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Genetic architecture of epigenetic and neuronal
ageing rates in human brain regions
Ake T. Lu1, Eilis Hannon2, Morgan E. Levine1,3, Eileen M. Crimmins4, Katie Lunnon2, Jonathan Mill2,5,

Daniel H. Geschwind1,6,7 & Steve Horvath1,8

Identifying genes regulating the pace of epigenetic ageing represents a new frontier in

genome-wide association studies (GWASs). Here using 1,796 brain samples from 1,163

individuals, we carry out a GWAS of two DNA methylation-based biomarkers of brain age: the

epigenetic ageing rate and estimated proportion of neurons. Locus 17q11.2 is significantly

associated (P¼4.5� 10�9) with the ageing rate across five brain regions and harbours a

cis-expression quantitative trait locus for EFCAB5 (P¼ 3.4� 10� 20). Locus 1p36.12 is

significantly associated (P¼ 2.2� 10� 8) with epigenetic ageing of the prefrontal cortex,

independent of the proportion of neurons. Our GWAS of the proportion of neurons identified

two genome-wide significant loci (10q26 and 12p13.31) and resulted in a gene set that

overlaps significantly with sets found by GWAS of age-related macular degeneration

(P¼ 1.4� 10� 12), ulcerative colitis (Po1.0� 10� 20), type 2 diabetes (P¼ 2.8� 10� 13),

hip/waist circumference in men (P¼ 1.1� 10� 9), schizophrenia (P¼ 1.6� 10� 9), cognitive

decline (P¼ 5.3� 10�4) and Parkinson’s disease (P¼8.6� 10� 3).
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I
t is projected that over the next 45 years, the number of older
adults (ages 65 and older) in the United States will more than
double—increasing from B46 million to over 98 million1.

After age 65, the risk of developing a form of dementia increases
exponentially2, highlighting the immediate need for therapeutics
based on an improved understanding of the aetiology of normal
cognitive ageing and neurodegenerative disease.

GWASs of dementias and cognitive functioning traits have had
considerable success: 19 genetic loci have been found for
Alzheimer’s disease3, 24 loci for Parkinson’s disease4 and 3 loci
for general cognitive functioning5 at a genome-wide significance
level (Po5� 10� 8). By contrast, relatively little is known about
the genetic contributors to the underlying biological ageing
processes in the brain. Although age is the major risk factor for
neurodegenerative conditions, whether ageing and these disorders
of ageing are part of a continuum or discrete entities remains a
subject of substantial debate. One obstacle in answering this
question is the lack of consensus regarding how to measure
biological ageing. We recently developed a biomarker of ageing
known as the epigenetic clock, which allows one to estimate the
age (DNA methylation age (DNAm age)) of any human tissue or
cell type (with the exception of sperm)6–10. DNAm age is
calculated using the weighted average of DNA methylation levels
at 353 CpG sites6. From this, one can define a measure of
epigenetic age acceleration, by contrasting DNAm age with
chronological age, such that a positive value implies the sample is
biologically older than expected, whereas a negative value implies
the sample is younger than expected. Epigenetic age acceleration
in blood is predictive of mortality/longevity11–15 and has been
linked to cognitive functioning16, Parkinson’s disease17, Down
syndrome9 and menopause18. In brain tissues, epigenetic age
acceleration has been linked to Down syndrome, Huntington’s
disease (HD) and Alzheimer’s disease9,19,20.

Epigenetic age acceleration differs across ethnic groups21 and is
highly heritable (h2B0.4)6,11,20. However, to date, only two
genome-wide significant loci have been found to relate to
epigenetic age acceleration: loci near genes MLST8 and DHX57
relate to age acceleration in the cerebellum (CRBLM)22. It is not
yet known whether these or other genetic loci relate to the
epigenetic age acceleration in other brain regions. Further, it is
not known whether individuals who display signs of accelerated
epigenetic ageing in CRBLM also exhibit accelerated epigenetic
ageing in the prefrontal cortex (PFCTX) or other brain regions.

To address these questions, we study two distinct measures of
brain ageing based on DNA methylation data: epigenetic age
acceleration and the estimated proportion of neurons. We find
genetic variants that accelerate brain ageing by B1 year. We use
transcriptomic studies to prioritize genes that are located near
genome-wide significant loci. The biological relevance of these
findings is supported by our finding that both biomarkers of brain
ageing relate to a host of age-related phenotypes according to
GWAS results. Overall, this study elucidates the genetic
architecture of epigenetic and neuronal ageing rates in human
brain regions.

Results
Study overview. Our meta-analysis involved DNA methylation
data and corresponding single-nucleotide polymorphism (SNP)
data from seven different studies, totalling n¼ 1,796 postmortem
brain samples from 1,163 individuals of European ancestry
(Table 1). Samples came from the PFCTX region (36.6%),
including dorsolateral prefrontal cortex (DLPFX), CRBLM (31%),
frontal cortex (FCTX, 18.6%), pons (PONS, 7%) and temporal
cortex (TCTX, 7%). For five studies, we also had access to
complementary transcriptional data collected from the same

individuals (Table 1; Supplementary Tables 1 and 2a,b). The
chronological age at death ranged from 1 to 108 years, with mean
ages of death for the seven studies ranging from 44.3 years
(study 3) to 89.3 years (study 7). About half (54%) of the
individuals were female. Studies 2 and 4 involved neurologically
normal individuals, whereas the remaining studies included
individuals suffering from Alzheimer’s disease, schizophrenia or
other disorders (Supplementary Note 1). The individual studies
differed greatly in terms of sample size ranging from n¼ 36
(study 4) to n¼ 302 (study 6).

A graphical overview of our study samples and statistical
procedures is presented in Fig. 1. Our GWAS aimed to elucidate
the genetic determinants of two distinct biomarkers of brain
ageing: (i) DNAm age based on 353 CpGs from the epigenetic
clock method, and (ii) the proportion of neurons estimated using
the CETS algorithm23. Each epigenetic biomarker was adjusted
for chronological age and other potential confounders. The
age-adjusted biomarkers were used as quantitative traits in a
GWAS. GWAS results from different brain regions and studies
were combined using meta-analysis. Transcriptomic data were
used to prioritize candidate genes next to GWAS hits. Our
overlap analysis investigates whether SNPs that relate to brain
ageing exhibit a pleiotropic effect on other complex traits
including neurodegenerative disease, body fat distribution,
metabolic phenotypes, inflammatory disease, longevity and
neuropsychiatric disorders.

Epigenetic clock analysis. Across all seven studies, DNAm age
was highly correlated with chronological age (0.61rrr0.99,
Supplementary Fig. 1), which validated the high accuracy of the
epigenetic clock. As expected, the largest age correlations
(0.87rrr0.99) could be observed for the studies with the
broadest age range (studies 2–5, Table 1). We defined a measure
of epigenetic age acceleration as the residual resulting from
regressing DNAm age on chronological age. Thus, a positive
(negative) value of epigenetic age acceleration indicates that
the brain region is older (younger) than expected based
chronological age.

Age acceleration negatively correlated with neurons. Previous
work has suggested that the proportion of neurons (relative to
glial cells) increases with age in many brain regions, at least in
older individuals23. We confirmed this finding in our study,
showing that the proportion of neurons, as estimated on the basis
of DNA methylation data using the CETS algorithm23, tends to
exhibit a positive correlation with chronological age in the
CRBLM, FCTX and PFCTX (Supplementary Fig. 2). On the basis
of this, we also examined whether the proportion of neurons
varies as a function of age acceleration. Strikingly, we found a
highly significant negative correlation between epigenetic age
acceleration and the proportion of neurons in the PFCTX (for
example, r¼ � 0.33, P¼ 4.0� 10� 9 in study 6 and r¼ � 0.37,
P¼ 6.4� 10� 10 in study 7, Supplementary Fig. 3). Interestingly,
Alzheimer’s disease status was significantly associated with
epigenetic age acceleration in PFCTX, but only after adjusting
for the proportion of neurons (P¼ 5.7� 10� 3, Supplementary
Table 3). To remove the effect of potential confounders on our
measure of age acceleration, we defined an intrinsic measure of
age acceleration by regressing the unadjusted measure on the
proportion of neurons, disease status and sex (Supplementary
Table 4). By definition, the intrinsic measure of age acceleration
in the brain is not correlated (r¼ 0) with chronological age, the
proportion of neurons, sex or disease status. A positive/negative
value age acceleration indicates that the brain sample is older/
younger than expected.
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Age acceleration is only weakly preserved across regions.
To study whether epigenetic age acceleration in one brain region
correlates with that of another brain region, we focused on
individuals for whom multiple brain regions were available.
Higher correlations were found between epigenetic age
acceleration measures of various cortical regions, whereas lower
correlations were observed between cortical regions and the
CRBLM (median correlation¼ 0.39, ranging from � 0.04 to 0.52,
Supplementary Fig. 4). The relatively low correlation between
region-specific measures of age acceleration suggests that SNPs
that relate to the epigenetic age acceleration of the PFCTX might
be different from SNPs that relate to the epigenetic age
acceleration of the CRBLM and vice versa. However, differences
in sample size contributed to differences in statistical power when
it came to detecting significant correlations between two brain
regions. For example, our study had only a power of 38% (at a
significance level of 0.01) to detect a moderate correlation
(r¼ 0.3) between the CRBLM and the PFCTX (N¼ 57 pairs).
However, we had a statistical power of 96% to detect a significant
correlation of r¼ 0.3 between the CRBLM and FCTX (N¼ 201),
and a power of 75% for other pairs of brain regions (N¼ 112).

17q11 locus found by multi-brain region meta-analysis. We
performed GWAS for each brain region in each study, resulting
in 13 separate GWAS results (Supplementary Table 2). The
individual GWAS results were combined using two distinct meta-
analyses: the first ‘multi-brain region’ meta-analysis combined the
GWAS across all brain regions and studies, the second ‘PFCTX’
meta-analysis only combined GWAS results from the PFCTX
(Methods). A Manhattan plot for the meta-analysis GWAS of
intrinsic epigenetic age acceleration in the brain (Fig. 2a) reveals
that the most significant locus occurs in 17q11.2. None of the
significant GWAS results for age acceleration co-locate (within
1 Mb) with any of the 353 CpGs that make up the epigenetic
clock. In particular, the most significant ‘leading’ SNP in 17q11.2
SNP (rs4054847 at 28,532,013 bp) is 1.16 Mb away from the
closest clock CpG cg06144905 (at 27,369,780 bp). Our multi-
region meta-analysis revealed that seven SNPs in the 17q11.2
locus are associated with epigenetic age acceleration in the brain

at a genome-wide significance level (Po5.0� 10� 8, Table 2).
The leading SNP rs2054847 (P¼ 4.5� 10� 9) is located in the
serotonin transporter gene SLC6A4 (Fig. 3a) but our cis-expression
quantitative trait locus (cis-eQTL) studies (described below) pro-
vide no evidence that the SNP modulates the expression levels of
this gene. The minor allele of the leading SNP is strongly associated
with decreased (negative) epigenetic age acceleration across the five
brain regions (Fig. 3b): each copy of the minor allele decreases the
epigenetic age by 1.4 years in FCTX, B1 year across PONS and
TCTX and 0.8 years across PFCTX and CRBLM. The association
result for rs2054847 was highly conserved across individual
GWASs, as reflected by a vanishing meta-analysis heterogeneity
measure (I2¼ 0%). The strong association signal in 17q11.2 is also
supported by an additional 210 neighbouring SNPs that meet
a suggestive significance level of Po5� 10� 7 in the linkage
disequilibrium (LD; r240.6) region spanning 490 kb around
rs2054847 (Fig. 3a). Although the genomic region surrounding
rs2054847 contains many suggestive SNPs and genes, it harbours
only one causal locus for epigenetic age acceleration according to
the GCTA conditional analysis24 (Supplementary Fig. 6; Methods).

Our chromatin state analysis based on data from the Roadmap
Epigenomics Consortium25,26 demonstrated that a SNP in
the 17q11.2 locus (rs1128156, GWAS P¼ 9.0� 10� 8 for age
acceleration) is in an actively transcribed region in 126 out of 127
cell lines (Supplementary Fig. 7a). By contrast, the leading SNP,
rs2054847, which is in high LD r2¼ 0.89 with rs1128156, is
located in an actively transcribed region for only a few cell lines
(Supplementary Fig. 7b).

1p36 locus found by PFCTX meta-analysis. We also carried out
a second meta-analysis using only PFCTX GWAS results from
studies 1, 4, 6 and 7. The resulting Manhattan plot can be found
in Fig. 2b. This PFCTX meta-analysis GWAS of age acceleration
identified an INDEL (deletion variant) marker, rs11296960, in
1p36.12 (P¼ 2.2� 10� 8, Table 2; Supplementary Fig. 8). Each
copy of the minor allele of rs11296960 increases the epigenetic
age of the PFCTX by 1.07 years (resulting in a correlation of
r¼ 0.21 between the minor allele count and epigenetic age
acceleration). The INDEL marker, rs11296960, is located within

Table 1 | Overview of study data sets.

Data Age Male (%) Brain region N NGWAS Ncis-eQTL Population Citation Availability

Study 1 86±8.0 38 CRBLM 63 59 NA 60% ALZ Lunnon67 GSE59685
(55, 105) PFCTX 57 NA

Study 2 48.0±23.2 70 CRBLM 142 112 134 100% normal* Gibbs55 GSE15745, GSE36192
(16, 96) FCTX 133 134

PONS 125 143
TCTX 125 145

Study 3 44.3±9.6
(19, 68)

63 CRBLM 147 147 130 80% PSY disorder Zhang68 GSE35978, GSE38873

Study 4 64.4±17.4 61 CRBLM 37 36 NA 48% SCZ Pidsley69 GSE61431
(25, 96) PFCTX 36 NA

Study 5 52.3±29.8 66 CRBLM 209 201 219 100% normal* Hernandez70 GSE36192, GSE31694
(1, 102) FCTX 201 218

Study 6 87.9±7.3
(66, 108)

32 DLPFX 302 302 294 47% ALZw Shulman53 http_ROSMAP (ref. 54)

Study 7 89.3±5.8
(66, 107)

23 DLPFX 262 262 288 43% ALZw Shulman53 http_ROSMAP (ref. 54)

ALZ, Alzheimer’s disease; cis-eQTL, cis-expression quantitative trait locus; CRBLM, cerebellum; DLPFX, dorsolateral prefrontal cortex; FCTX, frontal cortex; GWAS, genome-wide association study;
mRNA; messenger RNA; NA, not available; PFCTX, prefrontal cortex; PONS, pons; PSY, psychiatric; SCZ, Schizophrenia, SNP, single-nucleotide polymorphism; TCTX, temporal cortex.
http_ROSMAP, https://www.synapse.org/#!Synapse:syn3168763 and https://www.synapse.org/#!Synapse:syn3388564.
The table lists seven studies that involved a total of N¼ 1,796 brain tissues from 1,163 individuals who participated in our GWAS of epigenetic age acceleration in the brain. Studies 2, 3, 5, 6 and 7 are
involved gene expression data including the individuals available for gene expression and SNP array data but not necessary for DNA methylation data. N¼ number of individuals passing QC (for SNP and
DNA methylation array data) available for GWAS in at least one brain region; NGWAS¼ number of individuals passing QC available for GWAS analysis in the corresponding brain region;
Ncis-eQTL¼ number of individuals passing QC (for SNP and mRNA array data) available for cis-eQTL analysis in the corresponding brain region.
*Indicating neurologically normal.
wIncluding other dementia.
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the endothelin-converting enzyme 1 gene (ECE1), previously
implicated in Alzheimer’s disease due to its perceived effect on
amyloid-beta peptides levels27,28. The association signal of
rs11296960 is supported by six neighbouring SNPs (located
in the ECE1 gene), which have a suggestive association

with epigenetic age acceleration (4.4� 10� 7oPo9.8� 10� 5,
Supplementary Fig. 8a). However, the 1p36.12 locus exhibits
significant heterogeneity across studies (I2¼ 85%, P¼ 0.002),
which resulted from a high correlation coefficient from the
smallest study (n¼ 36 in study 4, Supplementary Fig. 8b). As part

1796 brain tissues across five brain regions

Epigenetic measures of brain ageing

Meta-analysis of epigenetic measures of brain ageing

I. GWAS for epigenetic AA
at each region of each study

PFCTX meta-analysis:
combining PFCTX GWAS
across studies

1p36.12 17q11.2 10q26, 12p13.31

Multi-brain meta-analysis:
combining GWAS across
studies

II. Combining GWAS across regions
-> a single GWAS for each study

III. GWAS for PropN
in PFCTX

I.  Epigenetic age acceleration (AA)

• Unadjusted measure: residual of DNAm age regressed on chronological age

• Intrinsic measure: DNAm age regressed on chronological age, adjusted for neuronal proportion,
 and possibly disease status, sex.

II. The proportion of neurons adjusted for chronological age (PropN) in PFCTX.
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Figure 1 | Overview of the analysis that characterized genetic factors underlying epigenetic measures of brain ageing. (a) The study involved SNP data

and DNA methylation data from 1,796 brain tissue samples across multiple brain regions: cerebellum (CRBLM), frontal cortex (FCTX), pons (PONS),

(dorsal lateral) prefrontal cortex (DLPFX/PFCTX) and temporal cortex (TCTX). (b) Our GWASs involved two DNA methylation-based traits of brain

ageing: epigenetic age acceleration (based on the epigenetic clock) and the proportion of neurons (estimated using the CETS algorithm). The (cell-)intrinsic

measure of epigenetic age acceleration in brain tissue is defined to be independent of the proportion of neurons. (c) To combine the GWAS results of

individual brain regions across seven different studies, we used meta-analysis. (d) To prioritize genes near genome-wide significant loci, we used cis-eQTL

studies and Mendelian randomization analyses based on summary test statistics. (e) To identify biological pathways underlying epigenetic measures of

brain ageing, we used gene set enrichment analysis. (f) To demonstrate that SNPs associated with brain ageing are often associated with other complex

phenotypes, we used a gene overlap analysis with published GWAS results. AA, age acceleration; GE, gene expression; HIP, hip circumference;

SMR, summary data-based Mendelian randomization.
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of a sensitivity analysis of study 4, we also conducted a robust
correlation test (biweight midcorrelation29) that corroborated our
original results (Supplementary Fig. 9).

A chromatin state analysis found that INDEL rs11296960 is
located in a region that either actively involves or enhances gene
regulation in 124 out of 127 cell lines, including 8 brain cell lines
(Supplementary Fig. 7c).

Different from its effect in the PFCTX, INDEL rs11296960 is
not associated with epigenetic age acceleration in the CRBLM
(Supplementary Fig. 4a,h). Similarly, the two SNPs identified in
our previous GWAS of epigenetic age acceleration in CRBLM22

are not associated with epigenetic age acceleration in PFCTX
(Supplementary Table 5). However, these SNPs exhibit a
suggestive association with age acceleration in the PONS, which
is a related subcortical brain stem region highly interconnected
with the CRBLM (0.026rPr0.09 in study 2).

cis-eQTL studies of significant loci. We performed a cis-eQTL
analysis to identify the functional consequences and regulatory
targets of our GWAS hits within an interval of ±1 Mb (Fig. 1d;
Methods). We analysed brain expression data (n¼ 3,943 brain
samples from 19 brain regions) by leveraging the following
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Figure 2 | Manhattan plots of genome-wide meta-analysis. Manhattan plot for the meta-analysis GWAS P values of (a) epigenetic age acceleration

across multiple brain regions (cerebellum, frontal cortex, pons and prefrontal cortex), (b) epigenetic age acceleration in the prefrontal cortex (PFCTX) and

(c) an age-adjusted measure of the proportion of neurons. Each panels depicts eight SNPs (coloured in red) that are significantly (Po5.0� 10� 8)

associated with epigenetic age acceleration in either (a) all five brain regions or in (b) PFCTX. Further, each panel highlights 13 SNPs (coloured in green),

which are significantly associated with the proportion of neurons (Po5.0� 10� 8) in PFCTX (c).

Table 2 | SNPs associated with intrinsic epigenetic age acceleration of the brain.

Meta-
analysis

Band No. of
significant

SNPs

Leading
SNP

Nearby
gene

Position
(bp)

Minor/
major
alleles

MAF EUR
MAF

b (s.e.) Corr. (s.e.) Meta
P value

I2(%)
(P value)

ALL 17q11.2 7 rs2054847 SLC6A4 28532013 A/G 0.42 0.41 � 1.01 (0.20) �0.15 (0.03) 4.5� 10�9 0 (0.8)
PFCTX 1p36.12 1 rs11296960 ECE1 21590155 CT/C 0.47 0.47 1.07 (0.20) 0.21 (0.04) 2.2� 10�8 85 (0.002)

Corr., correlation with respect to minor allele; EUR MAF, minor allele frequency calculated using 1000 genome individuals with ancestry of European (released in December 2013); MAF, mean of minor
allele frequency estimates across studies weighted by study sample sizes; PFCTX, prefrontal cortex; SNP, single-nucleotide polymorphism.
Position bp based on Hg19 assembly. No. of significant SNPs¼ number of markers with association Po5.0� 10�8. b is approximated by Corr. (SDy

SDx
), where SDy is the pooled s.d. of age acceleration and

SDx is the s.d. of SNP covariate (coded by allele counts); SDy¼4.69 for ALL and 3.60 for PFCTX. We present the loci with SNP associations at 5.0� 10�8 and display the most significant SNP within
each locus. Fixed-effects meta-analysis was used to estimate the correlation coefficient and s.e. (‘Corr. (s.e.)’) between the minor allele and epigenetic age acceleration across studies. The corresponding
meta-analysis P values can be found in the column ‘Meta P’. The prefrontal cortex (PFCTX) includes the dorsolateral prefrontal cortex.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15353 ARTICLE

NATURE COMMUNICATIONS | 8:15353 | DOI: 10.1038/ncomms15353 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


three large data sets: (1) transcriptomic data on the individuals
from our GWAS (n¼ 1,705 samples from 4 brain regions),
(2) Genotype-Tissue Expression project (GTEx, see URL)30

(n¼ 1,007 samples, across 12 brain regions, from 449
individuals, most of whom were neurologically normal and of
European Ancestry, Supplementary Table 6) and (3) the Brain

eQTL Almanac (BRAINEAC, see URL)31 (n¼ 1,231 samples
from 10 brain regions of 134 neurologically normal individuals of
European ancestry). We combined the eQTL P values across the
three studies using Stouffer’s meta-analysis method. The 1p36.12
locus, which was implicated in our PFCTX meta-analysis, did not
exhibit any cis-eQTL after correcting for multiple comparisons.
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Figure 3 | Detailed analysis of locus 17q11. (a) Regional association plot of locus 17q11.2 associated with epigenetic age acceleration. The y axis depicts

log-transformed meta-analysis P values across studies 1–7. The colours visualize linkage disequilibrium (LD) r2 between rs2054847 (coloured in purple)

and neighbouring SNPs. (b) The meta-analysis ‘forest’ plot displays the GWAS results across all brain regions of GWASs 1–7. We display study index,

brain region, width of 95% confidence interval (CI) for correlation coefficient estimate and correlation [95% CI], with respect to the minor allele A. The

results from cerebellum (CRBLM), frontal cortex (FCTX) and prefrontal cortex (PFCTX) were combined into single estimates, referred to as Meta CRBLM,

Meta FCTX and Meta PFCTX, respectively. The estimate Meta ALL combined each single estimate of each GWAS (1–7, total N¼ 1,796) via fix-effect

models weighted by inverse variance. It indicates that rs2054847 is associated with epigenetic age acceleration across five brain regions at a genome-wide

significant P¼4.5� 10� 9.
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However, locus 17q11.2, which was identified by our multi-region
meta-analysis, implicated four gene transcripts that are
significantly correlated with the leading SNP, rs2054847 (Fig. 4;
Supplementary Fig. 10; Supplementary Table 7). The minor allele
of rs2054847, which is associated with decreased epigenetic age
acceleration in brain, is positively correlated with the expression
levels of EFCAB5 (EF-hand calcium-binding domain 5) in 12
different brain regions (Meta P¼ 3.4� 10� 20, Fig. 4) and even in
non-neural tissues, such as colon, nerve, skin and thyroid
(Supplementary Table 8). A less significant cis-effect of SNP
rs2054847 can be observed for the expression levels of three other
neighbouring genes: GOSR1 (P¼ 5.5� 10� 12, Supplementary
Fig. 10a), CRLF3 (P¼ 2.1� 10� 6), and BLMH (P¼ 6.3� 10� 6,
Supplementary Fig. 10b,c). Each of the four putative cis-acting
genes has at least a marginally significant correlation
with chronological age (meta-analysis Po0.05), but the
most significant age correlations can be observed for CRLF3
(meta-analysis P¼ 1.7� 10� 5, Supplementary Figs 11 and 12).

EFCAB5 is the most striking gene in 17q11. If the expression
level of a gene is influenced by a genetic variant, also known as an
expression QTL, then there will be differences in gene expression

levels among individuals carrying different genotypes of the
genetic variant. Then, if the expression level of the gene has an
effect on epigenetic age acceleration, the genetic variant will also
show an effect on epigenetic age acceleration. This approach is
very similar to the concept of a Mendelian randomization (MR)
analysis, where a genetic variant (for example, a SNP) is used to
test for the causative effect of an exposure (for example,
gene expression) on an outcome (for example, epigenetic age
acceleration), yielding a measure of the causative effect,
irrespective of potential confounders. Therefore, one can, in
principle, use MR analysis to search for the most functionally
relevant genes at the loci identified in a GWAS for a complex
traits32. However, MR analysis based on a single genetic variant is
unable to distinguish the causal model (SNP-expression-age
acceleration) from the alternative causal scenario of pleiotropy
(expression’SNP-age acceleration, Supplementary Fig. 13a,b)32.
To err on the side of caution, we refer to a significant MR test
between the expression trait and epigenetic age acceleration as
‘pleiotropic association’ even though it could indicate a causal
effect of gene expression on age acceleration.

To detect the effect of a gene expression on epigenetic age
acceleration using a two-stage least-squares MR approach
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Figure 4 | cis-eQTL study across 19 brain regions for the leading SNP in 17q11. The meta-analysis forest plot displays the significant cis-eQTL results for

the leading SNP rs2054847 and expression levels of gene EFCAB5, by combining three panels of study results (N¼ 3,943 brain tissues across 19 regions).

We display study name, brain region and test statistics including P value, 95% confidence interval (CI) and effect size [95% CI]. The top panel reports a

robust correlation coefficient (biweight midcorrelation, bicor). The remaining panels report the beta coefficient value (slopes) of linear regression models

between a test allele and gene expression levels. The effect sizes are with respect to minor allele counts. The top panel reports cis-eQTL findings for 1,705

brain tissues across five brain regions from the individuals of our GWAS. Meta-analysis was used to combine individual results from CRBLM into a single

estimate, Meta CRBLM. Similarly, we defined meta-analysis results for the frontal cortex (Meta FCTX) and prefrontal cortex (Meta PFCTX). Fixed-effects

meta-analysis was used to combine Meta CRBLM, Meta FCTX and Meta PFCTX P values into the meta-analysis P value (Study ALL). The middle panel

reports the results from the 1,007 brain tissues across 12 regions from the GTEx project. The fixed-effect model was used to combine GTEx P values into an

overall P value denoted GTEx ALL. The lower panel reports the cis-eQTL results evaluated in up to 1,231 brain tissue samples across 10 regions, from the

BRAINEAC database. The average across all available regions in the BRAINEAC data based is presented in (UK ALL). The Combined ALL P value was

calculated by combining the Study ALL, GTEx ALL and UK ALL values using Stouffer’s Z score approach. All the cis-eQTL models assumed used an additive

allele coding of the SNP. ACC, anterior cingulate cortex; AMY, amygdala; CAU, caudate basal ganglia; CORTEX, cortex; CRBHM, cerebellar hemisphere;

CRBLM, cerebellum; DLPFX, dorsolateral prefrontal cortex; FCTX, frontal cortex; HIPP, hippocampus; HYPOTH, hypothalamus; MEDU, medulla;

NAcc, nucleus accumbens; OCTX, occipital cortex; PONS, pons; PUTM, putamen; SNIG, substantia nigra; TCTX, temporal cortex; THAL, thalamus;

WHMT, intralobular white matter.
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probably requires a large sample size (possibly thousands of
individuals), whereas we only had access to a moderate sample
size of individual-level data (that is, individuals for whom DNA
methylation, SNP and gene expression data were measured at the
same time). Nevertheless, we were able to leverage summary-level
data (test statistics) from large-scale GWAS and eQTL studies in
the public domain, and apply the summary data-based
Mendelian randomization (SMR) method to identify genes whose
expression levels are associated with epigenetic age acceleration32.
The SMR analysis combined our GWAS results of epigenetic age
acceleration with cis-eQTL GWAS results from (1) our study
data, (2) GTEx and (3) BRAINEAC. The SMR analysis of
the 17q11.2 region suggests a pleiotropic association between
epigenetic age acceleration and the expression levels of four genes:
EFCAB5, GOSR1, CRLF3 and BLMH32 (Fig. 1d). The EF-hand
gene EFCAB5 has the strongest pleiotropic association with
epigenetic age acceleration (Table 3; Supplementary Table 9).
The pleiotropic association between EFCAB5 and epigenetic age
acceleration is due to a single causal variant in 17q11.2 according
to the insignificant HEIDI test (Table 3; Supplementary Fig. 13).
The minor allele ‘A’ of the leading SNP rs2054847 is associated
with higher expression levels of EFCAB5 in multiple brain
regions, which suggests that elevated expression levels are
associated with delayed brain ageing. Using individual-level
data, we find a striking negative correlation between EFCAB5
expression levels and epigenetic age acceleration in the CRBLM
(Meta P¼ 1.7� 10� 10, Table 3), FCTX (Meta P¼ 7.8� 10� 6),
PFCTX (P¼ 9.2� 10� 3) and TCTX (P¼ 2.9� 10� 4). Overall,
we find a highly significant association between EFCAB5
expression and epigenetic age acceleration in brain across all
studies (P¼ 1.2� 10� 16, Table 3).

We cannot rule out that the genome-wide significant SNPs
directly affect epigenetic ageing rates, which subsequently alter
gene transcript levels. An SMR analysis that reverses the roles of
gene transcripts and epigenetic ageing rates indicates that the
rates might have a direct causal effect on EFCAB5 expression
levels in the CRBLM (SMR Z¼ � 3.66 and P¼ 2.5� 10� 4) and
in the PFCTX (SMR Z¼ � 2.03 and P¼ 4.3� 10� 2).

Only suggestive enrichment for pathways. To learn more about
the biological processes that may underlie epigenetic age
acceleration in the brain, we performed pathway analysis using
MAGENTA33 for two sets of SNPs—those resulting from our
meta-analysis of all regions and those from our meta-analysis of
PFCTX (Methods; Fig. 1e). While the P values are not significant

after adjusting for multiple comparisons, we find suggestive
evidence that genes that relate to epigenetic age acceleration of
the PFCTX play a role in DNA damage, GTPase inhibitor activity
and neuroactive ligand receptor interactions (Supplementary
Table 10; Supplementary Data 1). Similarly, genes that relate
to epigenetic age acceleration across multiple brain regions are
enriched with genes that play a role in mitogen-activated protein
kinase signalling (Supplementary Table 10; Supplementary Data 1).

Significant overlap with GWAS results of other phenotypes. To
rank genes (as opposed to individual SNPs) based on our GWAS
of age acceleration, we used the MAGENTA software to assign an
overall P value per gene based on multiple underlying SNPs.
Towards this end, MAGENTA assigns a P value to each gene by
adjusting the most significant SNP association P value (within the
gene boundary ±50 kb) for gene size, number of SNPs in LD per
gene and other potential confounders33.

Similarly, we ranked the results from 65 GWAS of a broad
spectrum of phenotypes such as neurodegenerative diseases3,34–36,
neuropsychiatric disorders37, body fat distribution38, metabolic
phenotypes39, inflammatory disease40 and longevity (Fig. 1f;
Methods; Supplementary Note 2). We then examined the overlap
between the top 2.5% most significant genes (roughly 500 genes
ranked by the MAGENTA P value) for epigenetic age acceleration
and an analogous set of genes found by GWAS of other
phenotypes. According to the overlap analysis (Table 4), genes
associated with intrinsic epigenetic age acceleration in the PFCTX
have been implicated in cognitive decline (P¼ 1.2� 10� 3),
dementia (P¼ 1.2� 10� 3), Alzheimer’s disease (P¼ 4.9� 10� 3)
and hip/waist circumference (adjusted for body mass index (BMI))
in a sex-specific manner: the most significant overlap can be
observed for males. When studying the overlap between sets of
genes based on a MAGENTA threshold of 15% (roughly 2,800
significant genes), we found that genes related to epigenetic age
acceleration in all brain regions (P¼ 7.4� 10� 5) and in PFCTX
(P¼ 3� 10� 3) overlap with genes that are known to modify the
age of onset of HD according to a recent large-scale GWAS35. The
latter results are consistent with our recent finding that HD is
associated with epigenetic age acceleration in human brain tissue19.

Individual genes that relate both to brain epigenetic age
acceleration and to at least one test trait according to our overlap
analysis can be found in Supplementary Data 2 and 3.

GWAS of the proportion of neurons in PFCTX. In the
following, we describe the results for our second measure of brain

Table 3 | Summary data-based Mendelian randomization analysis of EFCAB5 expression versus age acceleration.

Region Combined studies Our study GTEx UK

PSMR b PSMR PHEIDI b PSMR PHEIDI b PSMR PHEIDI

CRBLM 1.7� 10� 10 �6.20* 3.4� 10�4 0.9 � 1.73 7.1� 10� 5 0.85 � 5.71 1.2� 10�4 0.15
FCTX 7.8� 10� 6 — — — � 1.75 3.0� 10� 3 0.09 � 7.88 3.9� 10�4 0.03
PFCTX 9.2� 10� 3 � 14.0w 9.2� 10� 3 0.8 — — — — — —
TCTX 2.9� 10�4 — — — — — — �6.93 2.9� 10�4 0.15
ALLz 1.8� 10� 5 — — — — — — � 9.57 1.8� 10� 5 0.54
Combined regions 1.2� 10� 16

cis-eQTL, cis-expression quantitative trait locus; CRBLM, cerebellum; FCTX, frontal cortex; PFCTX, prefrontal cortex; TCTX, temporal cortex.
— denotes ‘not available’ or ‘not tested’.
Results from summary data-based Mendelian randomization analysis (SMR) in conjunction with heterogeneity in dependent instruments (HEIDI) analysis. SMR and HEIDI were performed using our
GWAS results surrounding the gene EFCAB5 and the cis-eQTL results from (1) our individual-level study, (2) GTEx and (3) BRAINEAC (denoted by UK), respectively. The SMR test yields a slope estimate
b for the change in epigenetic age acceleration per unit EFCAB5 expression and the associated P value (PSMR). The HEIDI test yields a P value (PHEIDI) for interpreting the association between EFCAB5 and
age acceleration, where nonsignificant PHEIDI (Z0.01) suggests EFCAB5 expression and age acceleration are affected by the same causal variants. The column ‘Combined studies’ presents the SMR P
value PSMR of each test region, combined across the three study sets using Stouffer’s Z score approach. The ‘Combined studies’ PSMR values of CRBLM, FCTX, PFCTX and TCTX were combined across
regions by Stouffer’s approach as well, yielding an overall assessment for the association between EFCAB5 and epigenetic age acceleration in brain with. PSMR¼ 1.2� 10� 16 (see row ‘Combined regions’).
*The analysis result from our study was performed on study 3.
wThe analysis result from our study was performed on a combined sample of studies 6 and 7.
zThe expression averaged across the ten brain regions from the UK database.
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ageing: an age-adjusted measure of the proportion of neurons,
which was estimated using DNA methylation data (Methods).

Our meta-analysis involving 600 PFCTX tissues (from studies
4, 6 and 7, Fig. 1c; Methods) identified two significant loci
(Fig. 2c): 10q26 (3 SNPs within gene TACC2) and 12p13.31
(10 SNPs near genes CLEC4E-AICDA, Supplementary Table 12;
Supplementary Fig. 14). As described above, we used MAGENTA
to define sets of genes that relate to the proportion of neurons
according to our GWAS analysis. According to our GWAS-based
overlap analysis, the age-adjusted proportion of neurons relates
significantly to 21 traits (Table 4; Supplementary Table 13;
Supplementary Data 4) including age-related macular degenera-
tion (P¼ 1.4� 10� 12), schizophrenia (P¼ 1.6� 10� 9), cogni-
tive decline (5.3� 10� 4), Parkinson’s disease (P¼ 8.6� 10� 3)
and all three subtypes of inflammatory bowel disease
(Pr6.0� 10� 9 including ulcerative colitis Po1.0� 10� 20),
type 2 diabetes (P¼ 2.8� 10� 13 in individuals of European

ancestry), and various measures of body fat distribution, with
stronger effects found for males (such as hip and waist
circumference adjusted for BMI in males of European ancestry
P¼ 1.1� 10� 9, Table 4).

Unclear causal relationship between adiposity and brain age.
It is striking that, according to our overlap analysis, both of our
DNA methylation-based biomarkers of brain ageing (epigenetic
age acceleration and the proportion of neurons) relate to
measures of adiposity (hip and waist circumference adjusted for
BMI) in a sex-specific manner. To assess whether epigenetic brain
ageing is a downstream causal consequence of adiposity,
or whether pleiotropy links adiposity with brain ageing, we used a
powerful variant of MR analysis (MR-Egger regression41) that
effectively combines the information of multiple SNPs (Methods).
Towards this end, we used multiple genome-wide significant

Table 4 | GWAS-based overlap analysis between traits.

GWAS POP Sex Hypergeometric P

AgeAccel in ALL AgeAccel in PFCTX propN in PFCTX

Part I: age-related neurogenetic traits
Neurodegenerative and neuropsychiatric disorders

AMD EURþASN M, F 0.9 40.9 3.8� 10� 6

AMD geographic atrophy EURþASN M, F 0.7 0.9 1.5� 10� 7

AMD neovascular EURþASN M, F 40.9 40.9 1.4� 10� 12

ALZ* EUR M, F 0.8 4.9� 10� 3 40.9
Parkinson’s disease EUR M, F 0.8 40.9 8.6� 10� 3

Schizophrenia EURþASN M, F 40.9 40.9 1.6� 10�9

Cognitive functioning from HRS
Cognitive decline (slope) Admixed M, F 0.2 1.2� 10� 3 0.2
Dementia Admixed M, F 0.6 40.9 5.3� 10�4

EUR M, F 2.0� 10� 2 1.2� 10� 3 3.6� 10� 2

AFR M, F 5.4� 10�4 2.6� 10� 3 0.2

Part II Body fat distribution, inflammatory outcomes and other age-related traits
GIANT body fat distributionw

Hip Admixed M 0.8 0.3 5.2� 10� 7

EUR M 40.9 0.1 1.6� 10� 7

Hip adj. BMI Admixed M, F 0.8 3.3� 10� 3 1.1� 10�4

EUR M, F 40.9 2.6� 10� 2 1.5� 10� 3

Admixed M 40.9 1.4� 10� 3 4.1� 10� 9

EUR M 40.9 6.4� 10� 3 1.1� 10� 9

WC adj. BMI EUR M, F 40.9 8.1� 10� 2 3.3� 10� 3

Admixed M 0.8 6.0� 10�4 6.0� 10�4

EUR M 0.9 2.5� 10�4 9.9� 10�5

WHR Admixed M 0.1 40.9 1.4� 10� 3

EUR M 0.2 40.9 6.5� 10� 3

WHR adj. BMI Admixed M, F 40.9 40.9 1.1� 10�4

EUR M, F 40.9 40.9 4.0� 10�5

Admixed M 40.9 0.9 4.8� 10�6

EUR M 40.9 40.9 4.6� 10�6

Inflammatory bowel disorder
IBD EUR M, F 0.8 40.9 9.2� 10� 12

IBD Crohn’s disease EUR M, F 0.6 40.9 6.0� 10� 9

IBD ulcerative colitis EUR M, F 40.9 40.9 o1.0� 10� 20

Metabolic outcomes and diseasesw

T2D stage 1 EUR M, F 0.2 0.9 2.8� 10� 13

T2D combined EURþ SAS M, F 0.7 0.4 1.4� 10�4

Adj., adjusted; AFR, Africans; ALZ, Alzheimer’s disease; AMD, age-related macular degeneration; AMR, Americas; ASN, Asians; EUR, Europeans; F, females; FDR, false discovery rate; GIANT, genetic
investigation of anthropometric traits (see URL); Hip adj. BMI, hip-adjusted body mass index; HRS, Health Retirement Study (see URL); IBD, inflammatory bowel disorder; M, males; SAS, southern Asians;
T2D, type 2 diabetes; WC, waist circumference; WHR, waist-to-hip ratio.
The table presents a total of 30 overlap results with hypergeometric Po0.01 using the genes related to epigenetic age acceleration (AgeAccel) in (1) all brain regions (ALL) or (2) in the prefrontal cortex
(PFCTX), or (3) the genes related to the proportion of neurons (propN) in the prefrontal cortex. The gene sets were thresholded at the top 2.5%. There are 506 (455) genes listed in the top 2.5% across
n¼ 20,273 (18,218) autosomal genes that have a suggestive relationship with brain age acceleration of all brain regions (ALL), age acceleration of the PFCTX or the proportion of neurons in the prefrontal
cortex, based on hg19 (hg18) assembly. FDR qr0.05 marked in bold, evaluated based on Benjamin Hochberg method, as listed in Supplementary Table 11 for numerical results in ALL and PFCTX, and in
Supplementary Table 13 for numerical results in NP.
*The GWAS results from stage 1 analysis.
Calculations based on Hg19 assembly, unless marked in w otherwise.
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SNPs for body fat distribution traits that were found in a GWAS
of 93,965 males of European ancestry from the GIANT
consortium38 (Methods). We considered several measures of
adiposity including waist and hip circumference (both adjusted
and unadjusted for BMI). However, MR-Egger regression analysis
did not reveal significant evidence for a causal effect of adiposity
on our biomarkers of brain ageing or vice versa (Supplementary
Table 14).

As a secondary analysis, we also carried out a polygenic risk
score analysis for the measures of adiposity (waist and hip
circumference adjusted for BMI), which were constructed using
the data from 93,965 males of European ancestry in the GIANT
consortium (Supplementary Tables 15 and 16). The polygenic
risk scores applied to our individual-level data resulted in
genetic estimates of waist/hip circumference, which exhibited
insignificant correlations with our epigenetic biomarkers
(Supplementary Table 15).

Discussion
Our study elucidates the genetic underpinnings of two
DNA methylation-based biomarkers of brain ageing: the first,
epigenetic age acceleration based on the epigenetic clock, is
associated with two loci (17q11.2 and 1p36.12); the second,
proportion of neurons based on the CETS algorithm, is associated
with two other loci (10q26 and 12p13.31). Our transcriptomic
studies allowed us to prioritize genes that are located near these
genome-wide significant loci. Interestingly, Alzheimer’s disease is
associated with an increased epigenetic age acceleration of the
PFCTX after adjusting for the proportion of neurons. This is
consistent with our previous work showing that epigenetic age
acceleration in PFCTX both relates to and shares a genetic
correlation with Alzheimer’s disease-related neuropathology20.
By definition, our intrinsic measure of age acceleration is not
confounded by the proportion of neurons, chronological age, sex
or disease status.

Both biomarkers of brain ageing are associated with a host of
complex phenotypes according to our GWAS-based overlap
analysis. The genetic overlap between neurodegeneration and
epigenetic age acceleration is evidenced by our results, showing
that gene sets identified by our GWAS of epigenetic ageing in the
PFCTX were significantly enriched with genes associated with
cognitive decline, dementia, Alzheimer’s disease and age of
HD onset.

Locus 17q11.2 is particularly interesting since it is associated
with epigenetic age acceleration across multiple brain regions. To
study the biological mechanism of the leading GWAS SNP,
rs2054847, we carried out cis-eQTL studies and MR studies.
Our cis-eQTL study based on individual-level data shows that
rs2054847 is associated with the expression levels of multiple
genes (EFCAB5, GOSR1, CRLF3 and BLMH) in multiple brain
regions except for PONS. But differences in sample sizes per brain
region contribute to differences in statistical power when it came
to detecting SNPs for age acceleration and corresponding
expression QTLs. We had a relatively low power of 64% (at a
significance level of 0.05) to detect a weak correlation of 0.2
between a SNP and a neighbouring gene transcript in the PONS
(N¼ 134) compared to a high power of 93% in PFCTX (NZ288
in two studies). To overcome our limited sample size in
individual-level data, we used summary-level data from published
eQTL studies to show that EFCAB5 correlates with rs2054847 in
12 brain regions and in non-neural tissues such as colon, nerve,
skin and thyroid. Using individual-level data, we found that
EFCAB5 expression levels correlate positively with chronological
age but negatively with epigenetic age acceleration in several brain
regions. EFCAB5 is an intriguing gene in the context of brain
ageing because it is known to play a role in brain-related

processes such as Ca2þ signalling, synaptogenesis, dendritic
arborization and cell survival42.

We demonstrate that SNPs associated with epigenetic brain
ageing in one brain region are typically different from those
affecting ageing in another brain region. In particular, the
CRBLM is distinct from other regions—an observation that is not
surprising given its relative protection from most disorders
associated with ageing and its slow epigenetic ageing rate8. This
probably explains why the two SNPs identified in our previous
GWAS of epigenetic age acceleration in CRBLM22 are not
associated with epigenetic age acceleration in PFCTX.

We identified an INDEL variant rs11296960 near ECE1 in
1p36.12, which relates to epigenetic age acceleration in PFCTX,
but not in CRBLM. The INDEL variant is located in an active
chromosomal region for gene regulation in brain and other cell
lines. It has been suggested that ECE1 acts as an Ab-degrading
enzyme in the brain, and that decreased presence of ECE1 is
associated with reduced Ab clearance and increased plaque
deposition27,28.

Although neuronal loss has been observed with ageing and
dementia, we found that the actual proportion of neurons,
relative to glia, is positively correlated with chronological age in
several brain regions. Epigenetic age acceleration has a strong
negative correlation with the proportion of neurons (on average
r¼ � 0.35), but these biomarkers only exhibited a vanishing
genetic correlation (rGE¼ 0.005 according to the GCTA
software43,44) with each other, which probably reflects the low
heritability of the proportion of neurons (h2¼ 7.2%) or the
relatively low sample size (no1,000). At least 5,900 samples are
needed to reach a statistical power of 80% for detecting a
heritability of 10% at a 0.05 significance level according to a
GCTA-GREML power analysis44.

Our overlap analysis further suggests that gene sets identified
in the GWAS for epigenetic ageing in PFCTX and those identified
in the GWAS for proportion of neurons relate to fat distribution
traits especially in males. We also find significant genetic overlap
between the proportion of neurons and type II diabetes. This is
particularly intriguing given the rich literature linking obesity and
metabolic outcomes to cognitive functioning. For instance,
obesity is associated with earlier onset of Alzheimer’s disease45

and has been linked to cognitive decline and dementia46–49.
However, our MR analysis (MR-Egger regression) did not reveal
significant evidence for a causal effect of adiposity on our brain
ageing measures. While these results point towards biological
pleiotropy between age acceleration and measures of adiposity,
additional studies will be needed to arrive at definitive results
regarding the causal relationships between these complex traits.

Methods
Data sets. An overview of our data sets is presented in Table 1. Additional details
can be found in Supplementary Tables 1 and 2, and Supplementary Note 1.
All studies involved DNA methylation and SNP data measured from the same
individuals. Furthermore, gene expression data (microarray or RNA sequencing)
were available for all studies except studies 1 and 4. Our meta-analysis
was approved by the ethics review board at UCLA (IRB#15-001479 and
IRB#14-000061).

Code availability. The measures of DNAm age are implemented in our freely
available software (https://dnamage.genetics.ucla.edu).

Estimation of neuronal proportions in brain tissues. The CETS R package23

was used to estimate the proportion of neurons based on DNA methylation data.
We independently confirmed the high accuracy of the CETS algorithm by applying
it on sorted neurons, which led to estimates of the proportion of neurons in excess
of 0.99.

Heritability estimation based on GCTA. The REML and bi-REML procedures of
the GCTA software44,50 were used to estimate the heritability of and genetic
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correlations between epigenetic age acceleration and proportion of neurons,
respectively. Towards this end, we applied the GCTA analysis to a large
Alzheimer’s disease data set51–54 (studies 6 and 7, Supplementary Information).
The analysis was performed on 8,185,912 genotyped or imputed markers that
satisfied the following criteria: marker info measureo0.6 and minor allele
frequency (MAF)Z0.02. Both REML and bi-REML models were adjusted for
sex, study set, disease status and ten principal components estimated from
identity-by-state relationships.

Conditional analysis. To test whether multiple independent causal variants are
located in 17q11.2, we used the GCTA conditional analysis based on GWAS
summary statistics24. The association analysis conditioned on the leading (most
significant) SNP, rs2054847. The reference panel for inferring the LD pattern was
based on the 1000 genome individuals (released in December 2013) with European
ancestry (N¼ 379).

GWAS analysis for epigenetic age acceleration. SNP quality was assessed by
estimating MAF, Hardy–Weinberg equilibrium and missingness rates across
individuals (Supplementary Table 2). European ancestry of the individuals from
study 2 was validated by the authors55, which led to the removal of two
inconsistent individuals. The reported genetic ancestry of other study individuals
was confirmed using principal component analysis plots or multidimensional
scaling plots in conjunction with principal component analysis in PLINK56 and
EIGENSTRAT57.

Imputation. We used IMPUTE2 (refs 58,59) with haplotypes phased by
SHAPEIT60 to impute variants such as SNP and INDEL markers based on the
latest 1000 Genome phase 3 haplotypes from 2,504 individuals (released in October
2014) with the exception of study 1 that was based on the haplotypes from 1,092
individuals (released in December 2013). The quality of imputed markers was
assessed by the info measure40.4 (in IMPUTE2). For association analysis,
we regressed the age acceleration trait values on (1) estimated genotype dosage
(counts of test alleles) or (2) expected genotype dosage, possibly adjusted for the
first two principal components derived from identity-by-state relationships in case
of admixed populations (Supplementary Table 2).

Genome-wide meta-analysis of epigenetic age acceleration. Our meta-analysis
was based on correlation coefficients or partial correlation coefficients (in case of
principal component adjustment). Our multi-brain region GWAS used the UV-
MA (meta-analysis of univariate results) approach61, which proceeded along the
following steps. First, we performed GWAS for each brain region in each study,
resulting in 13 separate GWAS results. Second, the GWAS results from multiple
brain regions of the same study (that is, based on the same individuals) were
combined using fixed-effects meta-analysis weighted by inverse variance. This
study-specific meta-analysis resulted in a single meta-analysis GWAS for studies 1,
2, 4 and 5, respectively. However, the intra-individual correlations resulted in
inflated meta-analysis P values for each study, which were corrected in the next
step. Third, we applied genomic control corrections to the meta-analysis P value
from each of the four studies. Fourth, we again used a fixed-effects meta-analysis to
combine the seven GWAS results (from seven studies that involve independent
individuals) into a final meta-analysis GWAS.

Our meta-analysis GWAS of the PFCTX combined the results from this brain
region across studies 1, 4, 6 and 7 using a fixed-effects meta-analysis weighted by
inverse variance. Our fixed-effects meta-analysis models were carried out with the
software Metal62.

Pre-processing steps of GWAS. Our GWAS focused on common SNP markers
(MAF45%). Further, we removed SNPs that exhibited substantial heterogeneity
across studies according (Cochran Q I2 P valuer0.001). We used 6,935,762
(genotyped or imputed) SNPs present in at least four study sets for our multi-
region region GWAS and 6,853,936 SNPs present in at least three study sets for our
PFCTX GWAS. In a post hoc analysis, we evaluated the SNPs that were removed in
our pre-processing/pre-filtering analysis. None of the removed SNPs exhibited
genome-wide significant (Po5.0� 10� 8) associations with measures of epigenetic
age acceleration or with disease status (for example, Alzheimer’s disease) in the
respective studies. Significant heterogeneity (Cochran Q) test results were largely
due to study 4, which was a small (N¼ 37) case–control study of schizophrenia.
The small sample size of study 4 increased the heterogeneity of the meta-analysis
results and prompted us to carry out a sensitivity analysis based on a robust
correlation test (biweight midcorrelation29).

GWAS analysis for the proportion of neurons in PFCTX. Our GWAS of the
(age adjusted) proportion of neurons in PFCTX was based on a meta-analysis
across studies 4, 6 and 7. Our phenotype (age-adjusted proportion of neurons) was
defined as raw residual resulting from a linear regression model of the proportion
of neurons (dependent variable) on chronological age at time of death (covariate).
Our approaches for the GWAS of the proportion of neurons were identical to those

for our GWAS of epigenetic age acceleration. The genomic inflation estimates
were 1.08, 0.98 and 1.03 for GWAS studies 4, 6 and 7, respectively. Results
were combined using fixed-effects meta-analysis whose genomic inflation factor
was 1.03.

LD analysis. Regional SNP association results were visualized with the software
LocusZoom63. All LD estimates presented in this article were calculated using
individuals of European ancestry from the 1000 genome reference panel (released
November 2014).

Chromatin state analysis of leading SNPs. For each genome-wide significant
locus, we carried out a chromatin state analysis of the leading SNP using the UCSC
genome browser. The n¼ 127 diverse cell/tissue lines were profiled by the NIH
RoadMap Epigenomics26 (n¼ 111) and ENCODE projects64 (n¼ 16). We used the
15-state chromatin model from ChromHMM, which is based on five histone
modification marks26.

cis-eQTL across brain regions. Our cis-eQTL study leveraged gene expression
data from 3,943 brain samples, collected from 19 brain regions. The expression
data came from three data sources. The first source involved our study individuals
consisting of 1,705 brain tissue samples from four brain regions (Table 1;
Supplementary Table 1). We arrived at this set of samples after excluding a couple
of potential outliers, which were identified by an unsupervised hierarchical
clustering analysis as detailed in Supplementary Figs 15–19. Studies 5 and 6
involved RNA sequencing array data sets in which we used the expression at gene
levels for analysis. To protect against potential outliers, we ‘winsorized’ the gene
expression levels at a 5% threshold. The second source of expression data involved
the latest eQTL results (V6) released from the GTEx project (see URL). We used
the brain eQTL results evaluated in up to 1,007 brain samples from 12 brain
regions collected from 449 individuals of mostly (480%) European ancestry
(Supplementary Table 6). The third source involved the cis-eQTL results evaluated
in up to 1,231 brain samples across 10 brain regions from 134 neurologically
normal individuals of European ancestry. We downloaded the gene expression of
the study genes and their cis-SNPs from BRAINEAC (see URL).

In our study sets, we evaluated the correlation between SNPs and gene
expression levels using a robust correlation estimate known as biweight
midcorrelation, which is implemented in the ‘bicor’ R function of the WGCNA
R package29. To account for possible confounders, gene expression levels were
adjusted for sex, batch effects and possibly the proportion of neurons (estimated
using CETS). Our cis-eQTL involved all genes located within 1 Mb of the test SNP
and preceded along the following three steps. In step (1), we identified (cis-acting)
SNP–gene pairs by using gene expression data from our individual-level data, that
is, nine gene expression data sets from five studies and four brain regions (Table 1).
Genes that were significant at a Bonferroni corrected P value in any of the nine
expression data sets were evaluated in subsequent assessments in the other two
independent large-scale gene expression data sets (GTEx and the UK database),
as described in Supplementary Table 7. We combined the multiple results for the
CRBLM (studies 2, 3 and 5) into a single estimate using fixed-effects meta-analysis
weighted by inverse variance (implemented in the ‘metafor’ R package). The results
can be found in Fig. 4 (Study CRBLM). Similarly, results of FCTX (PFCTX)
from studies 2 and 5 (studies 6 and 7) were combined into a single estimate by
fixed-effects meta-analysis in Fig. 4 (Study FCTX, PFCTX). All results were
combined into a single estimate by the fixed-effect model, referred as to Study ALL
in Fig. 4. In step (2), we reported the GTEx eQTL-released results including effect
sizes (regression coefficients and s.e.’s) and associated P values, across a total of
12 brain regions: amygdala, anterior cingulate cortex, caudate basal ganglia,
cerebellar hemisphere, CRBLM, cortex, FCTX, hippocampus, hypothalamus,
nucleus accumbens, putamen and substantia nigra. We performed the same
fixed-effects meta-analysis to combine the results across brain regions into a single
estimate, referred as to GTEx ALL in Fig. 4. In step (3), we performed cis-eQTL
analysis in ten brain regions including CRBLM, FCTX, hippocampus, medulla,
occipital cortex, putamen, substantia nigra, TCTX, thalamus and intralobular white
matter. We also performed the cis-eQTL analysis on the average across all available
regions (downloaded from the database), yielding a single estimate for eQTL listed
as UK ALL in Fig. 4. To summarize the eQTL results from the three sources of data
by a single Z statistic, we applied Stouffer’s meta-analysis Z statistic approach. This
allowed us to combine three P values from Study ALL, GTEx ALL and UK ALL
into a single P value referred as to Combined ALL in Fig. 4. The resulting
Combined ALL P value should be considered as descriptive (as opposed to an
inferential measure) since it ignores the dependence resulting from intra-individual
correlations (due to multiple brain regions from the same individual in our study
sets or in GTEx).

SMR and HEIDI analysis. The summary data-based Mendelian randomization
(SMR) analysis32 uses SNPs as instrumental variables to test for a direct association
between gene expression levels and epigenetic age acceleration irrespective of
potential confounders. The SMR approach is similar to the two sample MR
approach by Burgess et al.65 Both approaches are attractive because (a) they allow
the user to use summary-level GWAS data as opposed to individual-level data,
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(b) they can use GWAS data from different studies that greatly expands the
precision of the estimates. The two sample method by Burgess is particularly
attractive when it comes to carrying out a MR analysis based on multiple SNPs. In
our study, we chose the SMR approach for three reasons. First, the SMR approach
focuses on the identification of gene transcripts that might explain a significant
GWAS finding. Towards this end, it identifies the most suitable cis-acting SNP for a
given gene transcript. Second, the SMR approach implements a heterogeneity test
(‘HEIDI’ test) that allows one to distinguish linkage (where multiple causal variants
underlie the association between a gene expression trait and epigenetic age
acceleration) from the more interesting finding of pleiotropy (where only a single
causal variant explains the association between the two traits). Third, the SMR
method has been implemented in a user-friendly computer software tool that is
designed specifically to deal with GWAS data and eQTL summary data.

A significant SMR test P value does not necessarily mean that gene expression
and the trait are affected by the same underlying causal variant, as the association
could possibly be due to the top associated cis-eQTL being in LD with two distinct
causal variants. Zhu et al.32 define the scenario of several causal variants, which is
of less biological interest than pleiotropy, as ‘linkage’ and proposed a statistical test
‘HEIDI’ for distinguishing it from pleiotropy (Supplementary Fig. 13). The null
hypothesis of the HEIDI test corresponds to one of two desirable causal scenarios
(causal model 1: SNP-expression-age acceleration or the pleiotropic model 2:
expression’SNP-age acceleration). Thus, a nonsignificant P value (defined here
as PZ0.01) of the HEIDI test is a desirable finding. Conversely, a significant HEIDI
test P value indicates that at least two linked causal variants affect both gene
expression and epigenetic age acceleration. We performed SMR in conjunction
with HEIDI on the four cis genes in 17q11.2: BLMH, CRLF3, EFCAB5 and GOSR1.
As input, we used both our meta-analysis GWAS results (of epigenetic age
acceleration) and cis-eQTL results from (1) our study, (2) GTEx and
(3) BRAINEAC. The SMR analysis requires significant cis-eQTL relationships. For
our gene expression data (1), we only analysed the subset of studies and brain
regions that exhibited at least a nominally significant cis-eQTL (Po0.05) with
respect to the test gene (ECABA5 in Fig. 4 and the three remaining genes in
Supplementary Fig. 10). In the SMR analysis, we used the 1000 genome individuals
with European ancestry (N¼ 379) as reference panel. We included the cis-SNPs
(with MAFZ0.05) within a test gene (±1 Mb) and imposed an LD threshold of 0.9
for SNP pruning. For GTEx, we only used the cis genes listed in the significant
eQTL (v6 version) results, stringently assessed by permutation-based thresholds at
the gene level and corrected for multiple comparisons across genes and tissue types.
After observing significant SMR results for EFCAB5 in several brain regions, we
conducted an ad hoc analysis that thresholded the FCTX cis-eQTL results at GTEx
Po1.0� 10� 3, yielding 33 SNPs available for the SMR analysis. In (1) and (3),
we set up the threshold for eQTL P value at 1.57� 10� 3 (equivalent to a
chi-square value w2

1

� �
of 10) for selecting cis-SNPs for analysis. All SNPs selected in

the SMR analysis were used in the HEIDI analysis.

GWAS-based enrichment analysis with MAGENTA. We used the MAGENTA
software33 to assess whether our meta-analysis GWAS results of epigenetic age
acceleration are enriched with various gene sets, for example, KEGG pathways,
gene ontology terms such as biological processes or molecular functions. To assign
genes to SNPs, we extended gene boundaries to ±50 kb. For computational
reasons, we removed categories that did not contain any genes related to age
acceleration at a level of 1.0� 10� 3 or that contained fewer than 10 genes. The
cutoffs of gene set enrichment analysis in the MAGENTA algorithm were set at
95th and 75th percentiles, which are the default parameter values for a general
phenotype and for a highly polygenic trait, respectively33. Initially, empirical
P values were estimated based on 10,000 permutations. For significant gene sets
(empirical Po1.0� 10� 4), we estimated the final empirical P value using 1 million
permutations. We only report gene sets whose false discovery rate (calculated by
MAGENTA) was o0.25.

GWAS-based overlap analysis of age acceleration. Our GWAS-based overlap
analysis related gene sets found by our GWAS of epigenetic age acceleration
with analogous gene sets found by published GWAS of various phenotypes.
A description of each published GWAS study can be found in Supplementary Note 2.

The following is a brief description of the 65 published GWAS studies. Most
GWAS results came from the GIANT consortium on body fat distribution38 such
as hip and waist circumference, hip-to-waist ratio, BMI, height. Each of the 12
main GIANT GWAS results were stratified by gender (males, females and both),
cross genetic ancestry (European or admixed), and adjusted for BMI. Further,
we used published GWAS results from inflammatory bowel disorder40 and its two
subtypes: Crohn’s disease and ulcerative colitis, metabolic outcomes and diseases:
insulin and glucose from66, type 2 diabetes39 (stage 1 and combined results),
age-related macular degeneration34 (neovascular and geographic atrophy),
Alzheimer’s disease3 (stage 1 and combined stages 1 and 2 results), modifiers of
HD motor onset35, Parkinson’s disease36, attention-deficit hyperactivity disorder
(ADHD), bipolar disorder, major depressive disorder, schizophrenia37 and
longevity.

Our GWAS results of cognitive functioning traits was based on data from the
Health and Retirement Study (HRS), which is a nationally representative,
longitudinal study of older adults in the United States (n¼ 12,452, Supplementary

Table 17 (ref. 22). We either restricted the GWAS analysis to a specific ethnic
group (European, African American and Amerindian ancestry) or used all
individuals (denoted ‘admixed’) in multivariate regression models who adjusted
for principal components calculated from identity-by-state relationships
(Supplementary Table 18; Supplementary Figs 20–21). We focused on two clinical
traits: a longitudinal measure of age-related cognitive decline (defined in ref. 22))
and a binary variable of dementia status (defined by combining dementia
assessments from the last two consecutive waves, Supplementary Information).

MR-Egger regression. MR analyses using multiple genetic variants can be viewed
as a meta-analysis of the causal estimates from each variant41. If the genetic
variants have pleiotropic effects on the outcome, these causal estimates will be
biased. MR-Egger regression offers a simple way to detect directional pleiotropy;
that is, whether causal estimates from weaker variants tend to be skewed in one
direction. Under a weaker set of assumptions than typically used in MR, an
adaption of Egger regression (MR-Egger) can be used to detect and correct for the
bias due to directional pleiotropy41. While the standard method of MR estimation,
two-stage least squares, may be biased when pleiotropy is present, MR-Egger
regression can provide a consistent estimate of the causal effect of an exposure
(for example, body weight) on a trait (for example, epigenetic age acceleration).
MR-Egger regression analysis requires summary-level data of SNP-exposure
association and SNP-outcome association from uncorrelated SNPs. In the
parlance of MR analysis, we considered two ‘exposure’ variables on brain ageing:
(i) hip circumference adjusted for BMI and (ii) waist circumference adjusted for
BMI. While related, these two exposure variables led to two separate sets of SNPs:
the first was comprised of 39 hip-associated SNPs identified from a GWAS for
hip-adjusted BMI using 93,965 males of European ancestry in the GIANT
consortium38. The second SNP set involved 29 SNPs identified from the GWAS of
waist circumference using the same 93,965 males. Two meta-analysis results
corresponding to the GWAS of age acceleration in PFCTX and the GWAS of
neuronal proportions in PFCTX (as depicted in Fig. 1c, parts I and III) were used
for SNP-outcome associations.

URLs. 1000 Genome project, http://www.1000genomes.org/
BRAINEAC, http://www.braineac.org/
DNAm age, http://labs.genetics.ucla.edu/horvath/htdocs/dnamage/
EIGENSTRAT, http://genepath.med.harvard.edu/Breich/Software.htm
GTEx, http://www.gtexportal.org/home/documentationPage#AboutGTEx
GIANT, https://www.broadinstitute.org/collaboration/giant/index.php/
Main_Page
HRS, http://hrsonline.isr.umich.edu/
IMPUTE2, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
METAL, http://csg.sph.umich.edu/abecasis/Metal/
Locuszoom, http://csg.sph.umich.edu/locuszoom/
MAGENTA, https://www.broadinstitute.org/mpg/magenta/
PLINK, http://pngu.mgh.harvard.edu/Bpurcell/plink/
R metafor, http://cran.r-project.org/web/packages/metafor/
R WGCNA, http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/
SHAPEIT, https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/
shapeit.html

Data availability. All of our data are publicly available as detailed in Table 1
and Supplementary Note 1 (dbGAP accession numbers for SNP array). DNA
methylation data can be downloaded from Gene Expression Omnibus GSE59685,
GSE15745, GSE36192, GSE35978, GSE38873, GSE61431, GSE36192 and
GSE31694. All other data that support the findings of this study are available from
the corresponding author on reasonable request.
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