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Abstract

Lysosomal acid lipase (LAL) deficiency is an autosomal recessive disorder caused by

LIPA gene mutations that disrupt LAL activity. We performed in vitro functional

testing of 149 LIPA variants to increase the understanding of the variant effects on

LAL deficiency and to improve disease prevalence estimates. Chosen variants had

been reported in literature or population databases. Functional testing was done by

plasmid transient transfection and LAL activity assessment. We assembled a set of

165 published LAL deficient patient genotypes to evaluate this assay's effectiveness

to recapitulate genotype/phenotype relationships. Rapidly progressive LAL deficient

patients showed negligible enzymatic activity (<1%), whereas patients with child-

hood/adult LAL deficiency typically have 1–7% average activity. We benchmarked six

in silico variant effect prediction algorithms with these functional data. PolyPhen‐2
was shown to have a superior area under the receiver operating curve performance.

We used functional data along with Genome Aggregation Database (gnomAD) allele

frequencies to estimate LAL deficiency birth prevalence, yielding a range of 3.45–5.97

cases per million births in European‐ancestry populations. The low estimate only

considers functionally assayed variants in gnomAD. The high estimate computes allele

frequencies for variants absent in gnomAD, and uses in silico scores for unassayed

variants. Prevalence estimates are lower than previously published, underscoring LAL

deficiency's rarity.
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1 | INTRODUCTION

Lysosomal acid lipase (LAL) deficiency (MIM# 278000) is a rare,

autosomal recessive lysosomal storage disorder. LAL is encoded by the

LIPA gene (HGNC 6617; MIM# 613497), and its function is to de‐esterify

cholesteryl esters and triglycerides inside the lysosome. LIPA mutations

that disrupt this enzyme’s ability to degrade its substrates cause LAL

deficiency. In infants, disease progression occurs rapidly, presenting with

a severe and life‐threatening manifestation; rapidly progressive LAL

deficiency (RP‐LALD), historically referred to asWolman disease, typically
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presents in the first year of life with diarrhea, failure to thrive, abdominal

distension with massive hepatosplenomegaly, anemia, and rapidly

progressive liver disease. Untreated infants have a median age at death

of 3.7 months (Jones et al., 2016). A more variable presentation and the

disease course are seen in children and adults. Children/adult LAL

deficiency (CA‐LALD), historically referred to as cholesteryl ester storage

disease (CESD), typically presents later in life with such findings as serum

lipid abnormalities, hepatosplenomegaly, and/or elevated liver enzymes

and can cause significant morbidities from atherosclerosis, liver disease,

and other chronic conditions (Reiner et al., 2014; Bernstein, 2018).

Over 60 LIPA mutations have been reported in the literature to be

associated with either form of LAL deficiency (Bernstein, Hülkova, Bialer,

& Desnick, 2013; Stenson et al., 2017). RP‐LALD is typically caused by

biallelic loss‐of‐function mutations that completely abolish LAL enzymatic

activity, whereas CA‐LALD typically occurs when some residual enzy-

matic activity remains (~2% to 10% of wild‐type expression levels; Fasano

et al., 2012). The most prevalent genetic variant in European and

Hispanic‐ancestry patients with CA‐LALD is variant c.894G>A

(rs116928232), a synonymous exonic splice junction mutation (commonly

referred to as E8SJM) that provokes skipping of exon 8 and a deletion of

24 amino acids in the resulting protein. This variant is present in a

significant fraction (~50–70%) of the patient with CA‐LALD cohorts from

these ancestries (Bernstein et al., 2013; Scott et al., 2013).

Obtaining accurate epidemiological estimates of LAL deficiency

incidence or prevalence is important for designing diagnostic and

treatment strategies, but has proven to be challenging, and estimates

vary widely. A birth prevalence value of 0.27 per 100,000 (~1 in 370,000)

was estimated for the Czech Republic (Poupětová et al., 2010) for both

LAL deficiency forms. In contrast, CA‐LALD prevalence in Germany was

estimated as 2.5 in 100,000 (1 in 40,000) (Muntoni et al., 2007). A

methodologically similar study (Scott et al., 2013) reported an estimated

CA‐LALD prevalence of approximately 1.2 per 100,000 in Causasian

populations, and of approximately 0.8 per 100,000 in combined

Caucasian and Hispanic populations in the USA. Both Muntoni et al.

(2007) and Scott et al. (2013) relied on measuring the E8SJM carrier

frequency on the population, assuming Hardy–Weinberg equilibrium

(HWE) conditions, and assuming that E8SJM represented about half of

the CA‐LALD causing alleles. More recently, CA‐LALD birth prevalence

was estimated to be approximately 1/160,000 using a meta‐analysis of

existing genetic studies that rely on measuring the E8SJM allele

frequency (Carter, Brackley, Gao, &Mann, 2019), whereas LAL deficiency

prevalence was estimated in the same work to be about 1/177,000, by

aggregating pathogenic variant frequency information from the Genome

Aggregation Database (gnomAD; Karczewski et al., 2019).

The main goal of this study is to refine and improve LAL

deficiency birth prevalence estimates by characterizing in vitro a

sample of approximately 150 LIPA variants, and by developing a

novel statistical framework that combines these in vitro data with

population allele frequencies.

This large‐scale variant characterization was necessitated by the fact

that interpreting pathogenicity of genetic variants is challenging,

especially with missense variants. In vitro assays are an essential tool

for missense variant interpretation (Raraigh et al., 2018; Starita et al.,

2017). However, such in vitro assays can be slow and expensive and

cannot cover novel variants that are being constantly discovered in

patients and in the general population. The results of this large‐scale
variant characterization were then used to assess the ability of in silico

variant scoring algorithms to predict LIPA variant pathogenicity and to

measure the resulting impact of mutations of unknown effect in LAL

deficiency prevalence estimates.

2 | MATERIALS AND METHODS

2.1 | Variant selection for functional assays

One hundred fifty LAL functional assays were performed to

determine the functional spectrum of LIPA variants. Wild‐type LIPA

complementary DNA (cDNA), along with 149 variants, were selected

for in vitro functional assessment as follows.

• All missense, nonsense, and 1/2 base pair frameshift variants from the

patients with LAL deficiency are reported in references (Himes et al.,

2016; Hooper, Tran, Formby, & Burnett, 2008; Kuranobu et al., 2016;

Pisciotta et al., 2017; Reiner et al., 2014; Ries et al.,1996; Santillán‐
Hernández et al., 2015; Scott et al., 2013; Valayannopoulos et al.,

2014). This resulted in 47 known pathogenic variants from the

literature being chosen. Table S3 lists these variants, as well as variants

that were identified at later points in time from literature sources

(Jones et al., 2016; Kim et al., 2017; Sjouke et al., 2016), and variants

that were not amenable to plasmid‐based transfection due to being

splicing mutations (Maciejko et al., 2017; Ruiz‐Andrés et al., 2017).
• All novel missense, frameshift or nonsense variants identified in

patients participating in Sebelipase Alfa clinical studies ARISE

(NCT0757184) and CL06 (NCT02112994) were selected. This

resulted in seven more variants to be assayed. Two novel LIPA

mutations detected from these clinical studies (c.822+1G>C and

c.538+5G>A) were not assayed because these were splice‐site
mutations and therefore not amenable to plasmid‐based transfection.

• All known missense LIPA polymorphisms, with an allele frequency of at

least 1%, were additionally chosen. This resulted in two missense

variants being selected (c.46A>C/p.Thr16Pro and c.67G>A/

p.Gly23Arg).

• The remaining 93 variants were selected uniformly at random from the

138 ExAC missense or frameshift variants with allele count of at least

one. This total pool of possible variants to test was expanded to 231

after the gnomAD dataset was made available, which happened after

this variant selection process had already taken place. This left 138

candidate gnomAD variants left out of the list of the variant to test in

vitro.

2.2 | Functional assay preparation

2.2.1 | Expression of LAL variants

The reference amino acid sequence encoding LAL was UniProtKB/

SwissProt P38751.1. cDNA encoding wild‐type LAL, as well as
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truncated and scrambled variants, were generated with terminal 6X

histidine tags by using the Thermo Fisher Scientific (Carlsbad, CA)

GeneArt platform. Sequences were optimized for expression in human

cells using GeneArt’s proprietary GeneOptimizer algorithm (Regens-

burg, Germany). GeneArt was also used to perform mutagenesis on

wild‐type LAL cDNA. Resulting coding regions were cloned into vector

pBNJ391, a derivative of expression vector pEE12.4 (Lonza Biologics,

Basel, Switzerland) described in Fan, Frye, & Racher (2013). Plasmids

were sequence verified to confirm the presence of desired mutations.

The resulting constructs were transiently transfected into Expi293F

cells using ExpiFectamine 293 and the methodology recommended by

the manufacturer (Thermo Fisher Scientific). We have previously

reported transfection efficiency in the Expi293F system to be over

90% based on the expression of a green fluorescent protein plasmid (N.

K. Jain et al., 2017). Transfections were carried out at the 2‐milliliter scale

in 12‐well tissue culture plates (Fisher Scientific, Waltham, MA).

Transfected cultures were harvested 3 days after transfection. Briefly,

cultures were spun down at 500g for 5min, supernatants transferred to

fresh plates, and cell pellets were washed twice in phosphate‐buffered
saline (GE Healthcare, Marlborough, MA). Transfected cultures were

incubated with 0.5ml lysis buffer (1% Triton X‐100, 10mM sodium

phosphate [pH 7.0], 10mM dithiothreitol, and 1mM ethylenediaminete-

traacetic acid in water) for 45min at 4°C and centrifuged for 15min at

3,000g to remove insoluble materials.

2.2.2 | LAL enzyme assay

Cell lysates and supernatants from transfected cultures were diluted 25

fold in assay buffer (200mM sodium acetate [pH 5.5], 1% Triton X‐100%,

and 1% human serum albumin). Ten microlitres of this dilution were

added to 40 µl assay buffer in a black 384 well Optiplate (Perkin Elmer,

Waltham, MA) for a total dilution of 150 fold. The LAL reaction was

started by adding 10µl of the substrate 4‐methylumbelliferyl (4‐MU)

oleate (Sigma‐Aldrich) to a final concentration of 100µM in a total

reaction volume of 60 µl. A BioTek Synergy 2 plate reader was used to

follow 4‐MU fluorophore production at excitation/emission wavelengths

of 360/460±40nm. The initial velocity for each LAL variant was

determined from the first 10–20min of the reaction and then normalized

to total cell lysate protein content as measured by Pierce BCA assay

(Thermo Fisher Scientific). The basal expression for the Expi293 system

was determined by performing a mock transfection without any plasmid

and measuring resulting LAL activity. The resulting value was subtracted

from each mutant’s result. Finally, all data were expressed relative to the

wild‐type sample.

2.2.3 | Statistical estimation of LAL deficiency birth
prevalence

Proposed here is a general hierarchical statistical framework to

estimate the birth prevalence of rare, monogenic, and autosomal

recessive disorders for which the causal gene is known, with LAL

deficiency being an example thereof. This formulation assumes that

only variants in a single gene (LIPA in the case presented here) can

cause disease, but the effect of alleles and their combination to form a

biallelic genotype might not be known. Such is the case for many rare

monogenic disorders, where genotype to phenotype relationships

might not be deterministic nor fully characterized, and even the effect

of a single variant in homozygous state might yield variable penetrance

or variable disease forms (see Cooper, Krawczak, Polychronakos,

Tyler‐Smith, & Kehrer‐Sawatzki, 2013 for a review and discussion).

2.2.4 | Basic general model

Let denote the set of possible alleles for the gene of interest, with

…a a, , N1 denoting N possible disease alleles and a0 denoting a wild‐
type allele. Let = × denote the space of possible diploid

genotypes, with = ( ) ∈G A A A A, , ,1 2 1 2 denoting a particular diploid

genotype.

Let Φ denote a particular patient phenotype, and it will be

assumed that, for a rare disease of interest, Φ ∈ { … } ≐, , K1ϕ ϕ will

be a categorical random variable that can only take on discrete

values that describe K different disease subtypes in phenotype space

. For the particular LAL deficiency case, =K 2 and

= { }− −,CA LALD RP LALDϕ ϕ , respectively denote the CA‐LALD and

RP‐LALD phenotypes.

If the genotype frequency distribution of G for a particular

population is known, and if there is a deterministic or probabilistic

genotype–phenotype model in place such that the distribution for

(Φ = | = ( )) ∀ ∈ ∀ ∈G a a GPr , ,k k1 2ϕ ϕ is also known, then the

probability of an individual carrying a particular disease phenotype kϕ

in the population can be expressed as

∑(Φ = ) = (Φ = | = ( )) ( = ( ))
∈

G a a G a aPr Pr , Pr ,k
G

k 1 2 1 2ϕ ϕ (1)

Assuming that carrying a disease phenotype is compatible with

live birth (i.e., no increased risk for miscarriage or fatal congenital

malformations), Equation (1) also provides an estimate for the birth

prevalence of phenotype kϕ , that is the proportion of live births with

a particular disease phenotype in the population.

The immediate problem with Equation (1) is that, for most

practical applications, neither a genotype frequency distribution in

the population nor a probabilistic relationship of genotype to

phenotype is readily available. To make this problem tractable, the

following assumptions and simplifications were introduced.

• Variant‐allele equivalency. This analysis is based on the assumption

that each allele in the gene of interest comprises exactly one

genomic variant. As a consequence, allele frequency can be

equated with variant frequency, and the effect that two variants

in cis may have on a protein product can be ignored. Such

assumption is justified based on what is known of rare recessive

disorders, where deleterious, disease‐causing variants are rare in

the population due to evolutionary pressures. As shown in Section

3, such an assumption is furthermore guaranteed when examining

actual collected patient variants and genotypes. As a further
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consequence of this assumption, possible disease‐modifying effects

of polymorphisms and other factors are ignored and terms

including variants, mutations, and alleles are used interchangeably.

In addition, possible effects of de novo mutations or uniparental

disomy are also ignored for the purposes of this analysis.

• HWE assumes no inbreeding or consanguinity in the population

and no population sub‐structure. In the context of LAL deficiency,

this assumption has been used before to compute LAL deficiency

birth prevalence estimates in the Hispanic and Caucasian popula-

tions in the US (Scott et al., 2013) or to estimate LAL deficiency

birth prevalence in Germany (Muntoni et al., 2007). Mathemati-

cally, this means that ( )= ( ) = ( = ) ( = )G a a A a A aPr , Pr Pri j i j1 2 .

• Variant effect on phenotype assumes that the phenotypic effect of a

genotype is solely dependent on the residual variant enzymatic

activity that results from this genotype. It is also assumed that this

enzymatic activity can be measured via an in vitro assay for a

particular gene/protein of interest. Mathematically, this effect is

modeled by variable ( )e A representing the effect of a genetic allele

A on the enzymatic activity. In addition, the resulting effect of a

particular genotype is modeled by simply averaging the effects of

individual alleles. That is,

( ) =
( ) + ( )

= ( )e G
e A e A

G A A
2

, ,1 2
1 2 (2)

The model assumes that the probabilistic effect of genotype on

phenotype solely depends on e, and that a phenotype will become

independent of a genotype G once a particular value of e is given.

Recalling from Equation (2) that the enzymatic activity of a given

genotype is assumed to be the simple average of the measured

enzymatic activity of each individual allele, the following is obtained:

(Φ = | = ( )) = (Φ = |( )) ≐ ( ( ( )

+ ( ))/ )

G a a a a f e a

e a

Pr , Pr , ,

2

k k i j k i

j

1 2ϕ ϕ ϕ

(3)

Collected functional enzymatic assay data and knowledge of LAL

deficiency phenotypes and genotypes taken from literature and case

reports can be used to model function f in Equation (3) above. In

particular, given a collection of patient genotype and phenotype data

of the form = {( ) }D a a, ,i i i
1 2 ϕ , if all alleles in the patient data

collection’s genotypes have been functionally tested, then the

resulting activity/phenotype pairs { ( ) }e a a, ,i i i
1 2 ϕ can be used to build

a conditional probability distribution f specified in Equation (3).

For the case of LAL deficiency, it has been shown that null

enzymatic activity normally accompanies the severe RP‐LALD
phenotype, whereas the CA‐LALD phenotype might be present when

some residual enzymatic activity remains (Fasano et al., 2012).

However, the exact enzymatic activity cutoff between these two

forms, or between CA‐LALD and a healthy phenotype, might not be

well‐defined or might depend on the particular assay protocol.

Furthermore, it has recently been appreciated, as mentioned above,

that there is a continuum of phenotypes that does not fall neatly into

the historical Wolman (RP‐LALD) or CESD (CA‐LALD) descriptions

(Santillán‐Hernández et al., 2015). Experimental data indicates that

the relationship between residual enzymatic activity and phenotype

might not be deterministic, even though, as mentioned, lower

enzymatic values are typically associated with more severe pheno-

types. Proposed here is a simple stepwise phase‐transition para-

metric model, where below an enzymatic activity threshold T1 the RP‐
LALD probability takes on a value 1α (expected to be high), with the

CA‐LALD probability taking on a value −1 1α . For enzymatic

thresholds between T1 and T2 the RP‐LALD probability takes on

value 2α (expected to be much lower), with the CA‐LALD probability

taking on a value −1 2α . Above T2 both RP‐LALD and CA‐LALD
probabilities take on an infinitesimal value ϵ. Formally:

(Φ = | ( ) = ) =
⎧

⎨
⎩

<

≤ <− e a a e
e T
T e TPr ,

if

if

otherwise
i jRP LALD

1 1

2 1 2ϕ

α

α

ε

And, conversely,

(Φ = | ( ) = ) =
⎧

⎨
⎩

− <

− ≤ <− e a a e
e T
T e TPr ,

1 if

1 if

otherwise
i jCA LALD

1 1

2 1 2ϕ

α

α

ε

(4)

The model above assumes full phenotypic penetrance for either

RP‐LALD or CA‐LALD phenotypes as long as <e T2.

To estimate model parameters ( )T T, , ,1 2 1 2α α from subject data D,

the log‐likelihood function can be derived as

( ) = +

+ ( − ) + ( − )

+ ( + ) ϵ

− −

− −

− −

L D T T n n

n n

n n

log ; , , , log log

log 1 log 1

log

1 2 1 2 RP LALD
1

1 RP LALD
12

2

CA LALD
1

1 CA LALD
12

2

RP LALD
2

CA LALD
2

α α α α

α α

(5)

Where nk
1 is the number of patients with phenotype k and enzymatic

activity <e T1, nk
12 is the number of patients with phenotype k and

enzymatic activity ≤ <T e T1 2, and nk
2 is the number of patients with

phenotype k and enzymatic activity >e T2. These parameters will be

treated as unknown deterministic quantities to simplify the formula-

tion, but in principle a prior distribution could be put on these values

to develop a full posterior parameter distribution given subject data.

With this simplification, maximum‐likelihood estimates for

( )T T, , ,1 2 1 2α α can be obtained by maximizing Equation (5) above.

With these three assumptions in place, Equation (1) becomes

∑ ∑(Φ = ) = (Φ = | ( ))
∈ ∈

f e a a p pPr ,k
a a

k i j a a

i j

i jϕ ϕ (6)

2.2.5 | Modeling allele frequency uncertainty

Equation (6) gives a simple, general framework that links allele

frequencies in a population with measured variant enzymatic activity

to form an estimate of rare autosomal recessive disease birth

prevalence. However, in practice, population allele frequencies pai are

not known. Given a particular large‐scale genomic dataset like ExAC

or gnomAD (Lek et al., 2016) where a particular variant appears with
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a particular allele count ACi and allele number ANi (the latter

corresponding to twice the number of sampled subjects in a

population for autosomal variants), the uncertainty on allele

frequency knowledge can be incorporated by modeling pai as a Beta

random variable with distribution ∼ ( )p ,a i ii β α β , where =ACi iα ,

= −AN ACi i iβ so that Equation (6) becomes

∬∑ ∑

(Φ = )

= (Φ

= | ( )) ( ) ( )

∈ ∈

f

e a a p p p p dp dp

Pr

, ; , ; ,

k

a a

k i j a a a i i a j j a a

i j

i j i j i j

ϕ

ϕ α β α ββ β (7)

Where ( )p ; ,a i ii α ββ is the Beta probability density function for allele

frequency pai with parameters ( ),i iα β . Normally, solving Equation (7)

in closed form is not feasible, but the distribution for ( )Φ =Pr kϕ can

be readily obtained using Monte Carlo simulation by just drawing pai

and paj from their corresponding distributions and then computing

( )Φ =Pr kϕ from Equation (6).

2.2.6 | Estimating allele frequency of missing
variants

Many pathogenic LIPA variants reported in the clinical literature are

expected to be private or have such a low allele frequency in the

overall population that they won’t be present in gnomAD or other

such large‐scale variant database. Other disease variants might be

relatively more frequent but may have been missed by sampling in

the population. This presents a problem when estimating their

contribution to the disease genotype population frequency. Two

simple methodological approaches are proposed here to deal with

these variants with missing allele frequency estimates.

• Lower frequency bound: In this scenario, the contribution of these

variants is ignored by assuming that their cumulative allele

frequency in the population is equal to zero. This is equivalent to

setting parameter = 0α in the Beta distribution corresponding to

this allele in Equation (7) so that all terms involving each of these

alleles is equal to zero.

• Upper frequency bound: In this scenario, parameters are set as

( = = − )AN1, 1i iα β for all alleles with missing allele frequency

estimates. That is, the allele frequency of these alleles is treated as

if they were a singleton allele.

Both of the scenarios above represent modeling extreme, which

might not be realistic, but they set bounds on birth prevalence

estimates that provide useful when tight enough.

2.3 | Estimating effect of variants not tested in
vitro and assessing in silico variant classification
algorithms

The statistical prevalence estimation method presented here

requires the presence of in vitro functional data for each potentially

disease‐contributing variant. This presents a practical limitation

because, as described before, not all potentially pathogenic variants

present in ExAC or gnomAD were tested, and future population

sequencing efforts are bound to produce novel missense variants

with uncertain significance. The effect of novel variants can be

accounted for by building a predictor e that estimates residual

enzymatic activity resulting from a genotype ( )a a,i j by, as before, first

estimating the effect of a single allele on resulting enzymatic activity

( )e ai and then averaging the effect of both alleles in a genotype.

A natural approach to build these estimators is to use standard in

silico algorithms like PolyPhen‐2 (Adzhubei, Jordan, & Sunyaev, 2013),

sorting intolerant from tolerant (SIFT; Sim et al., 2012), combined

annotation dependent depletion (CADD; Kircher et al., 2014) or others.

One possible way to use these algorithms is to set the estimated

enzymatic effect of a variant to zero if an in vitro algorithm deems such

variant as pathogenic. Furthermore, untested variants which are

predicted in silico to produce no enzymatic activity, that is classical

loss‐of‐function (LoF) variants like nonsense, splice‐site or frameshift

mutations, will also be estimated to have zero activity. That is,

ˆ ( ) =

⎧

⎨

⎪

⎩
⎪

( )

e a

e a a

a

if tested in vitro

0 if is LoF or, optionally,

marked as deleterious by an in silico algorithm

1 otherwise

i

i i

i

(8)

Results presented here show the effect of algorithm choice on

LAL deficiency phenotype probabilities at birth, as well as individual

algorithm performance if the functional in vitro assay data is used as

a truth set to assess these algorithms.

2.3.1 | Comparison with existing CA‐LALD birth
prevalence estimation methods

Previously published methods to compute LAL deficiency (and more

specifically, CA‐LALD) birth prevalence relied, broadly, on three steps.

• Estimating the allele frequency of the E8SJM variant on a control

population.

• Estimating the allele frequency of the E8SJM variant inside a CA‐
LALD patient cohort.

• Computing a birth prevalence estimate assuming HWE conditions.

Formally, assume all disease‐causing alleles can be partitioned into

two groups: An allele a1 (like the E8SJM variant) with known allele

frequency f1 in the population, and a set of alleles with combined allele

frequency f2, which is unknown. In this case, a birth prevalence

estimate of an autosomal recessive phenotype (e.g., CA‐LALD) will be,

from the HWE assumption, (Φ = ) = ( + )− f fPr CA LALD 1 2
2ϕ assuming all

variants are fully penetrant.

If allele a1’s allele frequency is equal to a constant γ within a

patient cohort, it can be shown that =
+

f
f f

1

1 2
γ under the assumptions

above, from which f2 can be estimated as
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=
−

f f
1

2 1
γ

γ

From this, it simply follows that

(Φ = ) = ( / )− fPr CA LALD 1
2ϕ γ (9)

As mentioned before, CA‐LALD birth prevalence was estimated

to be approximately 25 per million in Germany using this method

(Muntoni et al., 2007), with data later expanded to get an estimate of

12 per million in combined US and German Caucasian populations

(Scott et al., 2013).

It is possible to refine this method to account for uncertainty on

the estimation of f1 by simulating it as a random variable with

distribution ( )p ; ,a 1 11 α ββ and measuring the resulting distribution

estimate for (Φ = )−Pr CA LALDϕ by performing Monte Carlo simula-

tions of Equation (9).

3 | RESULTS

3.1 | In vitro assays and LAL variant residual
activity

Intracellular enzymatic activity was measured for one wild‐type LAL and
149 variants. Figure 1a plots results obtained, listing LAL variants and

resulting enzymatic activity relative to wild‐type. Figure 1b plots this

same fraction, split according to variant provenance (i.e., patient

cohorts, clinical studies, known polymorphisms or ExAC). Measured

values for all 149 variants, as well as the original source LIPA cDNA

relative to RefSeq cDNA transcript NM_000235.3 (O’Leary et al., 2016),

the produced LAL protein variant and the variant source, are listed on

Table S1. As expected, most variants from the CL06 and ARISE clinical

studies, as well as variants curated from the LAL deficiency clinical

literature, showed very low levels of enzymatic activity, whereas known

polymorphisms showed values comparable to or higher than the wild‐
type level. ExAC/gnomAD variants spanned the whole range of

enzymatic activities. Of note on Figure 1 were three variants reported

as pathogenic in the literature in two Japanese patients:

• c.607G>C/p.Val203Leu and c.791T>C/p.Leu264Pro. These two

novel variants appeared in compound heterozygous form in a

patient reported in Kuranobu et al. (2016)

• c.811A>C/p.Asn271His. This variant appeared in the homozygous

form on Reiner et al. (2014) which referenced Kojima et al. (2013).

These three variants were the only studied variants that were

reported in the literature as disease‐causing and that showed

relatively high intracellular enzymatic activity on enzymatic assays

(43.2% to 74.9% of wild‐type value; Table S1).

From the 149 assayed LIPA variants, 126 of them were missense

variants, whereas 15 were frameshift variants (small insertions/

deletions) and 8 of them were nonsense variants (resulting in stop‐
introducing codons). Figure 1c plots the resulting enzymatic activity

relative to wild‐type for each variant, split by variant molecular

consequence. As expected, frameshift and nonsense variants resulted

in null measured enzymatic activity, whereas missense mutations

spanned the whole range of enzymatic activity values.

3.2 | Genotype to phenotype probabilistic model
estimation

Patient genotype and phenotype data were collected retrospectively

from the literature, and the expected combined residual enzymatic

activity for each patient was computed by looking up the residual

enzymatic activity for each patient’s allele and averaging results for both

alleles. To maximize the number of points with complete data, alleles

which were classified as high‐confidence LoF variants such as frameshift,

splice‐site, or nonsense mutations, were assigned a residual activity of

zero. E8SJM alleles were assigned a residual activity of 5%, corresponding

to a consensus estimated percentage of wild‐type transcript produced

from the literature (Aslanidis et al., 1996; Fasano et al., 2012).

Table S2 shows corresponding patient genotype and estimated

combined LAL activity from the 165 patients, where 99 had reported

CA‐LALD phenotype, 41 had an RP‐LALD phenotype, and 25 had an

unspecified LAL deficiency phenotype. Figure 2 plots corresponding

mean enzymatic activity values, categorized by reported patient

phenotype. The two outlier results, corresponding to the above‐
mentioned patients reported in (Kojima et al., 2013; Kuranobu et al.,

2016), can be seen on the corresponding CA‐LALD column in this

figure. Given the overlap of estimated activity values corresponding

to unspecified LAL deficiency phenotypes with the values from the

patients with CA‐LALD, it is reasonable to infer that most of the 25

documented patients with unspecified LAL deficiency phenotypes

were actually patients with CA‐LALD.

To maximize Equation (5), note that, for any fixed value of T T, 21 ,

the maximum likelihood (ML) estimate of ( ),1 2α α is given by
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ML estimates for ( )T T,1 2 were computed by doing a numeric grid

search on ( ) ≤ ≤ ≤T T T T, , 0 11 2 1 2 , since the log‐likelihood function

in Equation (5) is not continuously differentiable with respect to T1

nor T2. Given input data from Table S2, the following values were

obtained for ML parameter estimates:
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The parameters obtained by ML estimation match intuitively what

Figure 2 shows graphically: For enzymatic activity values below around

0.01 relative to wild‐type, most reported patients to show
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RP‐LALD phenotype, whereas, for thresholds from around 0.01–0.07,

CA‐LALD is the dominant LAL deficiency phenotype form, with no

patients showing higher residual enzymatic activities (except for the two

outlier points described above). However, the relationship between

residual activity and presenting phenotype is not deterministic.

From the 149 tested variants, a total of 63 had measured

intracellular enzymatic activity below threshold T2
ML. Forty‐four out

of the Forty‐seven variants curated from the literature showed low

activity, whereas five out of seven variants from clinical trials showed

activity below this threshold. The two clinical trial variants that

showed activity above the threshold (c.931G>A/p.Gly311Arg and

c.974C>T/p.Pro325Leu) showed activity between 0.07 and 0.08

relative to wild‐type (Table S1), a value possibly within bounds of

measurement error. In contrast, only 14 out of the 93 tested variants

from ExAC/gnomAD showed low residual activity.

3.3 | In silico estimation of variant pathogenicity

After choosing the 149 LAL variants for enzymatic activity tests, there

were still variants present in ExAC/gnomAD that remained to be assayed.

One hundred thirty‐eight candidate LIPA variants present in ExAC were

marked as missense, nonsense, frameshift or in‐frame deletions, and thus,

F IGURE 1 Measured fraction of wild‐type enzymatic activity for all tested LIPA mutants. (a) Listing each individual variant with cDNA

source, relative to RefSeq transcript NM_000235.3, (b) Box plot, and scatter plots according to the variant source. (c) Box plot and scatter plots
according to variant molecular consequence. CDNA, Coding DNA; ExAC, exome aggregation consortium; gnomAD, Genome Aggregation
Database; WT, wild‐type
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amenable in theory for plasmid‐based in vitro testing. This candidate

variant pool was later on expanded to 231 possible variants after the

gnomAD 2.1.1 release was published (Karczewski et al., 2019). From this

set of candidate gnomAD variants, there were 127 variants (listed in

Table S3) that did not have in vitro functional data, 109 of which being

missense variants and thus amenable to scoring by most in vitro

algorithms. From the total of 54 LoF variants collected from either ExAC/

gnomAD or literature, based on their molecular consequence, 23 had

already been assayed in vitro (15 frameshift and 8 nonsense variants are

described above). The remaining 31 were assumed to have null enzymatic

activity as defined in Equation (8).

The presence of in vitro functional data permitted then the

building of a validation set with which to assess each in silico

algorithm’s performance. From the 126 assayed missense variants,

there were 40 whose enzymatic activity (relative to wild‐type) fell
below computed threshold =T 0.072 , and which were then classified

as “deleterious.” The remaining 86 missense variants had measured

enzymatic activity above T2, and hence were classified as “non-

deleterious.” Given this validation truth set, receiver operating

curves (ROCs) and the area under the ROC (AUC) were computed

for each of the in silico missense variant prediction algorithms.

• Combined annotation dependent depletion (CADD; Kircher et al.,

2014)

• Deleterious annotation of genetic variants using neural networks

(DANN; Quang, Chen, & Xie, 2015)

• MutationTaster (Schwarz, Cooper, Schuelke, & Seelow, 2014)

• PolyPhen‐2 (Adzhubei et al., 2013)

• Protein variation effect analyzer (PROVEAN; Choi, Sims, Murphy,

Miller, & Chan, 2012)

• Sorting intolerant from tolerant (SIFT; Sim et al., 2012)

ROC and AUC scores were computed using each algorithm’s rank

scores obtained from the dbNSFP variant annotation database,

version 3.4 (Liu, Wu, Li, & Boerwinkle, 2015) accessed through the

variant effect predictor annotation tool (McLaren et al., 2016). To

estimate the variability of AUC estimates, and to assess the statistical

significance of differences in performance among in silico algorithms,

a classical bootstrap procedure was performed by sampling data with

replacement, measuring resulting AUC for each in silico algorithm,

and repeating sampling 10,000 times. Table 1 shows summarized

results of this experiment for all considered in silico predictors.

Figure 3 plots the corresponding ROC’s for each algorithm. Pairwise

comparisons between each of the possible 15 in silico algorithm pairs

revealed all AUC differences to be statistically significant ( for all

pairwise Wilcoxon rank‐sum tests). As seen, PolyPhen‐2 performed

better than other algorithms in this application.

3.4 | LAL deficiency birth prevalence estimation

With all model pieces in place, it was then possible to compute the

LAL deficiency birth prevalence estimate for European‐ancestry

F IGURE 2 Mean fraction of wild‐type
enzymatic activity for both genotypes for
all subjects from literature according to
their described phenotype. CA‐LALD,

childhood/adult lysosomal acid lipase
deficiency; LAL, lysosomal acid lipase;
RP‐LALD, rapidly progressive lysosomal

acid lipase deficiency; WT, wild‐type

2014 | DEL ANGEL ET AL.



populations. As mentioned above, computing an estimate for

(Φ = )Pr kϕ was possible by performing Monte Carlo simulations of

Equation (6) and analyzing the resulting estimate distribution. The

RP‐LALD, CA‐LALD, and combined LAL deficiency birth prevalence

estimates were computed under four scenarios, corresponding to the

combination of two possible ways to assess variant activity and two

possible ways of using gnomAD allele frequencies to evaluate

Equation (6), as described above.

1. A “Stringent variant evaluation” scenario, which assessed variant

activity as defined in Equation (8) only with in vitro functional

data, and which set the variant activity of high‐confidence LoF

variants to zero as explained on the Section 2.

2. A “Loose variant evaluation” scenario where variants which were

marked as “Damaging” or “Possibly Damaging” by PolyPhen‐2 and

which had not been tested for in vitro residual activity had activity

set to zero to evaluate Equation (8).

Similarly, as described above, the two possible ways of using gnomAD

allele frequencies were the “Lower Frequency Bound” that set the allele

frequency of any variant absent in gnomAD to 0, and the “Upper

Frequency Bound” that treated variants absent in gnomAD as singletons.

Each scenario was evaluated by performing 10,000 Monte Carlo

runs. Table 2 shows the resulting average estimates for overall LAL

deficiency, RP‐LALD, and CA‐LALD, and Figure 4 shows box plots

with the spread in estimate values for the LAL deficiency case.

As can be seen from these data, the use of the upper frequency

bound where missing gnomAD variants are treated as singletons had

a significantly larger effect on the estimate than the loose variant

evaluation scenario which added variants marked as deleterious by

PolyPhen‐2.

3.5 | Comparison of birth prevalence method with
Scott’s

The results are shown in Table 2 indicate mean CA‐LALD birth

prevalence estimates of 3.45–5.97 cases per million births,

TABLE 1 Mean bootstrap AUC for all tested in silico missense
variant effect prediction algorithms

In silico algorithm Bootstrap AUC mean Bootstrap AUC 95% CI

SIFT 0.8714170 (0.810–0.925)

PolyPhen‐2 0.9028099 (0.846–0.950)

CADD 0.8157466 (0.740–0.883)

DANN 0.7842790 (0.700–0.857)

MutationTaster 0.6940488 (0.635–0.751)

PROVEAN 0.7906035 (0.711–0.864)

Abbreviations: AUC, area under receiver operating curve; CADD,

combined annotation dependent depletion; CI, confidence interval;

DANN, deleterious annotation of genetic variants using neural networks;

PROVEAN, protein variation effect analyzer; SIFT, sorting intolerant from

tolerant.

F IGURE 3 ROC for different in silico
algorithms. CADD, combined annotation

dependent depletion; DANN, deleterious
annotation of genetic variants using neural
networks; FPR, false positive rate; ROC,
receiver operating characteristic; SIFT,

sorting intolerant from tolerant; TPR, true
positive rate
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depending on the variant frequency bound and variant evaluation

approach taken. These values are significantly lower than the

mentioned estimates for European‐ancestry CA‐LALD birth preva-

lence of around 12 cases per million births or higher (Muntoni et al.,

2007; Scott et al., 2013). This discrepancy follows mainly from the

apparent overestimation of the E8SJM population allele frequency in

these works. To validate this, E8SJM allele frequency estimates for

European‐ancestry populations were collected from the following

public data sources.

• Scott (Scott et al., 2013)

• Exome Variant Server (EVS; NHLBI GO Exome Sequencing Project

& Exome Variant Server)

• UK10K (UK10K Consortium, 2015)

• ExAC, version 1.0 (Lek et al., 2016)

• gnomAD, version 2.1.1 (Karczewski et al., 2019)

Table 3 shows resulting E8SJM allele counts, allele number and

allele frequency for each of these sources. It is clear even from this

table that the E8SJM allele frequency from Scott et al. (2013; around

0.002, corresponding roughly to a carrier frequency of about 1/250)

is substantially higher than the rest of the data sources, and is about

60% higher than the gnomAD allele frequency, which is the largest

allele frequency public data source so far identified in terms of

sampled subjects. Because the quadratic relationship between allele

frequency and birth prevalence estimates from Equation (9), it was

hence expected that the CA‐LALD birth prevalence estimate

obtained from gnomAD would be less than half of the one from

(Scott et al., 2013). Figure 5 shows resulting European‐ancestry CA‐
LALD birth prevalence estimates for each of these data sources, with

numerical results listed on Table 4. Also, plotted as horizontal lines,

are the lowest and highest mean birth prevalence bounds obtained

by in vitro functional testing as described in the previous section.

4 | DISCUSSION

The findings discussed here show how integrating in vitro functional

data with large‐scale genomic datasets and novel statistical methods

can give new insights into rare diseases, especially around genotype/

phenotype relationships and the genetic epidemiology of recessive

Mendelian disorders. The importance of this study is three‐fold.

1. It provides a novel statistical methodology to quantify the birth

prevalence of any single‐gene autosomal recessive disorder,

under the assumption of known or quantifiable phenotype

probability given genotype and under HWE assumptions.

2. It is the most extensive catalog of functional assay data for LIPA

variants to this date, and it provides a blueprint to further extend

it for variants not yet assayed.

3. It shows how to combine this statistical methodology with the

functional assay data to obtain more accurate bounds for LAL

deficiency birth prevalence. In particular, the data shown here

support LAL deficiency birth prevalence bounds of approxi-

mately 3.45 to 5.97 cases per million births, a range which is

broadly concordant with values obtained by the previously

used method of computing the E8SJM mutation frequency,

once larger cohorts are used to estimate this variant’s

frequency. This discrepancy in E8SJM allele frequency

estimates with previous values had already been noted before

(Stitziel et al., 2013), where a much larger sample size of

around 27,000 subjects (which became later a proper subset

of ExAc/gnomAD) was used for analysis.

As mentioned in Section 1, a recent publication (Carter et al.,

2019) has also attempted to quantify the LAL deficiency prevalence

using similar methods as the ones presented here. This study yielded

an estimate for CA‐LALD birth prevalence in European‐ancestry
populations at 1/160,000 using a meta‐analysis of existing genetic

studies that rely on measuring the E8SJM allele frequency, and an

overall LAL deficiency birth prevalence estimate of 1/177,000 using

allele frequency information from gnomAD coupled with an HWE

assumption as in the work presented here. The main differences

between this study and the work presented here are the validation of

variant pathogenicity by in vitro analysis presented here, and the

statistical model used here, which uses measured or estimated in

vitro activity to probabilistically classify a genotype as CA‐LALD or

RP‐LALD instead of relying on the literature for variant classification.

Also, a stricter criteria is used here on which LoF variants to include

from either the literature or gnomAD.

TABLE 2 Summarized mean birth prevalence estimate for RP‐LALD, CA‐LALD, and overall LAL deficiency phenotypes as a function of
different estimation scenarios

Estimation scenario LAL deficiency probability (mean) RP‐LALD probability (mean) CA‐LALD probability (mean)

Stringent variant evaluation, lower frequency

bound

3.45e−06 3.25e−07 3.13e−06

Loose variant evaluation, lower frequency bound 4.05e−06 4.97e−07 3.56e−06

Stringent variant evaluation, upper frequency

bound

4.95e−06 7.36e−07 4.21e−06

Loose variant evaluation, upper frequency bound 5.97e−06 1.11e−06 4.86e−06

Abbreviations: CA‐LALD, childhood/adult lysosomal acid lipase deficiency; LAL, lysosomal acid lipase; RP‐LALD, rapidly progressive lysosomal acid lipase

deficiency.
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The present study has certain limitations, mostly borne out of limited

power from available data. In particular, attempts were made to only

quantify LAL deficiency birth prevalence in populations of European

ancestry, due to the much larger available allele frequency information

for this population in comparison to others. The significantly smaller

sample sizes available in other populations limit the applicability of the

methodology presented here to these populations, because most

pathogenic variant‐allele frequencies will be missing, and the resulting

bounds obtained yield ranges, which are too wide to be useful. Also, the

framework presented here fundamentally relies on the HWE assump-

tions to estimate birth prevalence. Situations where HWE does not apply,

such as populations with significant consanguinity, would make this

model inapplicable. We also recognize that more sophisticated genotype/

phenotype models could be used, and the model presented here could be

extended in several ways to account for more realistic conditions.

Much of the model presented here is dependent on characteriz-

ing LAL variants based on in vitro recombinant expression and

assessing intracellular lipase activity. A limitation of this approach is

that it is not able to provide information on other types of mutations

known to give rise to enzyme deficiencies. Examples of these include

splicing mutations such as the aforementioned E8SJM/c.894G>A

pathogenic mutation found in the majority of patients with CA‐LALD
(Bernstein et al., 2013; Scott et al., 2013) as well as mutations that

inhibit trafficking beyond the endoplasmic reticulum and trans‐Golgi
network as has been observed in other lysosomal storage diseases

(Parenti et al., 2007; Ron & Horowitz, 2005; Spratley et al., 2016;

Zhang et al., 2000). Another potential limitation of our analysis is the

use of the artificial 4‐MU oleate substrate rather than naturally

occurring substrates such as cholesteryl esters or triglycerides. Due

to the difference in the chemical structure of these substrates, it is

possible that some variants may retain substrate specificity against

the 4‐MU oleate substrate yet lose the ability to cleave natural

substrates or vice versa. In this regard, it is interesting to note that

there were three LAL variants mentioned above (c.607G>C/

p.Val203Leu, c.791T>C/p.Leu264Pro, and c.811A>C/p.Asn271His),

which have been reported to be pathogenic (Kojima et al., 2013;

Kuranobu et al., 2016; Reiner et al., 2014), that showed relatively

high levels of intracellular lipase activity in our assay. This could be

F IGURE 4 Total LAL deficiency birth

prevalence estimates for European‐
ancestry populations according to different
variant sets. gnomAD, Genome

Aggregation Database; LAL, lysosomal acid
lipase

TABLE 3 E8SJM European‐ancestry population allele counts,
allele numbers, and allele frequencies for different public genomic
data sources

Data source Allele count Allele number Allele frequency

Scott 17 8224 0.0020671

EVS 5 8600 0.0005814

UK10K 7 7428 0.0009424

ExAC 77 66446 0.0011588

gnomAD 167 128942 0.0012952

Abbreviations: EVS, exome variant server; ExAC, exome aggregation

consortium; gnomAD, Genome Aggregation Database; UK10K, the

UK10K Project.
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due to any of the reasons discussed, or through a yet to be defined

mechanism. Nevertheless, understanding the pathogenesis behind

these mutations warrants further investigation, which may lead to a

further refinement of our model.

Even though the contribution of these three variants to our birth

prevalence estimates is not expected to be significant due to their

absence from ExAC/gnomAD, we cannot discount the possibility that

some of the ExAC/gnomAD variants that showed high reported

levels of intracellular activity might still be pathogenic.

Furthermore, LAL deficiency cannot always be divided up into the

two discrete phenotypic manifestations (RP‐LALD and CA‐LALD), but

is rather a more complex disease with a continuum of severities and

clinical manifestations (Santillán‐Hernández et al., 2015), yielding a

more complex model than the simple two‐tier stepwise genotype to

phenotype model presented here.

Finally, caution should be taken to not use birth prevalence

values obtained here to directly obtain estimates of total prevalent

LAL deficiency cases in a geographic region. The total prevalent LAL

deficiency population in a region will be affected by other factors

such as disease onset and survival.

To conclude, the novel methods presented here, coupled with our

large‐scale LIPA variant characterization, have enabled us to derive

new estimates for the birth prevalence of both traditional forms of

LAL deficiency. The range we derived, of approximately 3.45–5.97

cases per million births in European‐ancestry population, represents

a significant decrease from previously published estimates that relied

on estimating E8SJM’s carrier frequency but are concordant with

values obtained from this methodology once larger sample sizes are

used for estimation. Finally, the statistical framework presented here

is not limited to LAL deficiency estimation but can be used for birth

prevalence estimation of any autosomal recessive Mendelian disease.
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