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Immune checkpoint blockade (ICB) unleashes immune cells to attack tumors, thereby inducing durable clinical
responses in many cancer types. The number of patients responding to ICB is modest, however, and combination
treatments are likely needed to overcome the multifaceted suppressive pathways active in the tumor
microenvironment (TME). The development of precision immuno-oncology (IO) strategies allowing to identify the
optimal treatment of each patient upfront is therefore a pivotal question in the field of cancer immunotherapy.
Although single-parameter biomarkers can enrich for response to ICB, their predictive capacity is far from perfect
and their clinical utility is complicated by their continuous nature and the difficulty to determine cut-offs that
reliably distinguish responding patients from those without clinical benefit. The antitumor immune response that is
induced or reinvigorated by immunotherapy is a complex cascade of events requiring the interplay of multiple cell
types. To move towards precision IO, it is therefore essential to understand for each individual patient at which
level(s) the antitumor immune response failed and how it can be therapeutically restored. Holistic approaches to
profile human tumor microenvironments and treatment-induced responses may help to identify critical rate-limiting
factors of antitumor immunity. These factors need to be translated into clinically applicable multimodal predictors
that allow for the selection of the best IO treatment. This review discusses strategies to (i) create such holistic
views of antitumor immunity, (ii) identify measurable parameters capturing the complexity of a patient’s immune
status, and (iii) facilitate the incorporation of precision IO research in the clinic.
Key words: cancer immunotherapy, biomarkers, personalized cancer therapy, immune checkpoint inhibition, ex vivo
tumor models, precision oncology
INTRODUCTION

Cancer immunotherapy, particularly immune checkpoint
blockade (ICB), has revolutionized the treatment landscape
for many cancer types.1 By blocking the interaction be-
tween inhibitory receptors such as programmed cell death
protein 1 (PD-1), cytotoxic T lymphocyte-associated protein
4 (CTLA-4), and their ligands, tumor-specific T cells can be
reinvigorated to mediate tumor regression.2,3 Although
some clinical responses are long-lasting, response rates
overall remain modest. To elicit the full potential of
immunotherapy, alternative and/or combination treatments
are required to overcome the multitude of primary and
secondary resistance mechanisms. Hence, strategies to
develop precision immuno-oncology (IO) treatments as well
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as to preselect patients for current therapies, but also for
future personalized treatments, are urgently needed.

Although many biomarkers have been selected based on
a solid biological rationale, they often show limited or no
predictive potential in informing treatment decisions.4 His-
torically, biomarkers were developed by assessing tumor
cell characteristics such as molecular features or pathways
relevant for the treatment. Translation of this approach to
ICB has proven challenging, as this treatment does not
directly target cancer cells, but rather is aimed at restoring
the defective antitumor immune response. As this response
can fail at manifold levels, it is likely that one single
biomarker is not sufficient to capture the reason of failure
across patients. By the same token, it is conceivable that to
successfully restore antitumor immunity in each patient,
individual immunotherapy strategies are necessary. This
review will focus on the development of precision IO ap-
proaches discussing (i) strategies to identify multimodal
biomarkers providing a holistic reflection of the patient’s
antitumor immune response, (ii) (pre)clinical approaches to
identify precision IO biomarkers and treatment strategies,
and (iii) opportunities and challenges for precision IO
research.
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SINGLE PARAMETER IO BIOMARKERS

The first parameter that has been assessed for its value to
predict response to PD-1/programmed death-ligand 1 (PD-L1)
blockade is PD-L1 due to its critical role in this inhibitory
pathway. In addition, PD-L1 expression was suggested to
mirror the activity of tumor-specific T cells due to its adaptive
expression following interferon-g (IFN-g) in most cell types.1,5

Both cancer cells and immune cells express PD-L1, and while
expression on both cell types was associated with objective
response,6,7 the clinical relevance of these expression patterns
remains to be determined. Numerous clinical studies assessing
PD-L1 as a biomarker have shown that clinical responses are
enriched in patients with PD-L1-high tumors,8,9 but also
demonstrated that some patients with PD-L1-low tumors
benefit from ICB and vice versa.2,10,11 In addition, genomic
aberrations at the PD-L1 locus on chromosome 9p24.1 have
been found to result in increased PD-L1 expression in several
cancer types, such as Hodgkin’s lymphoma, mediastinal large
B-cell lymphoma, and in both non-small-cell lung cancer
(NSCLC) and small-cell lung cancer.12 Importantly, Hodgkin’s
lymphomas, which harbor PD-L1 locus alterations in up to
97%, show particularly high response rates to PD-1
blockade.13-16 In some cancer types, as for instance pancre-
atic and hepatocellular cancer, epigenetic regulation of PD-L1
expression has also been reported, though its impact on clin-
ical response has not yet been explored.17,18

A second parameter that was associated with clinical
benefit upon ICB is the number of mutations in the tumor
exome, i.e. the tumor mutational burden (TMB).19-21 This
observation was supported by the finding that a subgroup
of TMB-high tumors, characterized by mismatch repair
deficiency or microsatellite instability, shows high response
rates to ICB.22,23 Somatic mutations in the tumor can give
rise to so-called neoantigens, which are specific to the tu-
mor and can be recognized by tumor-killing T cells. Hence, a
high TMB should increase the likelihood of the cancer cells
being eradicated by T cells.24 As observed for PD-L1, how-
ever, some tumor types with high TMB are not responsive
to ICB or, vice versa, tumor types with low TMB have better
response rates than would be predicted based on the
number of mutations.19,21,25,26

A third parameter showing predictive value for ICB
response is the presence of tumor infiltrating lymphocytes
(TILs). The prognostic value of tumor immune infiltration
has been demonstrated in many cancer types.27-29 The first
standardized approach to measure the immune infiltrate in
colorectal cancers (CRCs) was reported by the ‘immuno-
score’, which quantified the density of CD8þ and memory T
cells.29 Whereas the value of the immunoscore for pre-
dicting response upon ICB is still under evaluation,30 the
importance of TIL infiltration for ICB response has been
demonstrated in many studies.31-34 Nevertheless, immune
infiltration is no guarantee for response to ICB and may
further depend on the type, state, and activity of the infil-
trating immune cells.35,36

One critical challenge to fully exploit the above discussed
biomarkers for ICB is presented by the continuous nature of
2 https://doi.org/10.1016/j.iotech.2022.100071
these parameters. Thus, consistent and harmonized ap-
proaches for assessment and the definition of cut-offs for
each biomarker are needed, such as for example proposed
for the assessment of TILs37-39 or for the standardized
quantification of PD-L1 by digital pathology approaches.40

Furthermore, to improve the predictive value of these
biomarkers, it might be beneficial to apply them in combi-
nation, as for example demonstrated by a number of
studies that showed better identification of ICB responders
by various combinations of TILs, PD-L1, and/or TMB as
compared with each marker alone.20,31,41,42 Next to efforts
that aim at a better detection of ICB responders, strategies
to upfront identify patients without benefit to ICB and in
need for alternative or combination therapies should also
be developed. Such combination therapies may include
both IO-IO combinations (e.g. anti-PD-1 and/or anti-CTLA-4
combined with other immunotherapeutics) or IO drugs in
combination with antiangiogenics or chemotherapies.
Importantly, biomarkers for response to ICB monotherapy
may not necessarily be predictive for combination treat-
ments and need therefore to be assessed separately. As an
ultimate goal, the field should aspire to personalize cancer
immunotherapy, meaning that a set of specific biomarkers
can be tested for each individual patient that identifies the
best treatment (combination) from a selection of potential
therapeutic options. To achieve this, multimodal predictors
are required that capture the complexity of the (thera-
peutically) induced or reinvigorated antitumor immune
response.

HOLISTIC ASSESSMENT OF ANTITUMOR IMMUNE
PROFILES

An antitumor immune response that ultimately leads to the
effective elimination of cancer cells consists of a series of
stepwise events that need to be initiated, sustained, and
expanded in the tumor. This process has been described as
the cancer immunity cycle.43 As this process is absent or
dysfunctional in cancer patients, immunotherapy aims at
initiating or restoring the cancer immunity cycle. Tumors
harbor a plethora of cellular components, however, which
influence the distinct steps in the cancer immunity cycle via
stimulatory and suppressive signals and differ between
cancer types and patients. Therefore, it is crucial to gain a
broad understanding of the complex set of cancer cell-
intrinsic, immune, and stromal characteristics that modu-
late the antitumor immune response in the context of
immunotherapy. In addition to factors derived from the
tumor microenvironment (TME), it is important to be aware
that factors related to host immunity such as germline ge-
netics, microbiome, environmental exposure, pharmaco-
logical agents, or systemic inflammation may also
impact a patient’s immune profile, and thereby antitumor
immunity.35

Over the past years, the idea to create a holistic view of
the antitumor immune status in each individual cancer
patient has been proposed within the frameworks of the
cancer-immune set point35 and the cancer immunogram.44
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Both concepts suggest appraising an individual cancer pa-
tient’s immune profile by assessing multiple biological pa-
rameters that reflect rate-limiting elements of antitumor
immunity. These elements have been deployed by the
cancer-immune set point to evaluate the balance between
factors that stimulate or inhibit antitumor immunity.35 The
set point thereby reflects the threshold that must be
exceeded for a cancer patient to respond to immuno-
therapy. Key factors that were proposed to be integrated
within the cancer-immune set point relate to the cancer
immunity cycle and reflect the impact of cancer-intrinsic
properties, therapeutic agents, environmental factors,
microbiome, and host genetics. By the same token, to
profile antitumor immunity, the cancer immunogram pro-
posed seven groups of parameters reflecting the immuno-
genicity of the tumor and the capability of the immune
system to reject the tumor.44 More specifically, these groups
relate to tumor foreignness, tumor sensitivity to immune
effectors, absence of inhibitory tumor metabolism, general
immune status, absence of soluble mediators, absence of
checkpoints, and immune cell infiltration. Analysis of mul-
tiple parameters for each group may help to estimate the
overall state of the antitumor immune response and the
most likely reason for its failure in each individual patient.

The frameworks of the cancer-immunity set point and
cancer immunogram have been recently employed to
create a ‘tumor personality test’ to guide treatment de-
cisions.45,46 Bagaev et al.46 used 29 functional gene signa-
tures representing key properties such as oncogenic
signaling, angiogenesis, immunosuppression, and prolifera-
tion for the TME classification of >10 000 cancer patients.
The obtained information was coalesced into a more
simplistic discrimination of four TME subtypes with
conserved relationships between immune and stroma ac-
tivity across 20 cancer types. Importantly, these TME sub-
types were prognostic and predictive of immunotherapy
response. These observations were translated into a visu-
alization tool integrating genomic and microenvironmental
profiling that, though further prospective validation is
required, may reflect a first step towards the development
of more nuanced biomarkers.

Collectively, the above-described concepts all share the
idea of harnessing multiple parameters that allow decon-
volution and organization of the torrent of stimulatory and
inhibitory signals present in the tumor and/or host to pre-
dict immunotherapy response. The challenge remains,
however, to find measurable parameters that can provide a
comprehensive overview of the immune status for each
patient and be translated into a set of clinically applicable
biomarkers. To achieve this goal, it is essential to under-
stand for each individual patient which element(s) of the
antitumor response is/are defective, and how these ele-
ments can specifically be ‘repaired’. To this end, technical
approaches are required that allow in-depth profiling of
human TMEs as well as obtaining information on the
mechanisms underpinning response or resistance in (pre)
clinical model systems (Figure 1).
Volume 14 - Issue C - 2022
TECHNOLOGIES TO IDENTIFY KEY ELEMENTS OF
ANTITUMOR IMMUNITY

The human TME is a complex ecosystem harboring cancer,
immune, and stromal cell populations that acquire various
cell states. Thus, approaches are required that can provide
broad and ideally unbiased information on the presence,
state, and function of these cells in the TME both during
steady-state and upon treatment with immunotherapy.
Such approaches may include gene expression analyses,
single-cell technologies, multiplex imaging approaches, and
preclinical in vivo and ex vivo models.

To capture the broader state of the TME, tumor tran-
scriptomes have been assessed for predicting ICB respon-
siveness using a set of selected genes. Thereby, independent
computational predictors based on gene expression profiles
(GEPs) relating to tumor inflammation,47 immune checkpoint
expression,48 cytolytic T cell activity,49,50 or T-cell dysfunction
and exclusion (TIDE51) have been evaluated in specific clinical
cohorts treated with ICB. In addition, GEPs associated with
ICB resistance including transcriptional signatures related to
innate anti-PD-1 resistance,52 and T-cell exclusion and im-
mune evasion53 have been established. While most of these
studies have been limited to a few small patient cohorts,
efforts are being undertaken to harmonize data frommultiple
trials to find new features that predict response or resistance
across cancer types. For instance, the TIDE signature, which
combines factors underlying the two mechanisms of T-cell
dysfunction and exclusion, has integrated and modeled data
from 189 human cancer studies with 33 197 samples.51 More
recently, Litchfield and colleagues54 carried out a pan-cancer
meta-analysis on 1008 ICB-treated patients from 12 individ-
ual cohorts. Importantly, the developed 11-parameter pre-
dictor was derived from both transcriptomic and whole-
exome data and carried out significantly better than TMB
alone to identify ICB responders across cancer types.

While the predictive value of tumor immune infiltrates
has clearly been demonstrated, not only the presence, but
also the state of tumor-infiltrating immune cells may be
exploited to predict response to ICB. Single-cell technolo-
gies such as single-cell RNA sequencing (scRNAseq) and
cytometry by time-of-flight have been employed to assess
cell states of tumor-infiltrating immune cells. As the crucial
role of T cells in immunotherapy response is well estab-
lished, most efforts have so far focused on dissecting the
intratumoral T-cell pool.55-60 These studies have revealed
that tumor-infiltrating T cells can acquire a wide range of
cell states.61 Of note, the dysfunctional CD8þ T-cell
pool has been found to contain a spectrum of cell
states ranging from a predysfunctional, stem-like state to
late-dysfunctional cells. A number of studies have demon-
strated that the predysfunctional CD8þ T-cell subset,
characterized by expression of the transcription factor Tcf1,
is essential for durable response to ICB in tumor-bearing
mice.57-59 TCF1þ T cells have also been identified in the
blood and tumors of human melanoma patients,57 and have
been associated with response to anti-PD-1 in two inde-
pendent human melanoma cohorts.60 In contrast to the
https://doi.org/10.1016/j.iotech.2022.100071 3
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Figure 1. Development of multimodal predictors and personalized immunotherapies by holistic assessment of antitumor immunity.
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predysfunctional TCF1þ T cells, late-dysfunctional T cells
lose their proliferative capacity, display high expression of
inhibitory receptors such as PD-1, CTLA-4, and TIM-3, and
secrete CXCL13. Moreover, they show increased capacity for
tumor recognition.10,56,62,63 CD8þ T cells expressing high
levels of PD-1 or of both PD-1 and CTLA-4 were found to be
predictive for anti-PD-1 response in NSCLC and mela-
noma.2,62 Recently, the potential of such late-dysfunctional
T cells, termed PD-1T TILs, to predict immunological
response to PD-1 blockade has been demonstrated for a
range of cancer types.36 Collectively, these data highlight
the potential of certain T cell states as biomarkers for anti-
PD-1 response. In addition, technical approaches that
directly ‘measure’ the tumor recognition potential of T cells,
both in the TME and the blood, may be of great interest,
particularly as it has been shown that only a modest per-
centage of intratumoral T cells recognize tumor
antigens.64,65

More comprehensive profiling of tumor immune in-
filtrates has revealed that in addition to T cells, also the
presence of B cells has predictive value in a number of
tumor types including melanoma, renal cell carcinoma, and
sarcoma.66-68 Notably, intratumoral B cells frequently reside
within tertiary lymphoid structures (TLS), which have also
been associated with ICB response (see below). In addition,
recent data from murine models suggest that PD-1 blockade
may exert a major effect via myeloid cells, as based on
experiments where PD-1 expression is selectively absent on
these cells.69 To date, however, it is not clear whether this
observation can be translated to patients and whether the
presence of certain myeloid cell states has predictive po-
tential for ICB.

Next to the state of immune cells, also the localization
and organization of the immune infiltrate within a tumor
seems to be of importance for its capability to respond to
immunotherapy. For instance, by subdividing T cells based
on their location in the tumor, CD8þ T-cell infiltration in the
tumor core and at the invasive margin was found to be
predictive for response to PD-1 blockade in melanoma.32 In
addition, the proximity of CD8þ T cells and tumor cells, and
of PD-1þ and PD-L1þ cells, respectively, has been associ-
ated with response.32,70 Newer technologies such as high-
dimensional imaging of tumor tissue by imaging mass
cytometry (IMC),71 multiplexed ion beam imaging by time
of flight72 or co-detection by indexing (CODEX)73 are being
used to spatially map TMEs and identify more complex
patterns of immune infiltrates in tumors. Such approaches
have identified two types of spatial immune infiltration
patterns, so-called mixed versus compartmentalized in-
filtrates, that relate to distinct clinical outcomes in breast
cancer and head and neck squamous cell carcinoma.72,74

Hoch et al.75 employed IMC with combined RNA and pro-
tein co-staining to identify heterogeneous chemokine
To deconvolute and organize the wide spectrum of elements impacting on antitumor
omic technologies and preclinical models should allow to obtain a broad overview of
then translated into a clinically applicable multimodal predictor reflecting each patient
identify personalized immunotherapy treatment of each patient (bottom).
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patches in human melanoma that sculpted the local im-
mune infiltration landscape. A recent study in CRC pursued
the same idea, namely to profile specialized immune niches
instead of quantifying cell types or cell states within a tu-
mor.76 Using CODEX, nine distinct cellular neighborhoods
were identified that related to different specialized tumor
areas. Importantly, the study could demonstrate that the
prognostic value of specific cell types depended on the
neighborhood and was not observed when the overall fre-
quency of the same cell type was analyzed. Whereas it is
conceivable that the organization and context of the cellular
neighborhood may also influence the capacity of immune
cells to be reactivated by immunotherapy, this question
needs to be addressed in future studies.

One specific type of immune niche that has recently
gained attention is formed by TLS.77,78 TLS arise in the
context of chronic tissue inflammation and are organized
immune cell clusters harboring specialized cellular compo-
nents. Characteristically, they consist of an inner zone with
B cells surrounded by T cells, similar to the lymph follicles in
secondary lymphoid organs. Importantly, the formation of
TLS in tumors has been associated with better prognosis
and response to ICB in a number of cancer types.66-68 In
addition to the predictive value of the baseline presence of
TLS in a tumor, it has been shown that ICB increases the
number and size of TLS in humans and mice.67,79 It is still
unclear, however, whether TLS are induced as a bystander
phenomenon of an ongoing antitumor response or whether
they actively contribute to tumor control and immuno-
therapy response.

Taken together, the above observations suggest that the
integration of multi-omic analyses of human TMEs may
leverage the identification of multimodal predictors of
immunotherapy response. In addition, to assess potential
biomarkers at the level of cell types or cell states, special-
ized immune niches may also be exploited both for
response prediction and for the development of personal-
ized treatments. It is conceivable that the context of such
local infiltrates may alter the relevance and particularly the
function of a cell state in a tumor. Thus, to fully understand
how this coordinated behavior of immune infiltrates me-
diates tumor control and how it can be initiated or boosted
by immunotherapies, it is vital to develop preclinical tumor
models that can recapitulate the nuanced interactions be-
tween TME components and capture the dynamics of the
treatment response at a patient-specific level.
PRECLINICAL MODELING OF IMMUNOTHERAPY
RESPONSES

Preclinical models, such as two-dimensional (2D) and 3D
in vitro cultures and animal models, are extensively used to
study drug responses and to identify the mechanisms
immunity, a holistic approach may be employed. Combination of different multi-
rate-limiting elements of the antitumor immune response (top). These data are

’s individual cancer immune profile (middle). Ultimately, this predictor will allow to
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underlying those responses. The large majority of these
models has been established from a cancer cell-centric view,
however, and are therefore often not optimally suited to
study the perturbation of cancer-immune-stroma in-
teractions by immunotherapies. Particularly, the mainte-
nance of immune and stromal compartments poses a
substantial challenge in many models, which the field has
started to address.80

Mouse tumor models have provided translational utility
over many years and have greatly improved our under-
standing of antitumor immunity. Different types of mouse
models, including syngeneic models, genetically engineered
mouse models (GEMMs) and patient-derived xenograft
(PDX) models, have been exploited for this purpose.
Immunocompetent syngeneic models are most frequently
used to study responses upon ICB as they are low cost and
relatively straightforward to use. Importantly, whereas
some immunological mechanisms are conserved between
mice and humans, as for instance the expression and role of
immune checkpoints, critical differences in other compo-
nents of the immune system, such as myeloid cells exist
which causes species-specificdand sometimes model-
specificdinteractions between cancer and immune cells.81

To reflect a more physiological tumor growth, mice have
been genetically engineered with oncogenic drivers for
different cancer types. Whereas these GEMMs have been
essential to improve our understanding of the genetic al-
terations that underlie cancer development and progres-
sion, the response rates of these models to ICB have so far
been modest. The lack of substantial antitumor immune
responses may be accounted for by the low mutation rate
and neoantigen burden that many GEMMs exhibit.80 To
overcome this limitation, tumors in GEMMs have been
programmed to express de novo neoepitopes, as for
instance in the NINJA mouse model.82 To better capture the
intertumor and intratumor heterogeneity of human can-
cers, PDX models, in which pieces of patient tumors are
grown in immunodeficient mice, have been created. While
these models accurately predict response to targeted
therapies,83-85 one important limitation of PDX models for
immunotherapy is the replacement of the human tumor
stroma by the one of the mouse, which leads to the loss of
tumor-stroma interactions due to mismatched mouse and
human ligands and receptors.86 Using a PDX model that was
humanized by transfer of CD34þ human umbilical blood
stem cells, distinct responses to PD-1 blockade in micro-
satellite instable and stable CRC PDXs could, however, be
observed.87 Other models, such as MITRG and MISTRG mice
express several human cytokines, which lead to the devel-
opment of human natural killer cells, macrophages, and
monocytes from engrafted CD34þ hematopoietic stem
cells, but still lack functional mature human lymphocytes.88

While the development of mouse models with a humanized
adaptive immune system is challenging,89,90 such models
may greatly improve the use of PDXs for immune-oncology
and specifically immunotherapy biomarker research.

To complement murine studies, analyses of sequential
tumor biopsies have been used to monitor treatment-
6 https://doi.org/10.1016/j.iotech.2022.100071
induced changes in human tumors. Comparison of pre-
and on-treatment biopsies of melanoma patients
undergoing anti-PD-1 treatment revealed that responding
tumors showed more pronounced increases in different
immune cell populations and induction of gene programs
related to immune activation.91 Similar observations have
been made in other studies using different technical ap-
proaches to compare longitudinal tumor samples from pa-
tients receiving either anti-PD-1 monotherapy or combined
PD-1 and CTLA-4 blockade. Accordingly, the induction of a
downstream IFN-g -cell clones have been observed in
responding patients.67,92-94 As in most of these studies the
on-treatment samples were collected a few weeks to
months after treatment start, however, they have limited
utility to study early dynamics of the induced response. A
recent study in advanced melanoma showed that already
after one cycle of neoadjuvant anti-PD-1 treatment, 30% of
patients had a complete or major pathological response,
underscoring the importance of early changes in intra-
tumoral immune reactivation.95 Thus, patient-derived
ex vivo tumor systems could bridge the gap between
mouse models and human samples to shed light on the
early dynamics of immunotherapy-induced immune
responses.

The development of technologies to culture or grow in-
dividual human tumors in 3D cultures such as patient-
derived organoids (PDOs) or patient-derived explants
(PDEs) has created new tools to boost precision medicine.
Particularly, PDOs are now widely being used for drug
screening purposes.96 PDOs are multicellular organotypic
structures that recapitulate the features as well as the
behavior of the original tumor tissue.97-99 PDOs can be
established both from stem cells and from cancer biopsies,
and can be expanded, passaged, and cryopreserved for
further use.100-103 The value of PDOs to test the sensitivity
of individual tumors to chemotherapy and targeted drugs
has been reported in a number of cancer types.104-107 PDOs
typically contain only cancer cells, however, and are
therefore not suited to test immunotherapeutic drugs. To
overcome this limitation, two different approaches have
been exploited: systems that reconstitute PDOs with im-
mune and/or stromal cells, and ‘en bloc’ PDO and PDE
models that preserve all intratumoral cellular
compartments.108

In reconstituted PDO systems, tumor organoids are co-
cultured with exogenously added immune components,
often autologous peripheral blood lymphocytes. Such
reconstituted cultures treated with PD-1 blockade have, for
instance, been successfully used to generate tumor-reactive
CD8þ and CD4þ T cells in CRC.109 The co-culture of PDOs
with distinct immune and stromal cell subsets could help to
better understand the role of specific TME components and
their interaction with cancer cells for antitumor immunity.
The addition of single or a few selected immune cell pop-
ulations may not, however, be sufficient to capture the
complexity of the TME and its response to immunotherapy.
As an alternative approach, several methods to culture the
TME ‘en bloc’ and preserve immune, stromal, and cancer
Volume 14 - Issue C - 2022
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Table 1. Comparison of human ‘en bloc’ patient-derived organoid/patient-derived explant models

Model Patient-derived organotypic
tumor spheroids

Air-liquid interface
patient-derived
organoids

Ex vivo organ culture Patient-derived tumor
fragments

Culture type Submerged in collagen
matrix with microfluidics

Air-liquid interface Submerged in medium Submerged in collagen-
Matrigel matrix

Tissue fragmentation Mincing, filtration (100 mM
and 40 mM filters)

Mincing Manual dissection,
followed by mechanical
and enzymatical
dissociation, filtration
(450 mm filter)

Manual dissection

Size 40-100 mm 40-100 mm 30-450 mm 1-2 mm
Culture time 6 days >1 month 5 days 2 days
Medium supplements NA 50% Wnt3a, RSPO1,

Noggin, nicotinamide,
N-acetylcysteine, B-27
without vitamin A,
A83-01, gastrin,
SB-202190, EGF

Transferrin-insulin-
selenium mix,
amphotericin, gentamycin,
non-essential amino acids

Non-essential amino acids,
sodium pyruvate

Maintenance of cancer
morphology

Yes Yes Yes NA

Maintenance of immune
infiltrate

Yes Yes Yes Yes

Maintenance of immune
organization

NA NA NA Yes

Type of ICB tested Anti-PD-1, anti-CTLA-4,
anti-PD-1 þ anti-CTLA-4

Anti-PD-1 Anti-PD-L1, anti-PD-L1
þ anti-CTLA-4

Anti-PD-1

Characterization of ICB
response

Broad cytokine and
chemokine profiling
RNAseq

RT-PCR (IFN-g, granzyme B,
perforin)

RT-PCR (IFN-g), IHC (granzyme B) Broad cytokine and
chemokine profiling
Flow cytometry

Perturbation NA NA NA Inhibition of TCR signaling
and IFN-g signaling

CTLA-4, cytotoxic T lymphocyte-associated protein 4; ICB, immune checkpoint blockade; IFN, interferon; NA, no data available; PD-1, programmed cell death protein 1; PD-L1,
programmed death-ligand 1; RNAseq, RNA sequencing; TCR, T-cell receptor.
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cell populations ex vivo have been established. Using a
microfluidic setup, patient-derived organotypic tumor
spheroids showed induction of chemokine secretion upon
ex vivo ICB.110 Air-liquid-interface PDOs obtained from
different cancer types responded to ex vivo PD-1 blockade
by induction of IFN-g.111 Similar observations have been
made following anti-PD-L1 treatment in an ex vivo organ
culture system that used fragmented tumor clusters derived
from NSCLC specimens.112 Using a PDE model of patient-
derived tumor fragments, it was demonstrated that
immunological responses captured by T-cell activation as
well as the secretion of multiple cytokines and chemokines
by the TME can predict clinical responses to PD-1
blockade.36 Notably, combination of ex vivo cultures with
the analysis of baseline tumor properties allowed to
distinguish distinct TME subgroups across cancer types that
were associated with either response or resistance to PD-1
blockade and to identify predictive markers such as
TLS.36,112

Whereas the conceptual idea behind all these ex vivo
systems is similar, they differ in a number of factors
including tissue size, addition of growth factors and sup-
plements, culture time, and preservation of immune ar-
chitecture, which need to be considered when choosing a
model (Table 1). Importantly, it has been demonstrated
that, similar to mouse models, ex vivo models can be used
to perturb immunotherapy responses, for instance by
inhibiting T-cell receptor or IFN-g signaling, thereby allow-
ing to identify critical cellular components or signaling
Volume 14 - Issue C - 2022
pathways that underlie those treatment-induced re-
sponses.36 Whereas so far, mostly changes in cytokine and
chemokine secretion, expression of cytotoxic genes, or flow
cytometry-based detection of T-cell activation markers have
been assessed to measure ICB responses ex vivo, PDOs and
PDEs may be combined with multiple endpoint analyses
including scRNAseq or high-dimensional imaging, thereby
providing insights into local immunotherapy responses at
single-cell resolution. In case sufficient material can be
obtained, multiple treatments can be tested in the same
tumor, offering the possibility to directly compare the
therapeutic efficacy of different mono- or combination
therapies. There are a number of challenges for ex vivo
models that need to be addressed in future research. For
instance, the lack of self-renewal of ‘en bloc’ ex vivo cultures
makes them dependent on the amount of available patient
material, which is often difficult to obtain. Therefore, large
biobanks with viable tumor material need to be established
(see below). Another problem is caused by the lack of
systemic immunity in current models which limits studies to
the intratumoral immune response. Thus, efforts aiming at
modeling immune cell recruitment to PDOs/PDEs will be of
great value. While genome editing has successfully been
employed in tumor-only organoids,113,114 the application of
functional genetic screens particularly in ‘en bloc’ models
has not yet been reported, but would be of value to
examine the effect of specific genes on the antitumor im-
mune response. Taken together, patient-derived ex vivo
models which recapitulate treatment responses observed in
https://doi.org/10.1016/j.iotech.2022.100071 7
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Figure 2. Challenges for precision immuno-oncology research.
The identification of precision biomarkers and personalized treatments comes with a number of opportunities and challenges. These include (i) dedicated infrastructure
and personnel to establish a robust and efficient pipeline for patient material collection and processing, (ii) the creation of data repositories for the establishment of
large, well-structured, harmonized, and clinically annotated datasets, (iii) exploitation of synergies between distinct preclinical model systems matched for individual
patients, and (iv) integrating personalized treatment approaches into the design of clinical studies.
PDE, patient-derived explant; PDO, patient-derived organoid; PDX, patient-derived xenograft.
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patients can complement preclinical in vivo models and
analyses of longitudinal patient samples, and are a powerful
tool to support precision IO approaches.
OPPORTUNITIES AND CHALLENGES FOR PRECISION IO
RESEARCH

To support the development of holistic predictors that allow
to fully personalize immunotherapy treatment, a number of
challenges need to be addressed by the field (Figure 2). For
instance, the assessment of clinical specimens is a pivotal
requirement to understand interpatient heterogeneity and
to tailor the best treatment to each individual patient. To
this end, large sample numbers are needed that allow to
discriminate specific signals from the noise caused by het-
erogeneity. The collection of patient samples is particularly
challenging for viable tumor tissue and requires sufficient
infrastructure as well as a multidisciplinary team of oncol-
ogists, surgeons, pathologists, and researchers to establish a
robust pipeline that ensures good material quality.

A second challenge is presented by the massive increase
in data resulting from the numerous clinical and preclinical
biomarker studies. Data-driven approaches such as artificial
intelligence, machine learning, and predictive modeling are
powerful tools for precision biomarker research. Such ap-
proaches are currently widely exploited for identification of
image-based biomarkers using radiomics-115,116 or digital
pathology-based approaches.117,118 Likewise, the use of
8 https://doi.org/10.1016/j.iotech.2022.100071
machine learning applications for investigating fundamental
biological processes has been described119 and may there-
fore also provide a powerful tool for deconvoluting high-
dimensional genomic or proteomic data aimed at
biomarker discovery. Datasets that are large enough and
sufficiently clinically annotated for this purpose are, how-
ever, currently limited. Therefore, the creation of data re-
positories providing access to large, well-structured, and
fully annotated datasets is of critical importance. Compu-
tational approaches to standardize, integrate, and harmo-
nize data from different immunotherapy trials may help to
create such large datasets.51,54 As an example of such an
effort, the Cancer Immune Monitoring and Analysis Centers
and Cancer Immunologic Data Commons (CIMAC-CIDC)
Network was established in 2017. This network consisting of
four academic centers is aimed at facilitating biomarker
identification, integration, and comparability by performing
comprehensive tumor immunoprofiling with validated and
harmonized assays across different centers.120 All data are
integrated and collected in a large database for biomarker
analysis, and assay protocols are published for future use
by the larger community. Similarly, data obtained from
multi-omic and spatial technologies, using distinct file for-
mats and metadata, need to be collected in databases and
standardized. Novel computational approaches to exploit
these large datasets are required and may be inspired by
other disciplines, as for instance recently demonstrated by
the implementation of streamlined multispectral imaging
Volume 14 - Issue C - 2022
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protocols developed in astroscience for multiplex immu-
nofluorescence TME analyses.121

While preclinical models are essential to understand the
dynamics of immunotherapy responses and to link them to
features of the TME, no single model can fully capture the
complexity of the human tumor landscape and the het-
erogeneity between cancer types and individual patients.
Thus, it is important to understand the specific strengths
and limitations of each model system and to combine them
if possible. Particularly, the setup of matched in vivo and
ex vivo platforms, for instance by creating PDX and PDO/
PDE from the same tumor, may be synergistic and
strengthen the specificity of findings when consistently
observed across different models.11 In addition, as mouse
models usually lack the heterogeneity that is observed in
human tumors, efforts that leverage a set of distinct mouse
models reflecting different subtypes of human disease
could improve the translation of observations from mice to
patients. Such an effort has recently been reported in a
study where a set of GEM melanoma models representative
for a variety of human melanoma subtypes showed diverse
responsiveness to ICB in line with clinical observations.122

Thus, the development of such murine tumor model co-
horts that capture various molecular and phenotypic fea-
tures of human cancer subtypes will help to gain new
insights into mechanisms of response or resistance to
immunotherapy and to foster personalization of treatment.

Finally, novel designs of immunotherapy trials may be
considered to support and rationalize the development of
personalized treatments. In current studies, patients are
often stratified into groups based on the presence or
absence of a biomarker, but receive all the same study
treatment. Alternative approaches have recently been
exploited, where distinct treatments are tested in patient
groups selected on specific molecular alterations or immune
signatures, as for instance in the BISCAY, DRUP, and DONIMI
trials.123-126 While varying success of this approach has
been observed in these studies, this may be improved by a
better (preclinical) identification of predictors to stratify
patients for different treatments. Alternatively, a back-and-
forth approach between small investigator-driven trials and
preclinical analysis of tumor samples, as for instance
recently suggested by the Lombard Street Approach for
neoadjuvant melanoma, may help to tailor immunotherapy
combinations and identify new treatment combinations for
nonresponding patients in a relatively short time.127 A first
example of an approach that directly bases treatment rec-
ommendations including, but not restricted to, immuno-
therapy on extensive multilevel tumor profiling is the Tumor
Profiler Study.128 In contrast to other studies that are solely
based on genomic tumor profiling, this study combines fast
diagnostic and exploratory analyses using bulk and single-
cell genomic, transcriptomic, and spatial profiling, as well
as ex vivo drug response assays. This approach allows both
to generate an individual tumor profile for each patient
within 4 weeks that is used for clinical treatment decisions,
and to collect a large set of data that can be further
explored for hypothesis-generating research. Importantly,
Volume 14 - Issue C - 2022
such studies that directly link tumor properties to the
outcome of a specific treatment may ultimately allow to
develop companion diagnostic tests (being either single or
composite biomarkers) with regulatory value.
CONCLUSIONS

Reactivation of antitumor immunity by immunotherapies
can induce deep and durable responses, however, its
benefit is still limited to a subset of cancer patients. Based
on the multifaceted signals that modulate antitumor im-
mune responses, personalized strategies are required to
find the optimal treatment of each patient. To this end, the
development of holistic multimodal predictors of response
that capture critical rate-limiting steps of antitumor im-
munity is crucial. Preclinical animal and human model sys-
tems need to be established that fulfill the specific
requirements to model immunotherapy treatments outside
of the patients. Finally, considerations with regard to opti-
mization of sample acquisition, data collection, and
computational analysis, as well as preclinical and clinical
trial design, should facilitate precision IO research, and ul-
timately, the development of easy applicable and affordable
biomarker tests to fully personalize immunotherapy.
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