. A germline mutation in the anaplastic
lymphoma receptor tyrosine kinase (ALK) gene is known to be the most common cause of hereditary
NB [194]. On the other hand, familial NB is rarely associated with congenital central hypoventilation
syndrome, which is caused by a germline mutation of the PHOX2B gene [195]. Approximately 10% of
sporadic NB carry somatic ALK-activating mutations and an additional 4% have a high frequency of
ALK gene amplification. The mutations result in constitutive phosphorylation of ALK receptor tyrosine
kinase, leading to dysregulation of cell signaling and uncontrolled proliferation of the ALK-mutant
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neuroblasts [196]. Of several somatic activating ALK mutations identified in NB, one of the most
common is a cytosine-to-adenine change in the exon 23, resulting in a phenylalanine-to-leucine
substitution at codon 1174 (F1174L) within the kinase domain [194,196]. This mutation is preferentially
associated with another recurrent alteration described in patients with NB and typically linked
to high-risk NB [197]: the amplification of MYCN, an oncogene belonging to the MYC family of
transcription factors which codes for a pleiotropic nuclear phosphoprotein [198].

Recently, Berry et al. [199] have demonstrated that ALKF!74l mutation potentiates the oncogenic
activity of MYCN in NB by using a transgenic mouse model that overexpresses the ALKF!174L and
MYCN genes in the neural crest under the control of the rat tyrosine hydroxilase promoter. These
mice (ALKF174L /MYCN mice), hemizygous for both human ALKM174L and MYCN on the C57/BL6J
background, exhibit high tumor penetrance and rapid lethality due to the development of large and
locally invasive thoracic and abdominal masses that arise in the paraspinal ganglia or adrenals [199].

According to the evidence that mutation and rearrangement imputable to ALK are associated
with other malignancies, including non-small cell lung cancer (NSCLC) [200], anaplastic large cell
lymphoma (ALCL) [201] and other types of neonatal cancer such as rhabdomyosarcoma [202-205], a
recently reported type of congenital lung lesion (fetal lung interstitial tumor) [206] and inflammatory
myofibroblastic tumors [207], the inhibition of the aberrant ALK kinase function could be a viable
therapeutic option for different pathologies, besides pediatric NB. Crizotinib, a dual-specific inhibitor
of ALK and c-met [208] has been recently approved by the Food and Drug Administration (FDA)
for the treatment of NSCLC, and could be used against pediatric tumors. Nevertheless, the main
challenge in its use is the development of therapeutic resistance. As regards the treatment of NB,
acquired Crizotinib resistance has been demonstrated in specific ALK mutations, including the F1174L
mutation [208,209].

Interestingly, recent preclinical studies indicate that ALK fulfills the major requirements for an
ideal OA for lymphoma vaccination [210] and that a vaccine against ALK can induce a strong specific
immune response able to impair the growth of ALK-rearranged lung tumors [211].

These premises have driven our idea to apply the antenatal DNA vaccination approach against
ALK on the ALKFT174L /MYCN engineered transgenic mouse model on BALB/c background, generated
by Prof. Roberto Chiarle in our Department. The aims of this project are to induce a strong immune
response against ALK in DNA electrovaccinated mothers in order to transfer anti-tumor immunity to
their cancer-prone offspring. Provisional data that we have obtained points to a trend of increasing
survival and slower tumor growth kinetics in offspring born from anti-ALK vaccinated mothers, as
compared to those from control mothers, accompanied by a specific antibody response against ALK
borne by mothers and offspring. Nevertheless, further experiments are required before any significant
conclusions can be drawn.

Noteworthy, the humoral immune response triggered by anti-ALK electrovaccination in mothers
does not interfere with the pregnancy and allows the delivery of healthy pups, as in the case of
maternal immunization against neu. The safety of ALK targeting was anticipated by the evidence
that no altered phenotype results from ALK knockout mice [212]. Moreover, despite the expression of
ALK in fetal central and peripheral nervous systems, the level of both ALK messenger RNA and ALK
protein decreases to very low levels in newborns [201]. These evidences clear away the concern about
the safety of maternal immunization against properly selected oncoantigens in mouse models, laying
the foundations for the future translation of this approach to humans.

6. Conclusions

Maternal immunization has so far proven itself to be a potent tool in preventing infectious
diseases in both the mother and offspring. Interestingly, a new scenario—that of exploiting maternal
immunization approaches against pathologies that are not associated with infectious episodes, such
as pediatric cancer—has been opened up. The proof of concept outlining the anti-tumor immunity
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conferred against mammary cancer progression in BALB-neuT mice has shed light on the opportunity
provided by this new objective.

NB is one of the most common childhood malignancies. Conventional treatments provided to
NB-affected patients currently include induction chemotherapy, surgery, high-dose chemotherapy
followed by autologous stem cell reinfusion and radiotherapy. However, acute and persistent toxicities
go hand-in-hand with current treatments. For these reasons, the prevention of the onset and/or
progression of neonatal NB by means of maternal immunization appears to be an attractive perspective
that could be translated to pediatric oncology.
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