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The complexity of the systemic inflammatory response and the lack of a treatment break-
through in the treatment of pathogenic infection demand that advanced tools be brought
to bear in the treatment of severe sepsis and trauma. Systems medicine, the translational
science counterpart to basic science’s systems biology, is the interface at which these tools
may be constructed. Rapid initial strides in improving sepsis treatment are possible through
the use of phenomenological modelling and optimization tools for process understanding and
device design. Higher impact, and more generalizable, treatment designs are based on
mechanistic understanding developed through the use of physiologically based models,
characterization of population variability, and the use of control-theoretic systems engineer-
ing concepts. In this review we introduce acute inflammation and sepsis as an example of just
one area that is currently underserved by the systems medicine community, and, therefore,
an area in which contributions of all types can be made.
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1. INFLAMMATION PRIMER

Inflammation is an essential biological process that
encompasses the response of pluricellular organisms to
environmental stresses, such as physical damage to tis-
sues, infection and other immune challenges. The
inflammatory response seeks to avoid, contain, reverse
and heal tissue damage provoked by such stresses.
Inflammation is central to the pathology of major com-
plex chronic conditions such as autoimmune diseases,
arthritis, chronic lung disease, inflammatory bowel dis-
ease and psoriasis. More recently, inflammation was
also linked as a major component of the pathophysiol-
ogy of atherosclerosis, coronary heart disease,
Alzheimer’s disease (Wyss-Coray 2006), several types
of cancer (Clevers 2004) and metabolic syndrome
(Maiti & Agrawal 2007). Therapeutic approaches
based on thwarting the inflammatory response have
proven to be of great clinical benefit for many of these
chronic ailments. On a different time scale, acute
severe inflammatory illnesses such as sepsis, trauma
and acute pancreatitis also have broad societal and
economic impacts (Angus et al. 2001). Unfortunately,
orrespondence (rparker@pitt.edu).
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and somewhat surprisingly, modulation of inflam-
mation has met with disappointing results for illnesses
severe enough to justify admission to the modern
intensive care unit (ICU) (Remick 2003).

Sepsis is a clinical syndrome representative of acute,
complex inflammatory diseases. Sepsis is defined as
the systemic host response to infection with clinical
manifestations that span a broad set of inflammation-
related signs and symptoms, such as fever, tachycardia,
tachypnoea and decreased arterial blood pressure lead-
ing to clinical shock, a state of insufficient oxygen
delivery to tissues characterized by hypotension and
acidosis (Levy et al. 2003). Although the host’s response
to sepsis strives to contain infection and promote repair,
the intensity of the inflammatory response often leads
to compromised tissue function, organ failure and
death. Severe sepsis accounts for 2–11% of all admis-
sions to hospitals, approximately 750 000 cases a year,
with an associated case-fatality mortality of 35 per
cent (Angus et al. 2001). Mortality rates from sepsis
and septic shock have not changed significantly over
recent decades (Martin et al. 2003), and it affects the
very young (Watson et al. 2003) and the very old dis-
proportionately (Sands et al. 1997). The Centers for
Disease Control and Prevention (CDC) reports that
This journal is # 2010 The Royal Society
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Figure 1. Interactions between the four components of the
inflammation system. Infection (P) triggers inflammation
(N). Regulatory mechanisms, conceptualized as anti-inflam-
mation (C), are triggered almost simultaneously. Excessive
inflammation results in tissue dysfunction (D), which in
turn can perpetuate inflammation.
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the incidence of sepsis increased from 7.4 per million
patients in 1979 to 17.6 per million patients in 1987.
Multiple organ dysfunction syndrome, associated with
80 per cent of deaths in modern ICUs (Angus et al.
2001), is causally related to the inflammatory response
(Bone 1996), and it is also a common complication of
other causes of acute severe inflammation, such as mul-
tiple trauma. The process of death typically includes
progressive organ system shutdown requiring support
of the circulation, ventilation and renal function.

In sepsis, acute inflammation is initiated by the rec-
ognition of danger signals using pathogen-associated
molecular pattern (PAMP) receptors on the surface of
dedicated surveillance cells, typically dendritic cells
and tissue macrophages. Such PAMPs, associated
directly to pathogens or their products (e.g. lipopolysac-
charide, lipoteichoic acid, flagellin or bacterial RNA)
activate dendritic cell and tissue macrophage Toll-like
receptors (TLRs) (Abreu & Arditi 2004). Activation
of TLRs initiates intracellular signalling of specific cas-
cades leading to enhanced expression of early pro-
inflammatory proteins, such as tumour necrosis factor
(TNF) and interleukin-1 (IL-1), active in an autocrine,
paracrine and endocrine fashion, with the purpose of
mass mobilization of innate immunity. Regulatory
anti-inflammatory proteins, such as IL-1 receptor
antagonist (IL-1RA) and IL-10, almost synchronously
follow. TLRs also have the ability to recognize molecu-
lar patterns, that, although not foreign, should not be
accessible to those receptors in health. These damage-
associated molecular patterns (DAMPs) are often
the signature of cellular disruption resulting in the fail-
ure of intracellular containment of these DAMPs
(Matzinger 2002). As disease progresses, it appears
probable that there is perpetuation of injury, as spread-
ing tissue damage promotes further inflammation, and
inflammation contributes to tissue damage, although
competing theories exist as to how this exactly happens
(Prince et al. 2006). A pictorial representation of this
dual contribution to the initiation and perpetuation of
inflammation is shown in figure 1. Other important
aspects of the acute inflammatory response have been
described. Acute inflammation is associated with cell-
type-dependent modifications of programmed cell
death, appropriately retarding cell death in pathogen-
fighting neutrophils, and hastening cell death in most
other cell types. Inflammation promotes the production
of inducible nitric oxide synthase (iNOS) leading to
local vasodilatation promoting metabolite delivery and
export, and key components of the complement cascade
important for antimicrobial activity. Furthermore, traf-
ficking of dendritic cells to local lymph nodes initiates
specific target recognition by T-cells and clonal expan-
sion of these cells. These steps are necessary for an
appropriately controlled host response. However,
the types of health challenges faced by patients in
ICUs trigger inflammation at a scale unlikely to be
compatible with survival, and, therefore, there is little
guarantee that the evolutionary adaptation to severe
infections is indeed appropriate. In other words, what
is a ‘well-oiled machine’ in response to a typical chal-
lenge might not be well suited for maximal challenges.
How this initial response leads to undesired effects of
J. R. Soc. Interface (2010)
cellular dysfunction and organ failure remains a challen-
ging problem from a reductionist perspective; in fact, a
multi-scale systems approach may be the only fruitful
approach because of the several mechanisms at different
scales (figure 2) that appear to contribute to the clinical
disease:

— First, an overly exuberant pro-inflammatory
response can injure tissues directly. For example,
the alarm-phase cytokine, TNF, is capable of indu-
cing programmed death of functional cells in
several tissues (Meldrum et al. 2006). Similarly,
high-mobility group B1 (HMGB1), a cytokine-like
protein that is released later in response to
sepsis, has been shown to cause gut epithelial and
hepatocellular injury (Sappington et al. 2002).

— Second, injury can be due to cellular hypoxia
secondary to impaired tissue perfusion. Systemic
inflammation causes vasodilation, increased micro-
vascular permeability, and impaired cardiac
contractility. Since flow to many vascular beds is
pressure-driven below a tissue-specific threshold
(Coleman et al. 1971), vasodilation will create
inequalities in blood flow distribution with an over-
all decrease in blood perfusion of some tissues
(through hypotension) and wasteful perfusion
(through decreased resistance of the vascular bed)
in other tissues. Vasodilation is thought to be
caused primarily by increased production of nitric
oxide (NO), which in turn is caused primarily by
upregulated iNOS expression. Microvascular hyper-
permeability also results from an excess of NO and
various eicosanoids, as well as direct effects of
TNF and IL-1. Increased permeability leads to
extravasation of cell-free fluid from the circulation
resulting in insufficient circulating blood volume
and impaired cardiac output. Intravascular fluid
loss is typically important, and preventing or
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Figure 2. At the systemic scale, systemic inflammation decreases arterial blood pressure (X1), and therefore blood flow to organs,
compromising nutrient and energy availability (see text for details). Inflammation modifies local factors (X2), further compromis-
ing the microcirculation to various tissues within organs. Tissue integrity is only possible if cells maintain their tissue-specific role,
such as solute transport or metabolic function, and maintain adequate turnover and structural integrity, all of which may be
compromised by inflammation-related metabolites or reprioritization of energetic resources (X3). At the lowest level, cell survival
is compromised by the accumulation of toxic metabolites (X4) disrupting basic metabolism and by impaired energy production or
utilization (X5).
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correcting this loss might be a very important thera-
peutic action. Cardiac pump failure in sepsis is also
thought, from animal experiments, to be com-
pounded by the combined effects of TNF, IL-1 and
reactive nitrogen and oxygen species (free radicals,
RNS and ROS, respectively) directly altering
cardiac muscular cell function (Flierl et al. 2008).
Collectively, the effects of maldistribution of blood
flow, hypovolaemia and impaired cardiac function
lead to cellular hypoxia in several tissues. Since
most cells depend on mitochondrial oxidative phos-
phorylation to generate energy, hypoxia inevitably
leads to cell dysfunction or death.

— Third, activation of intravascular coagulation and
thrombosis pathways may lead to organ dysfunction
through thrombosis in the microcirculation. Inflam-
matory mediators, such as TNF, initiate the
coagulation cascade (Esmon 2004), as demonstrated
experimentally in large human cohorts of patients
with sepsis (Dhainaut et al. 2003), irrespective of
J. R. Soc. Interface (2010)
the causative microorganism (Kinasewitz et al.
2004). Inflammation also stimulates fibrinogen syn-
thesis, further promoting coagulation. Contributing
to the problem is potential occlusion of vascular
beds by platelets and inflammatory cells themselves,
either physically or by the formation of extra-
cellular nets (Ma & Kubes 2008), the evolutionary
goal of which may be to trap circulating microbial
entities (Hickey & Kubes 2009).

— Fourth, processes other than hypoxia may result in
cellular energetic failure. With increased NOS
activity during inflammation, energy production
might be impaired despite adequate intracellular
PO2. NO directly competes with O2 as a substrate
for respiratory chain complex III. Large quantities
of intracellular NO, resulting from iNOS activity,
may lead to significant competitive inhibition of
electron transport, and thus inadequate ATP pro-
duction. Inappropriate decreases in oxygen
utilization have been described consistently under
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inflammatory stress. It may also be that learned
mechanisms of reallocation of cellular resources
under stress might be prioritizing cell survival over
function in the face of limited energy supply.
Oxidative stress injury could also be a major contri-
buting mechanism to cell and organ dysfunction
(Granger et al. 1981). According to the ‘classical
model’, ischaemia leads to conversion of xanthine
dehydrogenase into the enzyme xanthine oxidase
(XO). In addition, during ischaemia, ATP may ulti-
mately be degraded to xanthine. During reperfusion,
O2 becomes available to support XO-dependent
oxidation reactions that generate ROS. These free
radicals, by reacting with a myriad of substrates
and enzymes, interfere with normal cellular metab-
olism. Although ROS formation is directly related to
the degree of ischaemia and the duration of hypoper-
fusion, its role in causing ischaemia/reperfusion (I/R)
injury has been questioned (Brealey et al. 2004).

In summary, hypothesized and documented inflam-
matory response pathways interact in a complex
manner, with numerous feedback loops, thereby motiv-
ating a systems-level approach to inflammation
modelling. It does appear, however, that energy failure
is a likely common pathway for cell dysfunction, organ
failure and ultimately death.
2. TREATING SEPSIS

2.1. Clinical successes

Modulation of immunity has led to remarkable progress
in transplant medicine, where the chief objective of
immune suppression of the host response to grafted
immunogenic solid organs is balanced against toxic
side-effects of immunosupressive regimens and the
associated propensity to opportunistic infections.
Years of research and observations have broadened
the standard concept of immune suppression to the
more subtle notion of immunotolerance. In other
words, how can the immune system be fooled in accept-
ing what is clearly non-self (Weissman & Shizuru
2008)? Several successful clinical trials have propelled
the use of anti-TNF antibodies and IL-1 receptor antag-
onists as classes of agents for rheumatoid (Waugh &
Perry 2005) and psoriatic arthritis (Punzi et al. 2007),
as well as Crohn’s disease for the former agent
(Carter et al. 2003; Camilleri 2007), where the clinical
rationale of interrupting an inflammatory loop perpetu-
ated by an overly sensitive immune system appears
sound. In addition to the well-documented side-effect
of increased risk of infections, a worsening of psoria-
tic-like conditions (Fiorino et al. 2009) as well as an
increased incidence of malignancies (Bongartz et al.
2006) have been reported, plausibly related to impaired
immune surveillance (Beyer et al. 2009). Nevertheless, it
does appear remarkable that administration of a single
agent, following a pre-prescribed dosage regimen, is
effective in alleviating symptoms of complex chronic
inflammatory diseases where hundreds of molecular
species and cell types participate in phenotypic
J. R. Soc. Interface (2010)
expression, and where the body has ample time to
compensate in a number of ways to both excessive
TNF expression and its treatment.
2.2. Clinical failures

In contrast, with the exception of the proper use of
antibiotics (Kumar et al. 2006) and human recombinant-
activated proteinC (Bernard et al. 2001), an anticoagulant
with anti-inflammatory properties (Joyce & Grinnell
2002), trials at immunomodulation have largely failed
for acute severe inflammatory illness, and of sepsis in
particular. This failure has triggered much consterna-
tion and soul-searching in the critical care community
(Marshall 2000; Sweeney et al. 2008). Presumably,
major reasons for this dismal record relate to expec-
tations as to how one should measure success and
failure of an intervention in sepsis, and a process of
insufficient reasoning in translating abundant patho-
physiological knowledge acquired from extensive
in vitro exploration and successful preclinical profiles
of many lead compounds into clinically and genetically
diverse human beings (Eichacker et al. 2002). Clinical
trialists have also been obfuscated by the current
burden of proof of efficacy, which still remains an
improvement of all-cause mortality at a fixed time hor-
izon, typically 28 days, rather than evidence of
biological efficacy. Favourable biological activity is
suggested in several trials by improvement in physio-
logical markers (Annane et al. 2002; Bakker et al.
2004; Watson et al. 2004; Sharshar et al. 2006), typi-
cally most pronounced in the sickest patient (Bernard
et al. 2001; Marshall et al. 2003; Lipiner-Friedman
et al. 2007). As an example, a review of the first 7500
patients receiving TNF-targeting interventions suggests
a significant overall benefit of 4 per cent in reducing
28-day mortality. However, no single phase III random-
ized clinical trial quite reached significance (Panacek
et al. 2004). An in silico exploration of anti-TNF inter-
vention in sepsis suggests that the overall mortality
difference is a balance between patients truly helped
by immunosupression and patients harmed by the
treatment (Clermont et al. 2004a). Experimental data
of the necessity of TNF for a successful response to
infection (Pfeffer et al. 1993) support the concept
that anti-TNF treatment could prevent a subgroup of
patients from mounting an appropriate challenge to
infection. Because of the lack of availability of reliable
biomarkers for infection and the septic process, no
amount of clinical data could prove harm, but this is
nevertheless suggested by the severity–response
relationship and in silico explorations. This conundrum
is compounded by the nonlinear and time- and context-
dependent interplay among multiple molecules, cell
types, tissues and organs in vivo. The processes of cellu-
lar recruitment, proliferation, mode of death (necrosis
versus apoptosis) and energetics manifest clinically as
organ dysfunction; the complexity of this web of inter-
actions has rendered sepsis a fertile field of often
promising preclinical studies based on a reductionist
approach to treatment, which failed to translate into
successful therapies in actual patients. An engineer or
mathematician would say that sepsis is a problem of
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dealing with transients: the added difficulty in the con-
text of acute illness is that the clinician is attempting to
interfere with a highly dynamic process, rather than one
that has reached a ‘biological steady state’, loosely
defined as one where the time scale of the intervention
is much faster than that associated with disease evol-
ution. (It should be noted that the term ‘biological
steady state’ is an equilibrium state—strictly different
from steady or asymptotic in the mathematical sense.)
Furthermore, there is considerable variation between
the onset of disease and encounter with the healthcare
system; the relative contributions of variation in stage
of disease at the time of encounter and individual
host–pathogen idiosyncracies to clinical observations
are difficult to separate. These considerations suggest
that sepsis treatment, conceptualized as interfering
with a dynamic process, may be more successful if
titrated, and also based on a comprehensive disease
model, which is currently lacking.
2.3. The future

The National Institutes of Health (NIH) in its Roadmap
Initiative—implemented to foster transformative and
cross-cutting research beyond the scope of a single
institute—promotes computational modelling as a tool
of knowledge discovery and possibly the preferred
approach to integrate such knowledge across biological
scales (http://nihroadmap.nih.gov/). Similarly, the
Food and Drug Administration (FDA) in its ‘critical
path’ document (Food and Drug Administration
2004) has called for the use of in silico models to aug-
ment preclinical studies in animals in order to develop
novel therapeutic agents and devices. At present,
there are no clear guidelines as to how such initiatives
should be benchmarked and no external incentives to
develop such initiatives within the pharmaceutical
industry. Furthermore, there has been little progress
in redefining or modifying the criteria of efficacy for
new biologicals. The experience of the last three decades
of human clinical trials, combined with a high bar for
success, has resulted in fewer registrations of new
randomized trials for sepsis. Therefore, the critical
care community has promoted the Surviving Sepsis
Campaign, a long collection of recommendations to
practising clinicians as to the state-of-the-art of sepsis
support and treatment. These recommendations are
the result of an extensive review of existing evidence
regarding diagnosis, fluid management, infection
source control, antibiotic treatment and organ support
for victims of severe sepsis. Remarkably absent are
agents that are truly modifiers of the host response
(Dellinger et al. 2008).

It would appear that model-based combination
approaches constitute the best hope for leapfrog pro-
gress in sepsis therapy. Such approaches would clearly
integrate a disease model, in the mathematical sense,
existing preclinical data and base recommendations on
biological readouts, such as biomarkers, which are of
pathophysiological importance. Proof of concept that
such an approach would shift our approach to interven-
tion strategies and clinical trial design remains elusive
for a number of legitimate reasons (Marshall 2004),
J. R. Soc. Interface (2010)
including: (i) lack of a universally accepted disease
model, (ii) lack of relevant data to calibrate and vali-
date such models against, (iii) lack of biomarkers of
disease activity, (iv) lack of point-of-care methods to
measure such biomarkers, and (v) lack of understanding
of the concept of model-based interventions by end-
users. Enormous progress has been made at the basic
science level, and sepsis, as a rapidly evolving disease
with high case fatality, offers a unique opportunity of
using systems medicine and transdisciplinary collabor-
ation to achieve translational success.
3. MODELS FOR DECISION SUPPORT

As healthcare professionals, clinicians in practice make
informed diagnostic and therapeutic decisions for
patient care; this is implicitly based on a ‘model’ com-
posed by the clinician’s understanding of the
relationships between interventions and expected out-
comes of such interventions, in the context of the
patient disease state. Similarly, engineers working to
solve a process problem in an industrial setting use
their knowledge to diagnose the problem and make
appropriate changes. When feasible, this decision-
making is automated via a control system or algorithm;
in regulatory (setpoint tracking) mode, this system
compares measurements with desired values (setpoints)
and calculates the manipulated variable changes that
need to be made to bring the measured quantities to
their respective setpoints (figure 3). The current
‘state-of-the-art’ in the industrial setting is (non)linear
model-based control, where a linear (Muske & Rawlings
1993) or nonlinear (Morari 1994; Qin & Badgwell 1999)
mathematical model of the process is used explicitly in
the calculation of the input changes needed to return
the process to its desired operating mode. A tutorial
introduction to nonlinear model predictive control can
be found in Rawlings et al. (1994). When translating
these tools to medical practice, a formal loop-closure
in the engineering sense is unlikely, given that clinicians
are responsible for patient safety and are justifiably
hesitant to allow a computer algorithm to make a criti-
cal decision that has traditionally been made by a
human. However, using a model-based algorithm to
recommend a treatment intervention that is either
accepted or over-ridden by a clinician may provide
improvements in patient treatment by systematically
exploring the potential treatment space and identifying
the intervention best suited to return the individual
patient to a healthy state.

An open-loop approach to treatment design and
hypothesis evaluation is the focus of the PhysioLab
platform of Entelos, Inc. (www.entelos.com), which
uses a top-down approach to construct disease-specific
in silico models that capture both the biology and the
dynamics of the biological response. Simulation of the
PhysioLabs in the areas of asthma, obesity, diabetes
(types 1 and 2), rheumatoid arthritis, cholesterol
metabolism, cardiovascular/atherosclerosis and skin
sensitization (allergy) can be used to: (i) test a proposed
intervention quickly on a simulated individual or popu-
lation, (ii) hypothesize and evaluate interventions that

http://nihroadmap.nih.gov/
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target specific receptors or pathways, and (iii) identify
potential targets for a drug or antibody intervention
that may modulate the disease state. Since these studies
are in silico, it is possible to perform a much broader
and deeper analysis, for far less money and at far greater
speed, than an equivalent series of studies in vitro or
in animals.

A critical element in this algorithmic framework is
the quality of the patient model; in fact, the quality of
the underlying model correlates directly with theoreti-
cally achievable performance from a model-based
control system (Morari & Zafiriou 1989). The model,
and its corresponding control system, take on the
characteristics of the problem to some degree. In the
context of a drug administration decision-support
system, models of pharmacokinetics (PK; drug concen-
tration versus time) and pharmacodynamics (PD;
disease and toxicity responses to drug administration)
need to be constructed. The building of such models
is certainly not a new concept; PK models of drug dis-
tribution were discussed conceptually as early as 1937
(Teorell 1937a,b). An entire section below is devoted
to the classes of models often employed and their
respective merits/detractions. The recent advance,
driven by the decrease in computer size and simul-
taneous increase in calculation speed, is the ability to
use such models in real-time decision support, as
depicted in figure 4. In the forward path lies the patient
or animal undergoing treatment; this is the component
for which clinicians have outstanding linear intuition.
As this is often statistically motivated, the ability to
alter one or two manipulated inputs, having linear
effects on the outputs, would not require the level of sys-
tems understanding or computational complexity we
advocate here. In contrast, consider the following:
there are many (n . 3) measurable variables, with par-
ticular variables changing importance based on the
operating (or disease) state of the patient; there are
multiple potential interventions, and the effects of
these inputs on clinical observables may not be a
linear relationship; finally, the possible interventions
may interact either positively or negatively in the deter-
mination of patient outcome. When a model is coupled
with a suitable systems engineering optimization or
control algorithm, a formal decision-support system
may be used in a variety of modes, including simulation
of candidate hypotheses and interventions as well as
making treatment intervention recommendations.
J. R. Soc. Interface (2010)
While the earlier reference to model quality versus
performance skewed heavily in favour of developing
detailed models (Morari & Zafiriou 1989), a qualifica-
tion is that the ability of the model-based decision-
support system to return useful (or even meaningful)
recommendations is highly dependent on the appropri-
ate complexity and structure of the underlying model,
in addition to its accuracy (Parker & Doyle 2001). In
other words, disease models and decision-support sys-
tems should be designed with the end-user in mind;
clinical observables should be included as relevant
readouts in an easy-to-use interface to the underlying
computational system. Understanding some of the
potential model scales, benefits and potential pitfalls
is important prior to selecting a model for use in a
decision-support system.
4. MODELLING TOOLS

A commonly employed tool, as alluded to above, is the
statistically derived model based on observed associ-
ations between available measurements and an
outcome, perhaps at a fixed time point (e.g. 28 day
mortality). A key feature of statistical models is that
predictions are based on prior observations. Conse-
quently, such models lack sufficient predictive
accuracy to provide good predictions in settings broader
than those used to generate the data used in model
development. This is a concept different from that of
external validity, which refers to the preservation of
predictive accuracy under similar experimental con-
ditions: for example, in cohorts of patients with the
same disease process, but originating from a different
study. A different experimental setting would be, for
example, to predict the effect of treatment from data
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that do not include treated patients. It is therefore
outside the scope of this class of models to predict
effect based solely on known mechanism of action
in the absence of prior clinical observations, a deal-
breaking limitation in their helpfulness in assisting the
development of new therapeutic strategies. Statistical
models, by construction, are designed to describe
cohort behaviour and not individual behaviour. Efforts
at constructing data-driven individual models have met
with mitigated success and are not used in clinical prac-
tice (Chang & Bihari 1994). An additional shortcoming
of most statistical models is their static nature. The
dynamics of pathogenic infection and the inflammatory
response cascade play a vital role in disease response,
and efforts to apply more sophisticated statistical
models, such as microsimulation methods, in the
prediction of time-dependent outcomes, are complex
and restricted to cohort behaviour (Clermont et al.
2004a).
4.1. Phenomenological models

Perhaps the most commonly encountered dynamic
models, phenomenological models are designed to cap-
ture the observed biological response using a small
number of equations and parameters. This modelling
approach is ubiquitous in biomedicine: cancer chemo-
therapeutics are commonly modelled using linear
compartmental models, using popular software
packages such as ADAPT II (D’Argenio & Schumitzky
1997) and NONMEM (Sheiner & Beal 1980; Beal &
Sheiner 1982; Beal 1984); in the diabetes field, the
most commonly encountered model is the Bergman
‘Minimal’ Model (Bergman et al. 1981). The quality
of this model has been debated (Quon et al. 1994;
Finegood & Tzur 1996), but as long as its limitations
are acknowledged (Weber et al. 1989; Steil et al. 1994)
the original model and its extensions, including contri-
butions from fatty acids (Roy & Parker 2006) and
exercise (Roy & Parker 2007) among others, continue
to be used successfully. Low-order model represen-
tations have also been employed in inflammation (see
§7 for model details). The underlying structure of
phenomenological models is the compartment, with
each compartment represented mathematically by an
ordinary differential equation (ODE), and the rates
into and out of a compartment being either linear or
nonlinear depending on the phenomenon requiring
capture. For example, the following phenomenological
model of sepsis has been previously proposed (Day
et al. 2006a):

dP
dt
¼ kpgP 1� P

p1

� �
� kpmsmP
mm þ kmpP

� kpnf ðN �ÞP; ð4:1Þ
dN �

dt
¼ snrR

mnr þ R
� mnN �; ð4:2Þ

dD
dt
¼ kdnfsð f ðN �ÞÞ � mdD; ð4:3Þ

dC
dt
¼ sc þ

ccnf ðn� þ kcndDÞ
1þ f ðn� þ kcndDÞ

� mcC ; ð4:4Þ
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R ¼ f ðknnn� þ knpP þ kndDÞ;

f ðV Þ ¼ V

ð1þ ðC=c1Þ2Þ
ð4:5Þ

and fsðV Þ ¼
V 6

x6
dn þ V 6

: ð4:6Þ

Here P is pathogen, N* is activated phagocytes, D
is a marker of cellular damage and C is a canonical
circulating anti-inflammatory mediator providing over-
all stability to the inflammation system. Though highly
abstracted, as stated by the original authors (Day et al.
2006a), it is representative of the dynamics necessary to
capture the systemic inflammatory response. Nonlinear-
ity is a common characteristic encountered in biological
systems, with saturation phenomena perhaps the most
common of the nonlinear terms. Michaelis–Menten
relationships are used to capture saturating effects of
P on its own removal (second term on right-hand side
of equation (4.1)) and the effect of R on N*. Higher
order effects are captured using Hill-type nonlinearities,
as in equation (4.6), which can represent two-ended
saturation at both low and high V, as well as being
used as a delay approximation when employed in
dynamic equations as a function of state variables.
Other common nonlinearities in biological systems
include bilinearity (as in the last right-hand-side
term of equation (4.1)) and inhibition, a second-order
variant of which is shown in equation (4.5) where C
downregulates the function f(V ).

The shortcoming inherent in phenomenological
models is captured by their name—they model the
observed response or behaviour at the scale of interest,
but lack mechanistic understanding and description.
And while the phenomenological model structure is
often chosen to simplify model parameter estimation
from the available experimental data, the nonlineari-
ties can interfere with identification as well. The
calibration of parameters to experimental data is
markedly easier if the dynamic model is linear in
structure, although there are minimum data require-
ments (see Ljung 1999). Tools based on computer
algebra (Audoly et al. 1998) have been developed to
establish the property of a priori identifiability—the
ability to uniquely identify (and quantify) all model
parameters from the available experimental data.
While this is a theoretical property, in that measure-
ment uncertainty and biological variability may
negatively affect quantitative accuracy of the par-
ameter estimates, it is a valuable test that can
establish the need for more measurements or a rede-
sign of the experimental protocol prior to executing
the experiment. Extending this analysis to general
nonlinear systems remains an open problem, but
some tools for specific nonlinearities (e.g. polynomial
structures) have been developed (Audoly et al. 2001;
Polisetty et al. 2006; Bellu et al. 2007). The challenge
in both parameter calibration and a priori identifiabil-
ity provided by ratios, common in Michaelis–Menten
and Hill equations, motivates the exploration of
more biologically motivated model structures. While
these mechanistic descriptions are typically not
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linear, and of potentially higher dynamic (state)
order, the ability to incorporate mechanistic infor-
mation through detailed biological studies and
measurements may provide an improved mapping
between measurements and the model, while simul-
taneously assisting in the model parameter
identification process. The eventual use of a model
is further discussed in §5, below, but a brief foresha-
dow about the relationships between model
structure, accuracy and utility is warranted here.
When using a model to make a treatment decision,
the concept of control-relevance—a model property
defined as the ability to provide accurate predictions
while being mathematically useful (e.g. invertible,
quickly simulated) in a control or optimization algor-
ithm—will contribute to the choice of model
structure.
4.2. Stochastic modelling

The number of cells or molecules participating in a
process that models wish to simulate may be insuffi-
cient to allow cyclical resurgence of bacterial cells
(Kumar et al. 2004), a non-physiological physiotype
permitted by the persistence of infinitesimal (�1)
quantities of microbes. In such cases, noise and sto-
chastic effects play important roles in realistic
descriptions of system behaviour. There has been a
great deal of interest in applying stochastic simulation
algorithms (SSAs) to cellular processes (Arkin et al.
1998); most of these methods rely on the Gillespie
algorithm (Gillespie 1977), which is an exact simu-
lation of a stochastic reaction process. Extensions of
the Gillespie method provide the core for a number
of recent simulation tools (Adalsteinsson et al. 2004)
and methods to improve the performance of these
computationally intensive methods (Rathinam et al.
2003). Wolkenhauer et al. (2004) review the advan-
tages and disadvantages of such methods relative to
the standard ODE approach outlined above. Algor-
ithms aimed at improving the Gillespie model may
still be computationally prohibitive when the number
of reactions or molecules are large. In this case the
net reaction rate becomes very big so that the time
between events is so small that millions of steps
must be taken to advance in time, with no clear prior-
itization of a subset of reactions. A now classic
approach to this difficulty is to make an approxi-
mation in the form of the chemical Langevin
equation (Gillespie 2000) (in the mathematical litera-
ture, a stochastic differential equation for Brownian
motion of a particle).

Stochastic models are also important because their
solution may yield qualitatively different behaviours
from deterministic ODEs. For example, the ODE
solution of a bistable system will evolve to either solution
depending on initial conditions, while the richer
stochastic solution will typically flip back and forth
between the two steady states. The mean time spent in
each steady state can be calculated using probability
theory, and is involved in solving certain partial differen-
tial equations. Stochasticity probably plays a major
role in determining which programmes will be activated
J. R. Soc. Interface (2010)
in a given inflammatory cell under immunological chal-
lenge and therefore its future phenotype. Lipniacki
et al. explored stochastic formulations of inflammation-
relevant intracellular signalling (Lipniacki & Kimmel
2007) and of stochastically governed cell differentiation
of T-lymphocytes (Lipniacki et al. 2008) in a bistable
model.
4.3. Populations, individuals and cells,
and back again

Population models are commonplace in the field of
pharmacokinetics (Beal & Sheiner 1992; Sheiner &
Ludden 1992; Carson & Cobelli 2001). A large
number of patients, each having a small number of
data points collected, are used to characterize the popu-
lation average behaviour as well as the key covariates
(e.g. age, race, body weight) that contribute to interpa-
tient variability. Generally, this approach modifies a
phenomenological model, like those of equations
(4.1)–(4.6), by using model parameters with multiple
dependencies, as follows (Sheiner & Ludden 1992):

pi ¼ um þ h
p
i þ ucCi: ð4:7Þ

Parameters ( pi) for patient i are a function of the (sub)-
population mean value of the parameter um,
interindividual variability in the parameter h

p
i , and

any known correlative effects Ci scaled by their (sub)-
population mean correlation uc. With sufficient data,
both the underlying model structure (through the
observed dynamics) and the population variability
(through the need for h and uc or Ci to describe individ-
ual responses) can be characterized simultaneously.
Software tools are available for constructing these
models (including NONMEM (Beal & Sheiner 1992)
and SPK (Resource Facility for Population Kinetics
2008)), but these tools often provide dramatically
better performance with linear model structures.
Given the nonlinearities often present in mechanistic
representations of biological systems (especially at the
cellular level for enzyme kinetics and saturations),
another method may provide a more accurate model
at the cellular (population) scale.

An alternative method for representing population
behaviour, now in the context of cells rather than
patients, is to capture the population response as a dis-
tribution, i.e. to use a population balance model
(Ramkrishna 2000). The heterogeneous responses of
the cells to systemic perturbations are captured through
internal cellular properties (e.g. cell sensitivity, cell-
cycle stage, inflammation response level, oxygen,
substrate or cytokine concentration) and the definition
of kernel functions. Drawbacks of this model structure
are the development of the kernel functions (which
are often statistical distribution driven rather than
derived from biological mechanism) and its
computational complexity; the common form of a
population balance model is a set of partial integro-
differential equations. Depending on the number of
intracellular parameters and the boundary conditions,
numeric solution varies from complicated to intractable
(Mantzaris et al. 2001a–c).
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Recognizing that system-level response to cellular
events is composed of the collective response of individ-
ual cells, a model structure explicitly recognizing both
the cellular model complexity and the existence of popu-
lation phenomena is the cell ensemble (Domach &
Shuler 1984; Shuler 1999; Henson 2003). Here, a
single (intra)cellular model is specified, but the
parameters of the model are recognized as coming from
distributions (which are specified by the user). A popu-
lation of Nc cells is generated via Monte Carlo
sampling from the parameter distributions (Ogunnaike
2006), but with the intracellular mechanistic equation
structure held constant for each cell. Overall system
response is then generated by simultaneously simulating
Nc cells. To capture intercellular dynamics and
interactions with the physiological system, the cellular
models are coupled to extracellular equations represent-
ing key nutrients or cytokines, similar to extracellular
dynamics in population balance models (Daoutidis &
Henson 2002; Zamamiri et al. 2002). By simulating
the large number of individual cells (recognizing that
the large number of equations will have an impact on
model simulation speed and the ability to perform
analytical analysis), the interplay between challenges
(e.g. pathogenic infection) and system response at the
whole-organism and cellular level, through the poten-
tially different activation responses and cytokine
production of individual cells to a stimulus, can be
observed. A potential drawback of this model class lies
in the difficulty in handling cell division, which may or
may not be critical in models of the inflammatory
response: neutrophils and macrophages, key effectors of
the inflammatory response, are terminally differentiated
cells (cells that do not divide); on the other hand,
clonal expansion is a critical aspect of cell-mediated
and humeral immunity, thought to play an important
role in chronic inflammatory processes and the later
phases of acute inflammation.
4.4. Rules-based models

There are situations where continuous quantitative
models (e.g. ODEs) are less relevant because of the
inability to precisely quantify state or variable values.
For example, the exact peak value of circulating IL-6
may not correlate with outcome, but prolonged ‘high’
levels of IL-6 in the bloodstream may signal uncon-
trolled inflammation. Likewise, the ability to exactly
quantify the intracellular reaction kinetics is not cur-
rently possible given the inability to measure all the
necessary reactive intermediates. The reactants and
products are well characterized, however. As a result
of these structural uncertainties, the exact nature of
quantitative models can be replaced with a more
‘fuzzy’ or rules-based approach.

Fuzzy (or fuzzy logic) modelling is used to capture
imprecise or uncertain events for systems, where a precise
model may be too difficult to construct or may not exist,
while fuzzy control addresses the fact that human
decision-making operates with approximate data and
implicit objective functions (Mahfouf et al. 2001). In
this approach, a set of tabulated rules would be con-
structed from the underlying physics, biology and
J. R. Soc. Interface (2010)
medical understanding for the process in question. Quan-
titatively, variables can be classified as ‘low’, ‘medium’ or
‘high’, through the use of activation functions (concep-
tually similar to the formulation of neural network
models, the use of mathematical formulations such as
the Hill relationship or hyperbolic tangent is common).
As a result, decision trees and fuzzy logic control can
be used to make clinical decisions. A key advantage of
this framework is the ability to specify both modelling
and control (treatment) rules in clinical terms. Draw-
backs include the training of models when fitting to
data is required, as well as the structural selection of
the underlying mathematics and solution (e.g. what is
the shape of the activation function, how many levels
to use for variables and interactions). It can be seen
from Mahfouf and co-workers (2001) that there appears
to be significant medical adoption of fuzzy modelling
tools, although it can be argued whether this is a result
of their ease of adoption and comprehension for clinicians
or because they are the best tool for the job.

An alternative rule-based framework is the BioNet-
Gen language (BNGL; http://bionetgen.org), a
model-building paradigm that has been developed for
biological systems (Blinov et al. 2004; Faeder et al.
2009). Rule specification is accomplished by defining
the reactants and products with the corresponding reac-
tion rates. The existence of specific intermediates—such
as the phosphoforms along a multi-step kinase pathway
or the activation of a molecule requiring multiple indi-
vidual bindings to activate—need not be specified in
the overall reaction, as they are handled automatically
by the software in the construction of the simulation
equations. While the underlying model remains of
ODE or SSA types for BNGL models, the specification
of such models is simplified dramatically through the
rules-based engine and the simulation can be done in
either deterministic or stochastic mode. A further
advantage is the automated code generation by
BNGL compilers, thereby reducing the typographical
errors common in specifying what could be hundreds
of equations for a cellular pathway or cell–cell inter-
action dynamics.
4.5. Physiological modelling

Anatomy and physiology describe, respectively, the
connectivity and the physical and chemical interactions
of the organs and tissues in the body. While modelling
in this manner is not a new idea, in that the concept was
recognized by Teorell as early as 1937 (Teorell 1937a,b),
advances in computational power have made these
models attractive in that they provide a greater degree
of biological insight than what is available from phe-
nomenological models. Furthermore, tissue-specific
information and mechanism, when available, can be
included in an intuitive and mechanistically accurate
manner. Physiological models of drug pharmacokinetics
are commonly employed in the cancer field (e.g. Chen &
Gross 1979; Doyle et al. 2007; Florian et al. 2007), and
physiological PK/PD models have been used in a var-
iety of fields including diabetes (Sorensen 1985; Parker
et al. 2000; Roy 2008), anaesthesiology (Wada & Ward
1994), and cancer (Jusko & Ko 1994; Florian et al. 2007).

http://bionetgen.org
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Mass balances around tissues of interest are used to
construct a physiologically based model of cytokine or
intervention dynamics; each tissue is therefore
represented mathematically as a set of (ordinary differ-
ential) equations describing the rate of change of
substances of interest within the tissue space, which
can be represented as total tissue space or subdivided
into vascular/extravascular (and further extravascular
subdivision to interstitial/intracellular is possible). A
candidate model with tissue compartments is shown
in figure 5. Average values for many of the flow and
volume parameters in PBPK models across multiple
species are available in the literature (US EPA 1984;
International Life Sciences Institute 1994). A comfort-
ing fact in using such literature parameters is the fact
that circulating concentrations and measurable levels
are often more sensitive to the parameters in metabolic
terms than tissue flows and volumes (discussed for a
diabetes example in Parker et al. (2000)). The associ-
ated drawback is that the remaining metabolic or
reaction parameters need to be estimated from exper-
imental data. The most commonly available data,
systems-level measurements of circulating cytokines
for example, can provide guidance in model specifica-
tion, but these data are often insufficient to fully
parameterize a physiologically based model because of
J. R. Soc. Interface (2010)
failures in a priori identifiability—some parameters
are simply not uniquely identifiable from circulating
measurements. Tissue- or cellular-scale measures are
often required to fully characterize this high-order
model, which may require the scaling of in vitro exper-
imental results to the in vivo scenario or the interspecies
scaling of preclinical animal-derived parameters to the
human patient case. Although mechanism, when ident-
ified from cellular experiments, is generally conserved,
the interactions of cells with the in vivo environment
often leads to changes in parameter values when scaling
across these scenarios.

Hence, the most significant uncertainties that
manifest in a physiological model involve the character-
ization of the intra-tissue dynamics, which are closely
related to the availability and confidence in experimen-
tal measurements. As a result, the absence of tissue- or
cellular-scale detail forces the modeller back to a
phenomenological description of some aspect of the
model. Despite this potential shortcoming, the ability
to represent the body using physiological and anatom-
ical accuracy and connectivity may still provide
further benefit in understanding the system dynamics
in response to disruptions. For example, a large recruit-
ment signal for neutrophils at an injury site would not
necessarily induce systemic recruitment of neutrophils
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throughout the body. In contrast, high circulating cyto-
kine levels resulting in maladaptive recruitment of
neutrophils or macrophages to remote uninjured sites
could negatively affect the ability of the host to fight
off pathogen invasion and cause undesired damage in
otherwise healthy tissue. These are effects that could
not result from a strictly phenomenological treatment,
but can be observed in physiologically based simu-
lations, even with incomplete mechanistic descriptions
of cellular events.
5. DECISION SUPPORT TOOLS

While mathematical models can be used to characterize
and understand the dynamics of inflammation, a key
reason to construct such a model is to use it explicitly
in the construction of a decision-support system for
real-time use in a clinical setting. Hence, an accurate
model is desired (recall that model quality affects
theoretically achievable performance (Morari &
Zafiriou 1989)), but a model that can be efficiently
and effectively employed in a systems engineering frame-
work, known as a control-relevant model (Parker &
Doyle 2001), is perhaps more useful. As a result, an
imperfect model that captures the key observable
behaviour may be the best model. Once such a model,
in one of the frameworks discussed in the previous
section, is constructed, the following tools can be used
to design treatment interventions.

5.1. Optimization and optimal control

Optimal control is a tool commonly described in the
literature in the solution of biomedical systems
problems. Here an objective is coupled with a set of con-
straints, and the entire problem is solved either
analytically or via programming techniques. Optimal
control problems are mathematically posed as follows
(Bertsekas 1995):

min
uðtÞ

JðyðtÞ; uðtÞ; rðtÞÞ; ð5:1Þ

subject to

_x ¼ f ðxðtÞ; uðtÞ; pÞ; ð5:2Þ
yðtÞ ¼ hðxðtÞ; uðtÞ; pÞ; ð5:3Þ

umin � uðtÞ � umax ð5:4Þ
and yðtfÞ ¼ yfin: ð5:5Þ

While the objective, J, is general, the most commonly
employed engineering objective function (equation
(5.1)) is the least-squares deviation of a variable of
interest, y(t), from the user-supplied target trajectory,
r(t). This minimization (or equivalently maximization
if the objective is multiplied by 21) is performed over
a time horizon from 0 (taken as the present time, by
convention) to tf, a user-specified final time. The
optimization variable is u(t), which can be
independently specified over the entire horizon.

The constraints are typically model descriptions,
incorporated as ODEs (equations (5.2) and (5.3)), and
the acceptable bounds on the optimization variable
(equation (5.4)) are either explicitly determined from
J. R. Soc. Interface (2010)
physical constraints (e.g. pump rates, non-negativity)
or implicit limits resulting from physical phenomena
(e.g. flow rate limits imposed by haemolysis). Finally,
an endpoint for the variable(s) of interest is specified,
as in equation (5.5).

As an example, consider a haemoadsorption device
that would be used to remove cytokines from the
blood. An optimal control problem might have the fol-
lowing specification. The target values (r(t)) could be
the basal cytokine levels, and the model-predicted
values would be cytokine levels from a mathematical
model, which are compared with actual patient-specific
values using point-of-care measurements (about an
hour delayed from real-time for measurement proces-
sing). Manipulating blood flow through the
haemoadsorption device would alter the rate of cyto-
kine removal by the device, and, as such, the
concentration of cytokines at the device exit (where
blood is returned to the body). The lower bound on
flowrate, the optimization variable, would be just
greater than the flow at which coagulation occurs in
the device; the upper bound is the point just before
blood haemolyses in the device. Finally, a desired end-
of-haemoadsorption-treatment cytokine level would be
specified (again, perhaps the basal levels). The result
is an optimal control problem for cytokine regulation
via haemoadsorption in response to sepsis.

Solving this problem is equivalent to solving a two-
point boundary value problem. Under a set of
assumptions, analytical solutions are available. How-
ever, a programming solution is more common, and a
commonly employed tool is control vector parame-
terization (Martin & Teo 1994). This involves a
discretization of the time axis into k equal-length seg-
ments, over which the optimization variable(s) (e.g.
blood flow rate through the device) is held constant,
and the levels of u(k) are the decision variables in the
resulting optimization problem. The exact method for
solving this optimization is up to the user; gradient
search is perhaps the most common. The input profile
generated by the optimization often has a characteristic
‘bang-bang’ shape, where the input profile over the hor-
izon of interest switches back and forth between the
applied constraints, umin and umax. This technique is
good for solving nonlinear control problems with con-
straints, but there are inconsistencies with medical
practice—primarily, there is no accommodation made
for real-time feedback adjustment of the treatment pro-
file in the presence of new measurement data (that are
collected while the optimal control-generated therapy
is being administered).
5.2. Receding horizon control

An alternative approach to model-based treatment
intervention is to use receding horizon, or model predic-
tive, control (Muske & Rawlings 1993; Allgöwer et al.
1999). This formulation poses and solves an open-loop
optimization each time a measurement is collected,
the result of which is a sequence of input values or
changes to be implemented over a user-specified time
horizon. Structurally, the problem is similar to the
optimal control formulation above; a cytokine or
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damage-associated objective is minimized (again, typi-
cally a sum-of-squared-error goal (5.6)) over a horizon,
haemoadsorption flowrate (or other intervention) is held
constant between measurements, models are used expli-
citly in the algorithm solution (5.7 and 5.8), and
constraints on the inputs can be rigorously enforced (5.9
and 5.10). The departure from an optimal control formu-
lation comes in two places: (i) the endpoint constraint is
not included and (ii) the problem is reposed and the sol-
ution recalculated each time a measurement is collected.
A typical model predictive control (MPC) problem may
be formulated as follows (Muske & Rawlings 1993;
Morari & Ricker 1994):

min
DuðkjkÞ

kGy Rðk þ 1jkÞ �Y ðk þ 1jkÞð Þk22þ k GuDuðkjkÞ k22;

ð5:6Þ

subject to

xðk þ 1jkÞ ¼ f ðxðkjkÞ; uðkjkÞ; pÞ; ð5:7Þ
yðkjkÞ ¼ hðxðkjkÞ; uðkjkÞ; pÞ; ð5:8Þ

umin � uðkjkÞ � umax ð5:9Þ
and DuðkjkÞj j � urate: ð5:10Þ

The mathematical formalism employs statistical
notation; Y ðk þ 1jkÞ is the vector of predicted measur-
able outputs (length Np) at time k þ 1 given
information up to time k. The desired trajectories or
values for the cytokines or damage surrogate(s) is
Rðk þ 1jkÞ, and the optimization variables (the
degrees of freedom for the optimization) are the
input changes DuðkjkÞ (length Nm). The change in
the input, rather than the input value, is commonly
employed in the MPC formalism to help eliminate
steady-state offset, a condition where Y = R at
stable operation. Trade-offs between the need to keep
measured cytokines or other outputs near their desired
values, versus minimizing the undesired effect of small
variations in the measurement (due to measurement
variability inherent to the measurement device or
method) altering the intervention, are accomplished
by altering the weighting matrices Gy and Gu,
respectively.

As in optimal control, an optimization routine is
called in the solution of the MPC problem, and, as a
result, input constraint incorporation is straightforward
in both magnitude-constrained (equation (5.9)) and
rate-constrained (equation (5.10)) forms. Output and
state constraints may lead to infeasibilities in the
optimization problem, and as a result these are often
omitted or incorporated in a ‘soft’ form by replacing
the hard constraint with corresponding penalty terms
in the objective function (Zafiriou & Chiou 1993).
A schematic of MPC implementation is shown in
figure 6.

Revisiting the example from §5.1, at the present time
k, the current cytokine levels are measured and com-
pared with the model-predicted cytokine values. To
address (expected) differences between the patient
and the model, an additive correction (d(k)) is made
to the model predictions over the Np-length prediction
horizon. The difference between the desired cytokine
J. R. Soc. Interface (2010)
values (Rðk þ 1jkÞ) and the model-predicted ones
(Y ðk þ 1jkÞ) over the Np-length prediction horizon is
used to calculate the Nm-length series of haemoadsorp-
tion flow rate changes that minimize the objective
(typically driving Y as close as possible to R). The
first flow rate change is implemented, possibly requiring
confirmation from a clinician, and the process repeats
when the next measurement is collected.

In the case of time-variable, or temporally mis-
matched, measurements of different entites (e.g.
cytokines and damage surrogates), a multi-rate MPC
formulation is available (Lee et al. 1992; Gopinath
et al. 1995). Here, the algorithm makes decisions using
model-predicted values until new measurement infor-
mation is available, with each measured quantity
updated independently. While the MPC problem for-
mally returns a solution that is suboptimal, in that it
is a locally optimal solution resolved at each measure-
ment time point, the algorithm has shown excellent
performance and a respectable degree of robustness in
the industrial application setting (Qin & Badgwell
1999). The structural advantages of MPC, including
the on-line solution of an optimization problem that
incorporates available patient information, are signifi-
cant, but a key drawback of this control structure is
the challenging analysis of algorithm performance.
Algorithm stability guarantees, which may be required
by the FDA before deployment in a clinical setting,
often require the use of endpoint constraints or long pre-
diction horizons (i.e. large Np or ‘infinite-horizon’
formulations (Rawlings et al. 1994)), which may limit
the achievable performance.
5.3. Mixed-integer programming

To this point, the modelling and control theoretic tools
have focused on ODEs and continuous-valued vari-
ables. However, some measurements (e.g. DNA arrays
and other colorimetric methods) provide a less numeri-
cally precise estimate. Alternatively, a modeller may
choose not to use real-valued variables (because of
experimental uncertainty or atypical natural distri-
butions), but rather to discretize the variables as
‘high’ or ‘low’. ODE-based models are poorly posed to
handle this qualitative information because these
lumped models are founded on the continuum assump-
tion. This is the same reason that ODE models do not
work well for small (i.e. countable) numbers of mol-
ecules—the continuum assumption loses validity in
this regime.

In a similar manner, treatment or outcome variables
are not necessarily continuous. Most common are the
‘yes/no’ type—the decision to treat or not to treat,
response or no response, survival or death. These are
examples of binary [0, 1] variables, yet highly relevant
in the clinical setting. Oral drug administration is
often explicitly or implicitly quantified, in the manner
of fixed-dose pills (e.g. one aspirin or two?) or infused
drugs mixed at specific concentrations or dose levels.
Treatment decisions are also made on quantified obser-
vations, such as ‘high’, ‘moderate’ or ‘low’ levels of
TNF. Rather than resorting to fuzzy logic, mixed-inte-
ger programming (MIP) is a candidate formal
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mathematical structure for handling these discrete
values. Here discrete quantities are assigned corre-
sponding integer values, so increasing doses might be
represented as levels 1, 2 and 3, for example, with no
treatment assigned a value of zero. If all variables
were discrete, an integer programming problem would
result; this further reduces to a binary program if all
variables—not just the decision variables—are inte-
ger-valued in the range [0, 1]. However, drug dose
levels or other quantified interventions interact with
continuous biosystems models, in general; an adminis-
tered drug dose results in a PK profile that is
continuous. This continuously valued information is
the ‘mixed’ part of the MIP problem. Based on the
user-selected objective, and the structure of the under-
lying system model, the nature of the MIP problem is
specified: a linear objective and model yields a mixed-
integer linear programming (MILP) problem; replacing
the objective with a quadratic form, as in the MPC pro-
blem above (equation (5.6)), yields an MIQP (Q for
quadratic); and the explicit inclusion of other nonlinear
terms (e.g. Michaelis–Menten or Hill saturations, pro-
duct inhibition) requires the solution of an MINLP
(NL for nonlinear).

Consistent with clinical practice, and using the MPC
problem in equations (5.6)–(5.10) as an example, it is
possible to repose this problem to explicitly address
quantified information using a MIQP or MINLP
J. R. Soc. Interface (2010)
problem (Harrold & Parker in press), depending on
the system model used, as follows:

min
uðkjkÞ;TðkÞ

XNp

w¼1

ðRðw þ 1jwÞ � Y ðw þ 1jwÞÞ2

þ Gm

XNu

q¼1

uðqjqÞ; ð5:11Þ

s:t: xðk þ 1Þ ¼ f ðxðkÞ; uðkÞ;TðkÞÞ; ð5:12Þ
yðkÞ ¼ hðxðkÞ; uðkÞ;TðkÞÞ; ð5:13Þ

TðkÞ [ Tf g; ð5:14Þ
umin � uðkjkÞ � umax; ð5:15Þ
jDuðkjkÞj � uD: ð5:16Þ

The receding-horizon control problem independent
variables, uðkjkÞ, and the integer-valued decision vari-
ables, T(k), are used to minimize the objective
function (5.11). The additional equations represent
discrete-time model states (5.12) and outputs (5.13),
the quantized variable treatment definition (5.14), con-
tinuous input bounds (5.15) and rate of change
constraints (5.16), as well as integer variable Big-M
constraints (not explicitly shown). An advantage of
this formulation is that new patient information can
be incorporated as a measurement update and an
improved solution computed. While such an approach
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appears daunting, experience with simulated cancer
treatments indicates that clinically relevant problems
(1894 equations having 865 continuous and 168 discrete
variables) can be solved within a second on a desktop
computer (Harrold & Parker 2009).
6. ISSUES IN MODELLING BIOLOGICAL
PROCESSES

Constructing plausible descriptive or predictive models
of biological processes faces issues that are commonly
not encountered in physics/engineering models, or are
generally less severe. Sources of uncertainty and varia-
bility are routinely encountered in biological data, the
notion of the existence of biological laws is on much
softer grounds, and the very concept of the existence
of clear causal chains loses clarity in complex systems
with numerous redundancies, feedback mechanisms
and levels of regulatory control. Impressive advances
in data acquisition and processing techniques have
and will continue to help alleviate some of these
obstacles, while others await further advances in
information, mathematical and systems theory.

6.1. Variability, uncertainty, similarities
and differences

Whether a biological process exists or how it actually
happens are often significant sources of uncertainty.
The concept is quite intuitive when applied to the exist-
ence of the exact wiring of specific signalling pathways,
where elegant specific solutions typically requiring
extensive experimental–theoretical collaborations have
helped (Kuepfer et al. 2007). Some of the core processes
involved in the pathophysiology of sepsis are clearly
multi-scalar, however—hypotension causes organ dys-
function in a number of ways. Cellular energy failure
is undoubtedly a major driver of cellular dysfunction,
but inability to clear toxic metabolites or direct
organ–organ crosstalk, in the form of mechanical or
neural interactions between organs themselves, may
also play major roles. The modelling implication of
uncertain mechanisms and their relative importance,
as broadly described above in the pathophysiology of
acute inflammatory diseases and sepsis, is that the pro-
cess of designing disease models should not be limited to
the construction of a single model. Rather, the focus
should be the inclusion and evaluation of competing
hypotheses, as often done in weather forecasting
(Gneiting & Raftery 2005), or some balanced represen-
tation of such hypotheses according to some prior
likelihood (obtained from the existing empirical evi-
dence or expert opinion) embodied in a consensus
model. At the present time, the examination of
competitive models has been mostly restricted to
machine-learning approaches to competitive wiring of
signalling pathways. Couched in dynamical systems
language, these factors translate to uncertainty in
model structure or rules, and, within a given structure,
to uncertainty in parametrization. Compounding the
problem for processes with unclear starting points,
such as sepsis, uncertainty in the initial conditions
and variation in experimental conditions must also be
J. R. Soc. Interface (2010)
considered. This is particularly disconcerting when
controlled experimental conditions result in wide
inter-individual variability of measurements across
cohorts of genetically identical mice (a common obser-
vation in preclinical cancer chemotherapy studies).
These two factors may in fact be crucial to our lack of
success in translating promising preclinical information
into actionable therapies in humans (Salluh & Bozza
2008; Dyson & Singer 2009).

Measurement uncertainty, both in accuracy (repro-
ducibility of data given identical circumstances) and
bias (how close is the measurement to the true value),
is typically of greatest severity in biological data. For
example, several fluorescent antibody-based assays,
such as enzyme immunosorbent-linked assays (ELISA)
or multiplex bead-based capture techniques (e.g. Lumi-
nex) measure fluorescence units and assume either that
the binding reaction between the fluorescent antibody
and molecule of interest has reached equilibrium or
that the degree of completion of the binding reaction
is exactly known at the time of the readout. Transposi-
tion of the fluorescence value to a standard curve yields
the desired measurement, which is typically an average
between (often very different readouts of) duplicates or
triplicates. In our experience, we often had to recon-
struct such standard curves and adapt them to our
specific experimental conditions. Reproducibility and
standardizations of experimental protocol and measure-
ments remain significant sources of variability that
modellers must take into account in their model cali-
bration efforts. Thus, interventions can range from
reappraising data, as described above, to the construc-
tion of models that take into account such variability
in the process of structure and parameter estimation
in a statistical or probabilistic fashion (Bertrand et al.
2001; Zenker et al. 2007). In spite of such caveats,
there is also remarkable regularity in the inflammatory
response across individuals and across species. The
responses to acute endotoxin administration in rodents
and humans are quite similar in their timing and
sequence of mediators activated, although rodents are
typically very resistant to endotoxin, requiring a dose
per weight higher by several orders of magnitude to
create comparable physiological response (Boujoukos
et al. 1993; Chow et al. 2005). Therefore, the wiring
structure of the acute inflammatory response is essen-
tially robustly defined. That differences across
individuals and species rest both in actual relative
importance of participating mechanisms and in the dif-
ficulty to fully appreciate variations in experimental
conditions offers hope that model-based approaches
can constructively deal with biological uncertainty
and resolve conflicting reports inhibiting progress in
translation.
6.2. Stochasticity and randomness

Even genetically identical organisms do not respond
identically to equivalent challenges. The variance
observed in data collected from animal studies is, to
some degree, a function of the measurement device
and method. However, this does not capture the
entirety of the spread observed. While this is one of
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the driving factors behind the use of statistical methods
in the design and analysis of animal and human trials, it
also calls into question the use of ODEs in the modelling
of population average data—or more accurately, the
benefits and drawbacks of constructing such models.
An advantage of this simplified model structure at the
whole-organism level is that uncertainties need not be
captured mechanistically at every level of detail (e.g.
organ, cell, nucleus); instead, these can be lumped
into parameters characterizing the observed data at
the organism scale. The corresponding drawback is
that the loss of mechanistic accuracy may inherently
limit the utility of the average ODE model in the
treatment design for an individual (Morari & Zafiriou
1989).

As discussed above, one method for handling this
variability is in the context of population models
(Beal & Sheiner 1992; Sheiner & Ludden 1992;
Resource Facility for Population Kinetics 2008). Here,
the variability is incorporated into an ODE model as
parameter variability, with the model parameters
belonging to distributions informed from (pre)clinical
data. As the resolution is increased to organs, cells
and intracellular dynamics, the ability to inform popu-
lation-style models from data decreases because of the
general lack of reliable in vivo measurements at the
smallest scales. Furthermore, the continuum assump-
tion may begin to break down as properties such as
heterogeneity, well-mixedness and large numbers of
molecules may be violated. At highly resolved scales,
interactions are not deterministic—the probability of a
meaningful interaction is dependent, using molecular
reactions as example, on the reactant molecules,
energy and perhaps enzyme availability. Although the
mechanistic structure of the (intra)cellular process
may still be unknown, this variability can be incorpor-
ated at the correct scale through the use of stochastic
ODEs or other appropriately abstracted stochastic
simulators (see §4.2, above, for more detail on the
modelling methods).
6.3. Collaboration between experimentalists
and theoreticians

It is interesting to note from discussions with academics
and industrial PhDs the degree to which academic con-
trol theory research has not made the translation to the
industrial sector. Rigorous tools that provide perform-
ance guarantees, such as robust control and control
systems designed using Lyapunov stability analysis,
are not widely employed in the chemical process indus-
try. Likewise, nonlinear control is a powerful tool, but
its use has also been limited to those applications
clearly requiring its capabilities (i.e. where linear con-
trol tools are insufficient on performance or stability
grounds) and also of a state dimension to admit sol-
ution. In contrast, the model predictive control
paradigm has been highly successful in industry and
enjoys wide acceptance. However, the studies of
robust performance guarantees and the necessary math-
ematical tools again do not often translate beyond the
academic realm. The reason for this translation failure
is at least twofold: (i) a control system that requires
J. R. Soc. Interface (2010)
exclusive expertise to maintain after deployment is
judged ‘too expensive’ unless the industry has a very
high margin (e.g. pharmaceuticals) and (ii) the sol-
ution to the control problem is both theoretically
complex, making it hard for the non-expert to
understand the need for such a system, and computa-
tionally complex, such that the completion of the
calculations cannot be guaranteed in a real-time indus-
trial setting. These obstacles extend beyond the
chemical industry.

Engineers and mathematicians have been addressing
biomedical problems for decades. In diabetes, the first
models were published in the early 1960s (Bolie
1961), with the first truly successful translation of
model to clinic being the ‘Minimal Model’ by Bergman
and co-authors in 1981 (Bergman et al. 1981). Likewise,
cancer models date back at least to the 1970s, and only
in the 2000s have model-derived treatment decisions
started to manifest (Fornier & Norton 2005). Interest-
ing to note in both of the clinical successes cited here is
that the primary author is a medical doctor. Both
Dr Bergman and Dr Norton have worked over the years
with mathematicians and engineers (Prof. C. Cobelli
being the engineer and driving force in the diabetes
modelling area; he has continued to work on this pro-
blem (Nucci & Cobelli 2000; Bellazzi et al. 2001;
Cobelli et al. 2007; Pedersen et al. 2008)). In contrast,
the plethora of papers published by engineers and
mathematicians claiming to have ‘solved’ such pro-
blems as glucose control, HIV treatment, cancer
therapy and anaesthesia delivery—among other
examples—address only the ‘necessary’ part of the pro-
blem. In other words, a technological solution has been
presented that, if provided suitable information, can
successfully achieve a stated objective. The missing
piece is the clinical and translational aspect, the ‘suffi-
cient’ component of a necessary and sufficient
condition, where a clinician would participate in
posing the objective and constraints of the problem
to make sure that a proposed solution is sufficient for
deployment in a clinical setting. As the case study
below will demonstrate, the collaboration of clinicians
with engineers and mathematicians leads to mathemat-
ical models that are both efficient (in their use of
states, parameters, etc.) and allow the evaluation of
clinically relevant questions. Furthermore, the ability
to use these mathematical models in the context of
treatment design, or their control relevance (Parker &
Doyle 2001), is a design criterion as well, as
discussed above.
7. A CASE STUDY IN INFLAMMATION

7.1. Low-order approximants

Our initial attempt to model the acute inflammatory
response comprised a very high level, three-variable
model: a growing pathogen (P); a pathogen predator
(M) that multiplies in the presence of pathogen and
destroys pathogen; and a late inflammatory mediator
(L) triggered by M and which can itself grow
(Kumar et al. 2004). The system of ODEs below
represents this process where the k’s are rate constants
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and u and W are form factors for the hyperbolic tangent
function

dP
dt
¼ kPP 1� Pð Þ � kPMMP; ð7:1Þ

dM
dt
¼ kMPP þ Lð ÞM 1�Mð Þ � kPMMP �M ð7:2Þ

and

dL
dt
¼ kLM 1þ tanh

M � u

W

� �� �
� kLMP: ð7:3Þ

Analysis of this system of equations reveals the possi-
bility of a number of intricate behaviours, ranging from
elimination of P and resolution of both M and L
(health), to elimination of P, but persistence of M and
L (aseptic sepsis), to persistence of all three variables at
high levels (septic sepsis), to persistence of P, but low per-
sistent levels of M and L (immunosupression), to cyclic
behaviour. All behaviours result over different ranges of
initial conditions (dose of P) and system parameters. Les-
sons from this low-order model include the possibility of
identifying conditions for the existence of self-sustaining
inflammation and the possibility of parameter and initial
condition-dependent existence of tristability (Kumar
et al. 2004). As a first extension of this model, the inflam-
matory response is in fact the result of a balance between
effectors that amplify the inflammatory cascade and a
parallel anti-inflammatory response effect by counter-
regulatory mediators that prevents the pro-inflammatory
cascade from getting out of hand, so that a minor local
infection does not result in a massive mobilization of
resources. Active counter-regulation is a widespread fea-
ture of acute biological response mechanisms, blood
coagulation being another prominent example (Adams
et al. 2007). In abstract form, the three-state model of
acute inflammation is extended by the introduction of
an anti-inflammatory mediator (C) and by modifying
the meaning of L to represent tissue damage (D) (and
thus a marker of health/death)—these changes charac-
terize a variety of four-variable models (Day et al.
2006a; Reynolds et al. 2006) (see also figure 1). These
were also formally analysed mathematically and can
give rise to a wide range of behaviours. Simulations
explored the impact of modulating exogenous adminis-
tration of M or C on the asymptotic level of D. In other
words, manipulations of the immune response will
change the trajectory and final state of the system (Day
et al. 2006b; Reynolds et al. 2006).

Our first attempt at calibrating a model of acute
inflammation was performed with a rather large
(22-equation) model (Chow et al. 2005). This work intro-
duced the hypothesis that acute inflammation was using
the same mechanisms irrespective of the specific stressor
causing inflammation. Because a single model with a
unique set of parameters was used to describe the inflam-
matory response to endotoxin, trauma caused by a
laparotomy and haemorrhagic shock, we believe that
this model provides strong support for a universal
wiring of the acute phase of the inflammatory response.
All experiments in support of the model were conducted
in mice. Serum TNF, IL-6, IL-10 and nitrites/nitrates
were measured at four time points within a 24 h period
J. R. Soc. Interface (2010)
following the insult. Because the experiments were con-
ducted in mice, animals had to be sacrificed at each
time point, and therefore no longitudinal time series
were obtained from individual animals. Furthermore,
only four of the 22 state variables were measured, result-
ing in a highly under-determined model. Contrary to a
widespread misconception, even severely under-deter-
mined models such as this one cannot be forced to fit
the data if the mechanisms embodied in the equations
are biologically unsound (mathematically this would be
interpreted as a dynamic structural mismatch between
the data and the model formulation). Finally, we
obtained a calibration of the model by convex optimiz-
ation. Using a standard local/convex optimization
routine such as Newton–Raphson or Levenberg–
Marquardt will identify, from a starting guess of
parameter values, a set of parameters that minimizes
the error between the simulated model and observed
data. Such algorithms will typically converge to a local
minimum, which will yield different model parameteriza-
tions if different initial guesses are used. Indeed, as a
result of the underspecified and underconstrained local
optimization, it is typically possible to produce many
candidate models that fit the empirical data acceptably
well, while (possibly) possessing very different beha-
viours in unobserved states, or simply relying on
different mechanistic drivers to produce the same results.
In the case presented, there is undoubtedly a large collec-
tion of parameter sets that also could have fitted the
dataset (Chow et al. 2005). This limitation does not
invalidate the conclusion of universality of the acute
inflammatory response, but affects the potential appli-
cation of this particular parameter set to predictions of
subsequent experiments if those were to be substantially
different. In other words, this naı̈ve approach lacks
robustness and carries a high risk of the model not
translating to subsequent experiments.

We were not satisfied with the ratio of observed vari-
ables to actual model variables, and with the relative
complexity of the models. Therefore, we scaled back to
the minimum meaningful number of variables that could
still describe the data; conceptually akin to the successful
‘Minimal’ modelling approach used by Bergman and
Cobelli for diabetes (Bergman et al. 1981). The result
was a generation of models that have between eight and
10 variables, including pro-inflammatory mediators TNF
and IL-6, anti-inflammatory mediator IL-10, serum neu-
trophil counts and serum creatinine, a marker of organ
(renal) dysfunction (Daun et al. 2008). Calibration was
performed on doses of endotoxin of 3 mg kg21 and
12 mg kg21 administered to 250 g Sprague–Dawley rats,
four per dose, with seven time points per animal over
24 h. A prediction was provided for an intermediate dose
of 6 mg kg21, as shown in figure 7 (Daun et al. 2008).

One challenge in model calibration is the solution of
the least-squares problem for parameter estimation. We
have adopted a systematic approach to solving this
inverse problem.

— First, constrain parameter space by constructing
lucid bounds on parameter values. This is often
possible from literature and (pre)clinical data/
knowledge.
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Figure 7. Model simulations and experimental rat endotoxaemia data. IL-6 model calibration results from (a) 3 and
(b) 12 mg kg21 endotoxin challenge. IL-10 model calibration results from (c) 3 and (d) 12 mg kg21 endotoxin challenge.
TNF model calibration results from (e) 3 and ( f ) 12 mg kg21 endotoxin challenge. Model predictions versus experimental
data for (g) IL-6, (h) TNF and (i) IL-10 at an endotoxin challenge level of 6 mg kg21.
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— Second, construct a set of heuristics that penalize
parameter sets for producing model behaviours that
are deemed unrealistic. For example, models that
fail to ‘heal’ in finite time with negligible
stimulation or display peaks in unobserved variables
of unacceptable/unbelievable duration or magnitude
lead to further parameter space constraints.

— Third, we proceeded to explore formal model par-
ameter reduction techniques (Daun et al. 2008)
(not to be confused with model reduction techniques,
which generally focus on reduction of the state—not
parameter—dimension (Moore 1981; Glover 1984;
Chiang & Safonov 1992)). This process involves cal-
culating the sensitivity of the simulation results to
small changes in parameter values (Yue et al.
2006). The analysis is typically performed for each
variable in the model at each time point where data
are available, although we are also applying methods
that perform global sensitivity (Carter et al. 2003;
Bongartz et al. 2006). We then proceed to an iterative
process of fixing parameters to which the model is
insensitive and recalculating sensitivities. This pro-
cess of parameter reduction is stopped when there
are no more insensitive parameters. The ‘price to
pay’ is then evaluated by recalibrating the model
only using sensitive parameters. This analysis also
yields another extremely important piece of infor-
mation: the process of identifying sensitive
parameters, on the one hand, and the difficulty of
J. R. Soc. Interface (2010)
constraining them through literature searches, on
the other, identify where critical knowledge gaps
exist. It was clear from our modelling efforts that
simulations were extremely sensitive to pathogen
burden and rate of growth, and also to the specific
distribution of immune cells. Experimentally, we
had virtually no information on either of those
domains of data. Consequently, the outlook for build-
ing truly predictive models of sepsis to explore
pathophysiological hypotheses remains grim until
longitudinal quantification of key drivers are better
described experimentally or clinically.

— Finally, given animal variability and data uncer-
tainty, there are legitimate reasons to carry a large
number of parameter sets as representative for our
animal population. Accordingly, our consensus
model is actually an ensemble of models, obtained
in one of the two ways: (i) multi-start convex optim-
ization of the reduced model, where the ensemble may
include several hundred model parameterizations
(Waugh & Perry 2005), or (ii) a fully probabilistic
approach where parameter space is explored using
Markov chain Monte Carlo algorithms (e.g. Metropo-
lis-Hastings (Bertrand et al. 2001; Zenker et al. 2007))
and parameter sets are given a probability density
based on their ability to fit experimental data.

This approach, in our estimate, represents the most sat-
isfactory solution to the inverse problem, and may also
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be the most practical in terms of providing probabilistic
predictions (Hancioglu 2007).

The observation that acute inflammation is compart-
mentalized is of high clinical significance (Boujoukos
et al. 1993). Compartmental ODEs are quite useful
when modelling processes involving tissue localization
or transport across membranes and when the number
of elements belonging to each species (e.g. molecules
of a specific protein) is large, but where spatial pro-
cesses such as diffusion are not critical. We are
currently working on a systematic process for develop-
ing such models and provide an example here. Using a
reduced model that we developed for sepsis (Reynolds
2008) as the starting point, we created models with
varying numbers of compartments, typically two or
more tissue compartments communicating via a blood
compartment. These models included pathogen,
macrophages and neutrophils as cell types, a pro-
inflammatory effector, an anti-inflammatory effector
and tissue damage. Macrophages are confined to the
tissue, while the rest of the components are diffusible.
In particular, neutrophils diffuse into compartments
following pro-inflammatory gradients (see fig. 20 and
subsequent in Reynolds (2008)). Simulations are
initiated by seeding one or more organs with pathogen
and admit a minimum of three fixed points, as do
simple models: restoration of health; high pathogen,
high damage death; and no pathogen, high damage
death. Typically, linked organs either heal together or
die together. Simulations suggest that relative tissue
volumes, relative diffusivity and resident macrophage
populations are strong determinants of outcome.
Compartmentalization of the inflammatory response
may also solve apparent contradictions observed in
the literature, including situations where animals
dying of a severe infection mount an appropriate
response to infection at the primary site, while inflam-
matory cells are diverted to peripheral tissues, and
why interventions not primarily directed at the source
may help improve outcomes (Alves-Filho et al. 2005).
7.2. A case study in therapeutics: blood
purification for sepsis

The Cytosorb blood purification device consists of
polystyrene di-vinyl benzene copolymer beads of
300–800 mm diameter in a biocompatible coating
packed in a 10 g cartridge with a total surface area of
850 m2 g21. When inserted in parallel with the animal’s
circulation starting 20 h after cecal ligation and punc-
ture (an inflammatory insult resulting in native
bacteria invading the peritoneal cavity) for a duration
of 4 h, we observed a significant improvement in
short-term mortality (figure 8), mortality at one week
(data not shown) and a remarkable clearance of TNF,
IL-10 and IL-6, arguably key cytokines in the early
pathophysiology of sepsis. Blood purification is a feas-
ible intervention in humans, and optimizing the
conditions under which a blood purification device
should be used seems a desirable goal. One can also
assume that those conditions, like the titrated care
offered by an ICU physician, would vary dynamically
and thus could be represented in the form of a
J. R. Soc. Interface (2010)
sophisticated systems engineering problem, if a suitable
model of sepsis, and of the control intervention, were
to exist.

To characterize cytokine-specific ability of the bead
material to adsorb a molecule, cytokine-rich serum
was filtered through the column ex vivo (Dileo et al.
2009). Other parameters characterizing the interven-
tion are either known (e.g. bead mass and density) or
are intervention dependent (e.g. timing and duration
of intervention, blood flow). The blood purification
intervention model shown in figure 9 can be coupled
to a compartmental model ensemble, for evaluating
individual response to the treatment intervention.
This last step is the current work in progress.
8. DISCUSSION

8.1. Key clinical needs and barriers to
adoption of methodology

There has been considerable focus on methods to
improve the difficult and costly process of validating
the positive impact of new interventions on outcomes
in phase III randomized clinical trials (Annane 2009).
The need for such an approach is particularly urgent in
the field of acute inflammation secondary to trauma
and sepsis (Yaffe & Fink 2000; Cobb et al. 2005). As sys-
tems scientists attempt to bridge the gaps between
massive data streams offered by high-throughput
methods and the existing analytical methods, and to
develop a coherent multi-scale framework of interpret-
ation, the need to prioritize data and computational
methods that will help accomplish this goal is essential
(Ye et al. 2005). A significant effort is therefore present
to articulate concepts underpinning the discipline of
systems medicine, as a translationally relevant extension
of systems biology (Auffray et al. 2009).

A number of obstacles along this path remain. First,
there is a perceived dichotomy between the tradition-
ally inductive approach of the scientific method and
the deductive approach of model-based hypothesis gen-
eration (Kitano 2002). In fact, there is no such
dichotomy—they are complementary, in that model
predictions, obtained from simulations, must still be
subjected to experimental verification. Still, there is
no consensus as to what constitutes a reasonable
burden of proof that a prediction is actually verified,
while there is the intuition that it may not always be
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Figure 9. Clearance of (a) TNF, (b) IL-6, (c) IL-1b and (d) IL-10 by the Cytosorb blood purification device. Asterisk indicates
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possible to reduce the problem of prediction validity,
and thus model validity, to the p-value of a statistical
test. Second, clinicians and scientists not trained in
quantitative methods, which are ultimately responsible
for completing the bench to bedside realization, are
typically agnostic of many of the quantitative methods
discussed above. This is unlikely to change, and thus
efforts at promoting interdisciplinary exchange and col-
laborations should be encouraged. Furthermore, the
tools developed, potentially through such collabor-
ations, should be packaged to facilitate the practice of
medicine and treatment—potentially a tall order for
what is otherwise ‘research-grade’ code that requires
an expert to execute. Third, there are no sufficiently
detailed in silico models of human sepsis because of:
(i) existing residual uncertainty in the causal chain of
outcomes, thus yielding uncertainty in model structure
and measurement accuracy and bias, (ii) large gaps in
data at relevant modelling scales to calibrate such
models, (iii) lack of availability of point-of-care testing
of relevant analytes, and (iv) theoretical and algorith-
mic deficiencies in the existing methods of maximizing
information derived from incomplete and disparate
data. The support of organizations such as the Inter-
national Society for Systems Biology (http://www.
issb.org), the Society for Complexity in Acute Illness
(http://www.scai-med.org), several national funding
agencies and private foundations to articulate these
difficulties, to promote communication across disci-
plines and importantly to maintain a focus on the
translational relevance of this effort are commendable.
8.2. On translating animal results, which
are not human, to humans

The study of specific biological mechanisms of sepsis,
especially if cell type specific, is best done ex vivo
under controlled conditions. When the objective is to
vary entire host conditions (e.g. knock-out genes) or
J. R. Soc. Interface (2010)
interfere with a disease’s natural course (e.g. thera-
peutic attempts), then one has to resort to in vivo
disease models. Animal models of sepsis are still too het-
erogeneous with regard to type of insult, duration and
supportive therapy to be regarded as representative of
the human condition. Using standardized animal
models may eliminate some of the differences between
animal and human studies, allowing a greater degree
of translation (Dyson & Singer 2009). There have
been attempts at standardizing animal models of
sepsis and septic shock over the last two decades
(Fink 1990). Many will argue that caecal ligation and
puncture, where the colon is ligated at the hepatic flex-
ure and the caecum perforated with a needle allowing
bacterial efflux into the abdomen, represents a reason-
able experimental construct of sepsis (Buras et al.
2005; Fink 2008; Nemzek et al. 2008). However, the
advantages of such an animal disease model are
balanced by the fact that human sepsis is obviously
more heterogeneous, with several potential local sources
of infection (pneumonia, renal system, abdominal, etc.).

Although the basic wiring of the acute inflammatory
response appears very similar across species, the relative
contribution of the myriad processes may be very differ-
ent. For example, the lung has a high resident
macrophage population to aid in infection clearance
and it is also a highly perfused organ. Therefore, the
lung is easily inflamed when compared with other
organs, whether it is the primary site of infection or
not. One would then expect sepsis therapies to have
differential success depending on the primary site of
infection, which has been confirmed clinically (Bernard
et al. 2001). Adding to the difficulty is that timing of
therapy is critical in a rapidly evolving disease, also elo-
quently demonstrated in sepsis (Rivers et al. 2001;
Bernard et al. 2004). Unfortunately, time zero of an
infection is truly not known in a typical patient, in con-
trast to an animal experiment. Some effort has to be put
into biomarker-based outcome stratification algorithms
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or estimation routines that provide calculated projec-
tions of time and magnitude of initial infection. Such
strategies are promising in animal series (Osuchowski
et al. 2009), and also in human cohorts (Kellum et al.
2007; Rivers et al. 2007), in support of previous in
silico work (Clermont et al. 2004b).

Animal models that have demonstrated efficacy have
typically done so by a demonstrable reduction of an
extremely high mortality in otherwise healthy animals,
where the cause of death was obviously attributable to
sepsis. In humans, however, the baseline mortality is
lower and, given the demographics of the target popu-
lation, sepsis is a contributing factor to mortality
rather than the unique cause. Therefore, the extrapol-
ation of animal studies to humans could well be
improved if less lethal animal models were used, prefer-
ably in older animals. Genetic factors also play an
important role in both the risk of sepsis and its out-
come, and several polymorphisms have been
associated with either susceptibility or outcome
(Kellum 2003). Factors such as sex and race also influ-
ence susceptibility and severity of sepsis, plausibly
through complex genetic factors (Dombrovskiy et al.
2007; Dyson & Singer 2009). Only recently have
animal experiments focused on sex-specific markers
and outcomes. While there is progress in understanding
the underlying physiological correlates of age and sex,
there is no clear parallel to the notion of race in animals.
Within species, strains is a vastly more radical concept
than that of race. Therefore, the translation from basic
science in animals to clinical outcomes in humans at
present remains a difficult proposition. Careful plan-
ning of future animal experiments, in concert with
intensive efforts at developing mechanistic compu-
tational disease models that include known
physiological correlates such as age and sex, may offer
the best chance at correctly predicting outcomes and
the impact of specific interventions based on biomarker
profiles in humans.
8.3. Systems medicine: how systems approaches
drive advances in clinical practice

The systems biology boom has resulted in the continu-
ing generation of tremendous amounts of published
data (a 10/2009 search for ‘systems biology’ returned
more than 10 000 hits on www.pubmed.org), as well
as systems-derived analysis tools for addressing this com-
plex dataset (representative reviews include Doyle &
Stelling (2006); Polpitiya et al. (2009)). At the heart of
this field is the collaboration between basic science, in
this case biology, and systems science, including engin-
eering, mathematics and computer science. But what
about translational science? The application of biological
knowledge to improve the human condition is the prac-
tice of medicine; hence, systems medicine is the
coupling of systems science with medical treatment
decision-making (Auffray et al. 2009). This field is
borne of the recognition that disease diagnosis and treat-
ment is a systems response problem, incorporating
multiple inputs, measurements and unobservable effects,
and that simple one-pathway or one-effect methods are
unlikely to succeed on a broad scale. The key advance
J. R. Soc. Interface (2010)
observed over the past 10–15 years that opened the possi-
bility of translating systems medicine to the bedside is the
transition of mathematical and engineering approaches to
clinical problems from ‘theoretically interesting’ (and
generally devoid of concrete clinical practice knowledge)
(Martin 1992; Parker et al. 1999; Zurakowski &
Teel 2006) to practicable methods that explicitly
incorporate clinical knowledge and constraints in diseases
such as cancer (Lee & Zaider 2008; Harrold & Parker
2009), diabetes (Bondia et al. 2009; Dua et al. 2009;
Kumareswaran et al. 2009) and glucose control in critical
care (Plank et al. 2006; Hovorka et al. 2008; Blaha et al.
2009; Cordingley et al. 2009).

From a systems engineering perspective, the field of
systems medicine is rife with challenges. Model structures
are neither fixed nor mechanistically characterized in
many cases, so model selection and reconciliation with
data from multiple studies (and collection methods) is
needed. Measurements and analytical methods have
inherent uncertainty in the reported values, meaning
that parameter calibration and model structure selection
have conflicting objectives of accuracy and robustness to
small perturbations. An advantage to having a high-fide-
lity mathematical model, however, is the ability to use
simulation as an analysis tool—examples include: para-
metric and model structure sensitivity analysis (Huang
et al. 2001; Yue et al. 2006); evaluation of current ‘stan-
dard of clinical practice’ to the base model and any
parametric or structural perturbations; a priori identifia-
bility analysis and experimental design (Audoly et al.
1998, 2001; Bellu et al. 2007); and the development of
‘what if’ scenarios via Monte Carlo methods (for pertur-
bations) or for the evaluation of novel intervention
strategies. The development of model-based treatment
decision-support systems relies heavily on the underlying
model (Morari & Zafiriou 1989; Parker & Doyle 2001),
thereby asking for both predictive accuracy and robust-
ness when the model is used to make decisions as part
of a formal algorithm such as model predictive control.
Unfortunately, performance and robustness are proper-
ties that must often be balanced (Skogestad &
Postlethwaite 1996), so it is important to involve clini-
cians when tuning algorithm response to achieve
clinically desired performance and robustness levels. To
address the theoretical challenges, in the context of the
variety of possible clinical case studies, is a challenge to
the theoretical and clinical participants of the transdisci-
plinary collaborations advancing systems medicine.

Funding for this work was provided by the National Institutes
of Health (USA)/NHLBI (grant no. R01-HL080926,
J. Kellum, PI).
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A. Zheng). Basel, Switzerland: Birkhäuser.

Quon, M. J., Cochran, C., Taylor, S. I. & Eastman, R. C. 1994
Non-insulin-mediated glucose disappearance in subjects
with IDDM. Discordance between experimental results
and minimal model analysis. Diabetes 43, 890–896.
(doi:10.2337/diabetes.43.7.890)

Ramkrishna, D. 2000 Population balances: theory and appli-
cations to particulate systems in engineering. San Diego,
CA: Academic Press.

Rathinam, M., Petzold, L. R., Cao, Y. & Gillespie, D. T. 2003
Stiffness in stochastic chemically reacting systems: the
implicit tau-leaping method. J. Chem. Phys. 119, 12
784–12 794.

Rawlings, J. B., Meadows, E. S. & Muske, K. R. 1994 Non-
linear model predictive control: a tutorial and survey. In
IFAC Symp. on Advanced Control of Chemical Processes,
Kyoto, Japan, pp. 203–214.

Remick, D. G. 2003 Cytokine therapeutics for the treatment
of sepsis: why has nothing worked? Curr. Pharm. Des. 9,
75–82. (doi:10.2174/1381612033392567)

Resource Facility for Population Kinetics. 2008 See http://
depts.washington.edu/rfpk/. (accessed 17 March 2008).

Reynolds, A. M. 2008 Mathematical models of acute inflam-
mation and a full lung model of gas exchange under
inflammatory stress. PhD thesis, Department of Math-
ematics, University of Pittsburgh, PA. See http://
etd.library.pitt.edu/ETD/available/etd-06032008-223454/
restricted/Reynolds_Angela_thesis_July_20.pdf.

Reynolds, A. M., Rubin, J., Clermont, G. & Ermentrout, B.
2006 A reduced mathematical model of the acute inflam-
matory response. I. Derivation of the model and analysis
of anti-inflammation. J. Theor. Biol. 242, 220–236.
(doi:10.1016/j.jtbi.2006.02.016)

Rivers, E., Nguyen, B., Havstad, S., Ressler, J., Muzzin, A.,
Knoblich, B., Peterson, E. & Tomlanovich, M. 2001
Early goal-directed therapy in the treatment of severe
sepsis and septic shock. N. Engl. J. Med. 345,
1368–1377. (doi:10.1056/NEJMoa010307)

http://dx.doi.org/doi:10.1097/01.CCM.0000065186.67848.3A
http://dx.doi.org/doi:10.1056/NEJMoa022139
http://dx.doi.org/doi:10.1016/0005-1098(92)90054-J
http://dx.doi.org/doi:10.1016/0005-1098(92)90054-J
http://dx.doi.org/doi:10.1111/j.1749-6632.2002.tb03118.x
http://dx.doi.org/doi:10.1111/j.1749-6632.2002.tb03118.x
http://dx.doi.org/doi:10.1016/j.jss.2005.11.581
http://dx.doi.org/doi:10.1002/aic.690390208
http://dx.doi.org/doi:10.1002/aic.690390208
http://dx.doi.org/doi:10.1016/S0169-2607(00)00071-7
http://dx.doi.org/doi:10.1016/S0169-2607(00)00071-7
http://dx.doi.org/doi:10.1098/rsif.2005.0077
http://dx.doi.org/doi:10.1097/CCM.0b013e31819df06b
http://dx.doi.org/doi:10.1016/S0169-409X(01)00114-4
http://dx.doi.org/doi:10.1109/10.740877
http://dx.doi.org/doi:10.1109/10.740877
http://dx.doi.org/doi:10.1002/aic.690461220
http://dx.doi.org/doi:10.1002/aic.690461220
http://dx.doi.org/doi:10.2337/diacare.29.02.06.dc05-1689
http://dx.doi.org/doi:10.1186/1742-4682-3-4
http://dx.doi.org/doi:10.1016/j.autrev.2006.12.003
http://dx.doi.org/doi:10.2337/diabetes.43.7.890
http://dx.doi.org/doi:10.2174/1381612033392567
http://depts.washington.edu/rfpk/
http://depts.washington.edu/rfpk/
http://depts.washington.edu/rfpk/
http://etd.library.pitt.edu/ETD/available/etd-06032008-223454/restricted/Reynolds_Angela_thesis_July_20.pdf
http://etd.library.pitt.edu/ETD/available/etd-06032008-223454/restricted/Reynolds_Angela_thesis_July_20.pdf
http://etd.library.pitt.edu/ETD/available/etd-06032008-223454/restricted/Reynolds_Angela_thesis_July_20.pdf
http://etd.library.pitt.edu/ETD/available/etd-06032008-223454/restricted/Reynolds_Angela_thesis_July_20.pdf
http://dx.doi.org/doi:10.1016/j.jtbi.2006.02.016
http://dx.doi.org/doi:10.1056/NEJMoa010307


Review. Systems engineering medicine R. S. Parker and G. Clermont 1013
Rivers, E. P., Kruse, J. A., Jacobsen, G., Shah, K., Loomba,
M., Otero, R. & Childs, E. W. 2007 The influence of
early hemodynamic optimization on biomarker patterns
of severe sepsis and septic shock. Crit. Care Med. 35,
2016–2024.

Roy, A. 2008 Dynamic modeling of free fatty acid, glucose,
and insulin during rest and exercise in insulin dependent
diabetes mellitus patients. PhD thesis, Department of
Chemical and Petroleum Engineering, University of
Pittsburgh, PA.

Roy, A. & Parker, R. S. 2006 Dynamic modeling of free fatty
acids, glucose, and insulin: An extended minimal model.
Diabetes Tech. Theraput. 8, 617–626. (doi:10.1089/dia.
2006.8.617)

Roy, A. & Parker, R. S. 2007 Dynamic modeling of exercise
effects on plasma glucose and insulin levels. J. Diabetes
Sci. Tech. 1, 338–347.

Salluh, J. I. & Bozza, P. T. 2008 Biomarkers of sepsis: lost in
translation? Crit. Care Med. 36, 2192–2194. (doi:10.1097/
CCM.0b013e31817c0cd8)

Sands, K. E. et al. 1997 Epidemiology of sepsis syndrome in 8
academic medical centers. Academic Medical Center
Consortium Sepsis Project Working Group. JAMA 278,
234–240. (doi:10.1001/jama.278.3.234)

Sappington, P. L., Yang, R., Yang, H., Tracey, K. J., Delude,
R. L. & Fink, M. P. 2002 Hmgb1 b box increases the per-
meability of caco-2 enterocytic monolayers and impairs
intestinal barrier function in mice. Gastroenterology 123,
790–802. (doi:10.1053/gast.2002.35391)

Sharshar, T., Leclerc, F. & Annane, D. 2006 Vasopressin
in sepsis: a world of complexity. Pediatr. Crit. Care
Med. 7, 281–282. (doi:10.1097/01.PCC.0000216439.
33312.F2)

Sheiner, L. B. & Beal, S. L. 1980 Evaluation of methods for
estimating population pharmacokinetic parameters.
I. Michaelis-Menten model: routine clinical pharmacoki-
netic data. J. Pharmacokinet. Biopharm. 8, 553–571.
(doi:10.1007/BF01060053)

Sheiner, L. B. & Ludden, T. M. 1992 Population pharmacoki-
netics/dynamics. Annu. Rev. Pharmacol. Toxicol. 32,
185–209.

Shuler, M. L. 1999 Single-cell models: promise and limitations.
J. Biotechnol. 71, 225–228. (doi:10.1016/S0168-1656(99)
00024-3)

Skogestad, S. & Postlethwaite, I. 1996 Multivariable feedback
control. New York, NY: John Wiley & Sons.

Sorensen, J. T. 1985 A physiologic model of glucose metab-
olism in man and its use to design and assess improved
insulin therapies for diabetes. PhD thesis, Department of
Chemical Engineering, MIT, MA.

Steil, G. M., Murray, J., Bergman, R. N. & Buchanan, T. A.
1994 Repeatability of insulin sensitivity and glucose effec-
tiveness from the minimal model—implications for study
design. Diabetes 43, 1365–1371. (doi:10.2337/diabetes.
43.11.1365)

Sweeney, D. A., Danner, R. L., Eichacker, P. Q. & Natanson, C.
2008 Once is not enough: clinical trials in sepsis. Intens. Care
Med. 34, 1955–1960. (doi:10.1007/s00134-008-1274-6)

Teorell, T. 1937a Kinetics of distribution of substances
administered to the body I. Arch. Int. Pharma. Ther. 57,
202–225.

Teorell, T. 1937b Kinetics of distribution of substances
administered to the body II. Arch. Int. Pharma. Ther.
57, 226–240.
J. R. Soc. Interface (2010)
US EPA. 1984 Office of Health and Environmental Assess-
ment by the International Life Sciences Institute.
Physiological parameter values for pbpk models.

Wada, D. R. & Ward, D. S. 1994 The hybrid model: a new
pharmacokinetic model for computer-controlled infusion
pumps. IEEE Trans. Biomed. Eng. 41, 134–142. (doi:10.
1109/10.284924)

Watson, D. et al. 2004 Cardiovascular effects of the nitric
oxide synthase inhibitor ng-methyl-l-arginine hydrochlo-
ride (546c88) in patients with septic shock: results of a
randomized, double-blind, placebo-controlled multicenter
study (study no. 144-002). Crit. Care Med. 32, 13–20.
(doi:10.1097/01.CCM.0000104209.07273.FC)

Watson, R. S., Carcillo, J. A., Linde-Zwirble, W. T.,
Clermont, G., Lidicker, J. & Angus, D. C. 2003 The epide-
miology of severe sepsis in children in the united states.
Am. J. Resp. Crit. Care Med. 167, 695–701. (doi:10.
1164/rccm.200207-682OC)

Waugh, J. & Perry, C. M. 2005 Anakinra: a review of its use in
the management of rheumatoid arthritis. BioDrugs 19,
189–202. (doi:10.2165/00063030-200519030-00005)

Weber, K. M., Martin, I. K., Best, J. D., Alford, F. P. &
Boston, R. C. 1989 Alternative method for minimal
model analysis of intravenous glucose tolerance data.
Am. J. Physiol. 256, E524–535.

Weissman, I. L. & Shizuru, J. A. 2008 The origins of the
identification and isolation of hematopoietic stem cells,
and their capability to induce donor-specific transplan-
tation tolerance and treat autoimmune diseases. Blood
112, 3543–3553. (doi:10.1182/blood-2008-08-078220)

Wolkenhauer, O., Ullah, M., Kolch, W. & Cho, K. H. 2004
Modeling and simulation of intracellular dynamics: choosing
an appropriate framework. IEEE Trans. Nanobioscience 3,
200–207. (doi:10.1109/TNB.2004.833694)

Wyss-Coray, T. 2006 Inflammation in Alzheimer disease: driv-
ing force, bystander or beneficial response? Nat. Med. 12,
1005–1015.

Yaffe, M. B. & Fink, M. P. 2000 Cellular signaling in critical
care–putting the pieces together. Crit. Care Med.
28(Suppl. 4), 1–2. (doi:10.1097/00003246-200004001-
00001)

Ye, X., Chu, J., Zhuang, Y. & Zhang, S. 2005 Multi-scale
methodology: a key to deciphering systems biology. Front
Biosci. 10, 961–965. (doi:10.2741/1590)

Yue, H., Brown, M., Knowles, J., Wang, H., Broomhead, D. S. &
Kell, D. B. 2006 Insights into the behavior of systems biology
models from dynamics sensitivity and identifiability analysis:
a case study of an NF-k B signalling pathway. Mol. Biosyst.
2, 640–649. (doi:10.1039/b609442b)

Zafiriou, E. & Chiou, H.-W. 1993 Output constraint softening
for SISO model predictive control. In Proc. American
Control Conf., San Francisco, CA, pp. 372–376.
Picataway, NJ: IEEE Press.

Zamamiri, A. M., Zhang, Y., Henson, M. A. & Hjortsø, M. A.
2002 Dynamics analysis of an age distribution model of
oscillating yeast cultures. Chem. Eng. Sci. 57,
2169–2181. (doi:10.1016/S0009-2509(02)00109-4)

Zenker, S., Rubin, J. & Clermont, G. 2007 From inverse pro-
blems in mathematical physiology to quantitative
differential diagnoses. PLoS Comput. Biol. 3, e204
(doi:10.1371/journal.pcbi.0030204).

Zurakowski, R. & Teel, A. R. 2006 A model predictive control
based scheduling method for HIV therapy. J. Theor. Biol.
238, 368–382. (doi:10.1016/j.jtbi.2005.05.004)

http://dx.doi.org/doi:10.1089/dia.2006.8.617
http://dx.doi.org/doi:10.1089/dia.2006.8.617
http://dx.doi.org/doi:10.1097/CCM.0b013e31817c0cd8
http://dx.doi.org/doi:10.1097/CCM.0b013e31817c0cd8
http://dx.doi.org/doi:10.1001/jama.278.3.234
http://dx.doi.org/doi:10.1053/gast.2002.35391
http://dx.doi.org/doi:10.1097/01.PCC.0000216439.33312.F2
http://dx.doi.org/doi:10.1097/01.PCC.0000216439.33312.F2
http://dx.doi.org/doi:10.1007/BF01060053
http://dx.doi.org/doi:10.1016/S0168-1656(99)00024-3
http://dx.doi.org/doi:10.1016/S0168-1656(99)00024-3
http://dx.doi.org/doi:10.2337/diabetes.43.11.1365
http://dx.doi.org/doi:10.2337/diabetes.43.11.1365
http://dx.doi.org/doi:10.1007/s00134-008-1274-6
http://dx.doi.org/doi:10.1109/10.284924
http://dx.doi.org/doi:10.1109/10.284924
http://dx.doi.org/doi:10.1097/01.CCM.0000104209.07273.FC
http://dx.doi.org/doi:10.1164/rccm.200207-682OC
http://dx.doi.org/doi:10.1164/rccm.200207-682OC
http://dx.doi.org/doi:10.2165/00063030-200519030-00005
http://dx.doi.org/doi:10.1182/blood-2008-08-078220
http://dx.doi.org/doi:10.1109/TNB.2004.833694
http://dx.doi.org/doi:10.1097/00003246-200004001-00001
http://dx.doi.org/doi:10.1097/00003246-200004001-00001
http://dx.doi.org/doi:10.2741/1590
http://dx.doi.org/doi:10.1039/b609442b
http://dx.doi.org/doi:10.1016/S0009-2509(02)00109-4
http://dx.doi.org/doi:10.1371/journal.pcbi.0030204
http://dx.doi.org/doi:10.1016/j.jtbi.2005.05.004

	Systems engineering medicine: engineering the inflammation response to infectious and traumatic challenges
	Inflammation primer
	Treating sepsis
	Clinical successes
	Clinical failures
	The future

	Models for decision support
	Modelling tools
	Phenomenological models
	Stochastic modelling
	Populations, individuals and cells,  and back again
	Rules-based models
	Physiological modelling

	Decision support tools
	Optimization and optimal control
	Receding horizon control
	Mixed-integer programming

	Issues in modelling biological processes
	Variability, uncertainty, similarities and differences
	Stochasticity and randomness
	Collaboration between experimentalists and theoreticians

	A case study in inflammation
	Low-order approximants
	A case study in therapeutics: blood purification for sepsis

	Discussion
	Key clinical needs and barriers to adoption of methodology
	On translating animal results, which are not human, to humans
	Systems medicine: how systems approaches drive advances in clinical practice

	Funding for this work was provided by the National Institutes of Health (USA)/NHLBI (grant no. R01-HL080926, J. Kellum, PI).
	References




