INVESTIGATION

Detecting High-Order Epistasis in Nonlinear
Genotype-Phenotype Maps

Zachary R. Sailer and Michael J. Harms®
Institute of Molecular Biology, and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403

ORCID ID: 0000-0002-0241-4122 (Z.R.S.)

ABSTRACT High-order epistasis has been observed in many genotype-phenotype maps. These multi-way interactions between
mutations may be useful for dissecting complex traits and could have profound implications for evolution. Alternatively, they could be a
statistical artifact. High-order epistasis models assume the effects of mutations should add, when they could in fact multiply or combine
in some other nonlinear way. A mismatch in the “scale” of the epistasis model and the scale of the underlying map would lead to
spurious epistasis. In this article, we develop an approach to estimate the nonlinear scales of arbitrary genotype-phenotype maps. We
can then linearize these maps and extract high-order epistasis. We investigated seven experimental genotype-phenotype maps for
which high-order epistasis had been reported previously. We find that five of the seven maps exhibited nonlinear scales. Interestingly,
even after accounting for nonlinearity, we found statistically significant high-order epistasis in all seven maps. The contributions of
high-order epistasis to the total variation ranged from 2.2 to 31.0%, with an average across maps of 12.7%. Our results provide strong
evidence for extensive high-order epistasis, even after nonlinear scale is taken into account. Further, we describe a simple method to

estimate and account for nonlinearity in genotype-phenotype maps.
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ECENT analyses of genotype-phenotype maps have revealed

“high-order” epistasis—that is, interactions between three,
four, and even more mutations (Ritchie et al. 2001; Segre et al.
2005; Xu et al. 2005; Tsai et al. 2007; Imielinski and Belta 2008;
Matsuura et al. 2009; da Silva et al. 2010; Pettersson et al. 2011;
Wang et al. 2012; Hu et al. 2013; Weinreich et al. 2013; Sun
et al. 2014; Anderson et al. 2015; Yokoyama et al. 2015). The
importance of these interactions for understanding biological
systems and their evolution is the subject of current debate
(Weinreich et al. 2013; Poelwijk et al. 2016). Can they be in-
terpreted as specific, biological interactions between loci? Or are
they misleading statistical correlations?
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We set out to tackle one potential source of spurious
epistasis: a mismatch between the “scale” of the map and
the scale of the model used to dissect epistasis (Fisher 1918;
Rothman et al. 1980; Frankel and Schork 1996; Cordell 2002;
Phillips 2008; Szendro et al. 2013). The scale defines how to
combine mutational effects. On a linear scale, the effects of
individual mutations are added. On a multiplicative scale, the
effects of mutations are multiplied. Other, arbitrarily complex
scales, are also possible (Rokyta et al. 2011; Schenket al. 2013;
Blanquart 2014).

Application of alinear model to a nonlinear map will lead to
apparent epistasis (Fisher 1918; Rothman et al. 1980; Frankel
and Schork 1996; Cordell 2002; Phillips 2008; Szendro et al.
2013). Consider a map with independent, multiplicative mu-
tations. Analysis with a multiplicative model will give no
epistasis. In contrast, analysis with a linear model will give
epistatic coefficients to account for the multiplicative nonlin-
earity (Cordell 2002; Phillips 2008). Epistasis arising from a
mismatch in scale is mathematically valid, but obscures a key
feature of the map: its scale. It is also not parsimonious, as it
uses many coefficients to describe a potentially simple, non-
linear function. Finally, it can be misleading because these
epistatic coefficients partition global information about the
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nonlinear scale into (apparently) specific interactions be-
tween mutations.

Most high-order epistasis models assume alinear scale (or a
multiplicative scale transformed onto a linear scale)
(Heckendorn and Whitley 1999; Szendro et al. 2013;
Weinreich et al. 2013; Poelwijk et al. 2016). These models
sum the independent effects of mutations to predict multi-
mutation phenotypes. Epistatic coefficients account for the
difference between the observed phenotypes and the pheno-
types predicted by summing mutational effects. The epistatic
coefficients that result are, by construction, on the same lin-
ear scale (Heckendorn and Whitley 1999; Weinreich et al.
2013; Poelwijk et al. 2016).

Because the underlying scale of genotype-phenotype maps is
not known a priori, the interpretation of high-order epistasis
extracted on a linear scale is unclear. If a nonlinear scale can be
found that removes high-order epistasis, it would suggest that
high-order epistasis is spurious: a highly complex description
of a simple, nonlinear system. In contrast, if no such scale can
be found, high-order epistasis provides a window into the pro-
found complexity of genotype-phenotype maps.

In this article, we set out to estimate the nonlinear scales of
experimental genotype-phenotype maps. We then account for
these scales in the analysis of high-order epistasis. We took our
inspiration from the treatment of multiplicative maps, which
can be transformed into linear maps using a log transform.
Along these same lines, we set out to transform genotype-
phenotype maps with arbitrary, nonlinear scales onto a linear
scale for analysis of high-order epistasis. We develop our
methodology using simulations and then apply it to experi-
mentally measured genotype-phenotype maps.

Methods
Experimental data sets

We collected a set of published genotype-phenotype maps for
which high-order epistasis had been reported previously.
Measuring an Lth-order interaction requires knowing the
phenotypes of all binary combinations of L mutations—that
is, 2F genotypes. The data sets we used had exhaustively
covered all 2 genotypes for five or six mutations. These data
sets cover a broad spectrum of genotypes and phenotypes.
Genotypes included point mutations to a single protein
(Weinreich et al. 2006), point mutations in both members
of a protein/DNA complex (Anderson et al. 2015), random
genomic mutations (de Visser et al. 2009; Khan et al. 2011),
and binary combinations of alleles within a biosynthetic net-
work (Hall et al. 2010). Measured phenotypes included se-
lection coefficients (Weinreich et al. 2006; de Visser et al.
2009; Khan et al. 2011), molecular binding affinity
(Anderson et al. 2015), and yeast growth rate (Hall et al.
2010). (For several data sets, the “phenotype” is a selection
coefficient. We do not differentiate fitness from other prop-
erties for our analyses; therefore, for simplicity, we will refer
to all maps as genotype-phenotype maps rather than specify-
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ing some as genotype-fitness maps). All data sets had a min-
imum of three independent measurements of the phenotype
for each genotype. All data sets are available in a standard-
ized American Standard Code for Information Interchange
(ASCII) text format.

Nonlinear scale

We described nonlinearity in the genotype-phenotype map by
a power transform (see Results) (Box and Cox 1964; Carroll
and Ruppert 1981). The independent variable for the trans-
formation was ?add, the predicted phenotypes of all geno-
types assuming linear and additive effects for each mutation.
The estimated additive phenotype of genotype i is given by

(AP})x;j, €))

where (AP;) is the average effect of mutation j across all
backgrounds, x;; is an index that encodes whether or not
mutation j is present in genotype i, and L is the number of
sites. The dependent variables are the observed phenotypes
?Obs taken from the experimental genotype-phenotype
maps.

We use nonlinear least-squares reglgssion to fit and esti-
mate the power transformation from P ,qq to P gps :

— = A A .
P ops ~ T(Padd§)\7A>B) + ¢,

where ¢ is a residual and 7 is a power-transform function. This
is given by:

= A
(Padd-i-A) -1
N

obs =

= + B,
A(GM)M 1
where A and B are translation constants, GM is the geometric

=g . .
mean of (P .49 +A), and A is a scaling parameter. We used
standard nonlinear regression techniques to minimize d:

— — 2
d= P scale= Pobs +e.

We then reversed this transformation to linearize Pops using
the estimated parameters A, B, and A. We did so by the back-
transform:

. _ R 1A .
Pobs,linear = [ (GM)/\ 1(Pobs _B) + 1} —A. (2

High-order epistasis model

We dissected epistasis using a linear, high-order epistasis
model. These have been discussed extensively elsewhere
(Heckendorn and Whitley 1999; Weinreich et al. 2013;
Poelwijk et al. 2016), so we will only briefly and informally
review them here.



A high-order epistasis model is a linear decomposition of a
genotype-phenotype map. It yields a set of coefficients that
account for all variation in phenotype. The signs and magni-
tudes of the epistatic coefficients quantify the effect of muta-
tions and interactions between them. A binary map with 2¢
genotypes requires 2F epistatic coefficients and captures all
interactions, up to Lth-order, between them. This is conve-
niently described in matrix notation.

P=X3: 3)

a vector of phenotype_s> P can be transformed into a vector of
epistatic coefficients 8 using a 2" X 2! decomposition matrix
that encodes which coefficients contribute to which pheno-
types. If X is invertible, one can determine ﬁ from a collec-
tion of measured phenotypes by

B=xX1P. &)

X can be formulated in a variety of ways (Poelwijk et al.
2016). Following others in the genetics literature, we use
the form derived from Walsh polynomials (Heckendorn and
Whitley 1999; Weinreich et al. 2013; Poelwijk et al. 2016). In
this form, X is a Hadamard matrix. Conceptually, the trans-
formation identifies the geometric center of the genotype-
phenotype map and then measures the average effects of
each mutation and combination of mutations in this “aver-
age” genetic background (Figure 1). To achieve this, we
encoded each mutation at each site in each genotype as —1
(wild type) or +1 (mutant) (Heckendorn and Whitley 1999;
Weinreich et al. 2013; Poelwijk et al. 2016). This has been
called a Fourier analysis,(Neidhart et al. 2013; Szendro et al.
2013), global epistasis (Poelwijk et al. 2016), or a Walsh
space (Heckendorn and Whitley 1999; Weinreich et al
2006). Another common approach is to use a single wild-type
genotype as a reference and encode mutations as either
0 (wild type) or 1 (mutant) (Poelwijk et al. 2016).

One data set (IV, Table 1) has four possible states (A, G, C,
and T) at two of the sites. We encoded these using the WYK
tetrahedral-encoding scheme (Zhang and Zhang 1991,
Anderson et al. 2015). Each state is encoded by a three-bit state.
The wild-type state is given the bits (1,1,1). The remaining
states are encoded with bits that form corners of a tetrahedron.
For example, the wild type of site 1 is G and encoded as the
(1,1,1) state. The remaining states are encoded as follows: A is
(1,-1,-1),Cis(—-1,1, —1),and Tis (-1, — 1,1).

Experimental uncertainty

We used a bootstrap approach to propagate uncertainty in
measured phenotypes into uncertainty in epistatic coefficients.
To do so, we: (1) calculated the mean and SD for each
phenotype from the published experimental replicates, (2)
sampled the uncertainty distributi(gl for each phenotype to
generate a pseudoreplicate vector P peeudo that had one phe-
notype per genotype, (3) rescaled ?pseudo using a power trans-
form, and (4) determined the epistatic coefficients for
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Figure 1 Epistasis can be quantified using Walsh polynomials. (A) A
genotype-phenotype map exhibiting negative epistasis. Axes are genotype
at position 1 (gy), genotype at position 2 (go), and phenotype (P). For
genotypic axes, “0” denotes wild type and “1” denotes a mutant. Pheno-
type is encoded both on the P-axis and as a spectrum from white to blue.
The map exhibits negative epistasis: relative to wild type, the effect of the
mutations together (P11 = 2) is less than the sum of the individual effects
of mutations (Pio + Po1 = 1+ 2 = 3). (B) The map can be decomposed
into epistatic coefficients using a Walsh polynomial, which measures the
effects of each mutation relative to the geometric center of the genotype-
phenotype map (green sphere). The additive coefficients 8; and 8, (red
arrows) are the average effect of each mutation in all backgrounds. The
epistatic coefficient B84, (orange arrow) is the variation not accounted for by
B1 and B,. Geometrically, it is the distance between the center of the map
and the “fold” given by vector connecting Py and Py.

?pseudo,scaled. We then repeated steps 2—4 until convergence.
We determined the mean and variance of each epistatic
coefficient after every 50 pseudoreplicates. We defined conver-
gence as the mean and variance of every epistatic coefficient
changed by < 0.1 % after addition of 50 more pseudorepli-
cates. On average, convergence required ~100,000 replicates
per genotype-phenotype map. Finally, we used a z-score to de-
termine if each epistatic coefficient was significantly different
than zero. To account for multiple testing, we applied a
Bonferroni correction to all P-values (Abdi 2007).

Computational methods

Our full epistasis software package—written in Python3 ex-
tended with Numpy and Scipy (van der Walt et al. 2011)—is
available for download via github (https://github.com/
harmslab/epistasis). We used the Python package scikit-learn
for all regressions (Pedregosa et al. 2011). Plots were gener-
ated using matplotlib and Jupyter Notebooks (Hunter 2007;
Perez and Granger 2007).

Data availability

The data sets and code used in this work are available at
https://github.com/harmslab/notebooks-nonlinear-high-
order-epistasis. The data sets are available in standard
JSON format. The code is available as Jupyter Notebooks.

Results
Nonlinear scale induces apparent high-order epistasis

Our first goal was to understand how a nonlinear scale, if
present, would affect estimates of high-order epistasis. To
probe this question, we constructed a five-site binary
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Table 1 Data sets used in this study

ID Genotype Phenotype L Reference

| Scattered genomic mutations Escherichia coli fitness 5 Khan et al. (2011)

Il Chromosomes in asexual fungi Aspergillus niger fitness 5 de Visser et al. (2009)
1l Protein point mutants Bacterial fitness 5 Weinreich et al. (2006)
v DNA/protein point mutants In vitro DNA/protein binding affinity 5 Anderson et al. (2015)
\ Chromosomes in asexual fungi A. niger fitness 5 de Visser et al. (2009)
Vi Alleles in biosynthetic network Saccharomyces cerevisiae haploid growth rate 6 Hall et al. (2010)

VI Alleles in biosynthetic network S. cerevisiae diploid growth rate 6 Hall et al. (2010)

All data sets have 2! genotypes except the DNA/protein interaction data set (IV), which has 128 genotypes. This occurs because the data set has two DNA sites (each of which
have four possible bases) and three protein sites (each of which has two possible amino acids). ID, data set identifier.

genotype-phenotype map on a nonlinear scale, and then
extracted epistasis assuming a linear scale. The nonlinear
scale we chose was a saturating function:

(1+K)P,

1+KP;’ O

P g.trans —

where P, is the linear phenotype of genotype g, Pg trans is the
transformed phenotype of genotype g, and K is a scaling con-
stant. As K — 0, the map becomes linear. As K increases, mu-
tations have systematically smaller effects when introduced
into backgrounds with higher phenotypes.

We calculated P, for all 2F binary genotypes using the
random, additive coefficients shown in Figure 2A. These co-
efficients included no epistasis. We then transformed P, onto
the nonlinear Py a5 scale using Equation 5 with the relative-
ly shallow (K = 2) saturation curve shown in Figure 2B. Fi-
nally, we applied a linear epistasis model to Py rans to extract
epistatic coefficients.

We found that nonlinearity in the genotype-phenotype
map induced extensive high-order epistasis when the non-
linearity was ignored (Figure 2C). We observed epistasis up to
the fourth order, despite building the map with purely addi-
tive coefficients. This result is unsurprising: the only mecha-
nism by which a linear model can account for variation in
phenotype is through epistatic coefficients (Rothman et al.
1980; Frankel and Schork 1996; Cordell 2002). When given
a nonlinear map, it partitions the variation arising from non-
linearity into specific interactions between mutations. This
high-order epistasis is mathematically valid, but does not
capture the major feature of the map—namely, saturation.
Indeed, this epistasis is deceptive, as it is naturally inter-
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preted as specific interactions between mutations. For exam-
ple, this analysis identifies a specific interaction between
mutations one, two, four, and five (Figure 2C, purple). But
this four-way interaction is an artifact of the nonlinearity in
phenotype of the map, rather than a specific interaction.

Nonlinear scale and specific epistatic interactions induce
different patterns of nonadditivity

Our next question was whether we could separate the effects
of nonlinear scale and high-order epistasis in binary maps.
One useful approach to develop intuition about epistasis is to
plot the observed phenotypes (P.ps) against the predicted
phenotype of each genotype, assuming linear and additive
mutational effects (P,q4q4) (Rokyta et al. 2011; Schenk et al.
2013; Szendro et al. 2013). In a linear map without epistasis,
Pgys equals P,qq because each mutation would have the same,
additive effect in all backgrounds. If epistasis is present, phe-
notypes will diverge from the Py,s = P,qq line.

We simulated maps including varying amounts of linear,
high-order epistasis, placed them onto increasingly nonlinear
scales, and then constructed Pops Vs. Paqq plots. We added high-
order epistasis by generating random epistatic coefficients and
then calculating phenotypes using Equation 3. We introduced
nonlinearity by transforming these phenotypes with Equation
5. For each genotype in these simulations, we calculated P,qq
as the sum of the first-order coefficients used in the generating
model. Py, is the observable phenotype, including both high-
order epistasis and nonlinear scale.

High-order epistasis and nonlinear scale had qualitatively
different effects on Pgps vs. Pagq plots. Figure 3A shows plots
of Pyps vs. Pagq for increasing nonlinearity (left to right)
and high-order epistasis (bottom to top). As nonlinearity

Figure 2 Nonlinearity in phenotype creates spurious
high-order epistatic coefficients. (A) Simulated, random,
first-order epistatic coefficients. The mutated site is indi-
cated by panel below the bar graph; bar indicates magni-
tude and sign of the additive coefficient. (B) A nonlinear
map between a linear phenotype and a saturating, non-
linear phenotype. The first-order coefficients in (A) are
used to generate a linear phenotype, which is then trans-
formed by the function shown in (B). (C) Epistatic coeffi-
cients extracted from the genotype-phenotype map
generated in (A) and (B). Bars denote coefficient magni-

tude and sign. Color denotes the order of the coefficient: first (8;, red), second (B8;;, orange), third (Bj«, green), fourth (B, purple), and fifth (Bjm, blue).
Filled m in the grid below the bars indicate the identity of mutations that contribute to the coefficient.
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increases, Pops curves systematically relative to Pagq. This re-
flects the fact that P,qq is on a linear scale and P, is on a
saturating, nonlinear scale. The shape of the curve reflects
the map between the linear and saturating scale: the smallest
phenotypes are underestimated and the largest phenotypes
are overestimated. In contrast, high-order epistasis induces
random scatter away from the Pops = P,gq line. This is be-
cause the epistatic coefficients used to generate the map
are specific to each genotype, moving observations off the
expected line, even if the scaling relationship is taken into
account.

Nonlinearity can be separated from underlying high-
order epistasis

The Pops vs. Pagq plots suggest an approach to disentangle
high-order epistasis from nonlinear scale. By fitting a func-
tion to the Py Vs. Pagq curve, we describe a transformation
that relates the linear P,qq scale to the (possibly nonlinear)
Pgps scale (Schenk et al. 2013; Szendro et al. 2013). Once the
form of the nonlinearity is known, we can then linearize the
phenotypes so they are on an appropriate scale for epistatic
analysis. Variation that remains (i.e., scatter) can then be
confidently partitioned into epistatic coefficients.

In the absence of knowledge about the source of the non-
linearity, a natural choice is a power transform (Box and Cox
1964; Carroll and Ruppert 1981), which identifies a mono-
tonic, continuous function through Py vs. Pagq. A key feature
of this approach is that power-transformed data are normally
distributed around the fit curve and thus appropriately scaled
for regression of a linear epistasis model.

We tested this approach using one of our simulated data
sets. One complication is that, for an experimental map, we do
not know P,4q. In the analysis above, we determined P,qq
from the additive coefficients used to generate the space. In
a real map, P,qq is not known; therefore, we had to estimate
P.44. We did so by measuring the average effect of each mu-
tation across all backgrounds, and then calculating Poad
for each genotype as the sum of these average effects
(Equation 1).

We fit the power transform to Py vs. Pagq (solid red line,
Figure 3B). The curve captures the nonlinearity added in the
simulation. We linearized P, using the fit model (Equation
2), and then extracted epistatic coefficients. The extracted
coefficients were highly correlated with the coefficients used
to generate the map (R? = 0.928) (Figure 3C). In contrast,
applying the linear epistasis model to this map without first
accounting for nonlinearity gives much greater scatter be-
tween the input and output coefficients (R? = 0.242) (Figure
3D). This occurs because phenotypic variation from nonline-
arity is incorrectly partitioned into the linear epistatic
coefficients.

Nonlinearity is a common feature of
genotype-phenotype maps

Our next question was whether experimental maps exhibited
nonlinear scales. We selected seven genotype-phenotype
maps that had previously been reported to exhibit high-order
epistasis (Table 1) and fit power transforms to each data set
(Figure 4 and Supplemental Material, Figure S1 and File S1).
We expected some phenotypes to be multiplicative (e.g., data
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Figure 4 Experimental genotype-phenotype
maps exhibit nonlinear phenotypes. Plots show
observed phenotype Pyps plotted against Paad
(Equation 1) for data sets I-IV. Points are indi-
vidual genotypes. Error bars are experimental
SDs in phenotype. Red lines are the fit of the
power transform to the data set. Pearson’s co-
efficient for each fit are shown on each plot.

Dashed lines are Pagg = Pops- Bottom panels in
each plot show residuals between the ob-
served phenotypes and the red fit line. Points
are the individual residuals. Error bars are the
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sets I, II, and IV were relative fitness), while we expected some
to be additive (e.g., data set IV is a free energy). Rather than
rescaling the multiplicative data sets by taking logarithms of
the phenotypes, we allowed our power transform to capture
the appropriate scale. The power transform identified nonlin-
earity in the majority of the data sets. Of the seven data sets,
three were less than additive (II, V, VI), two were greater than
additive (III, IV), and two were approximately linear (I, VII).
All data sets gave random residuals after fitting the power
transform (Figure 4 and Figure S1).

High-order epistasis is a common feature of
genotype-phenotype maps

With estimated scales in hand, we linearized the maps using
Equation 2 and remeasured epistasis (Figure S2). We used
bootstrap sampling of uncertainty in the measured pheno-
types to determine the uncertainty of each epistatic coeffi-
cient (see Methods), and then integrated these distributions
to determine whether each coefficient was significantly dif-
ferent than zero. We then applied a Bonferroni correction to
each P-value to account for multiple testing.

Despite our conservative statistical approach, we found
high-order epistasis in every map studied (Figure 5A and
Figure S3). Every data set exhibited at least one statistically
significant epistatic coefficient of fourth order or higher. We
even detected statistically significant fifth-order epistasis
(blue bar in Figure 5A, data set II). High-order coefficients
were both positive and negative, often with magnitudes
equal to or greater than the second-order terms. These results
reveal that high-order epistasis is a robust feature of these
maps, even when nonlinearity and measurement uncertainty
in the genotype-phenotype map is taken into account.

We also dissected the relative contributions of each epi-
static order to the remaining variation. To do so, we created
truncated epistasis models: an additive model, a model con-
taining additive and pairwise terms, a model containing
additive through third-order terms, etc. We then measured
how well each model accounted for variation in the pheno-
type using a Pearson’s coefficient between the fit and the
data. Finally, we asked how much the Pearson coefficient
changed with addition of more epistatic coefficients. For ex-
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experimental SD of the phenotype. The hori-
zontal histograms show the distribution of re-
siduals across 10 bins. The red lines are the
mean of the residuals.

ample, to measure the contribution of pairwise epistasis, we
took the difference in the correlation coefficient between the
additive plus pairwise model and the purely additive model.

The contribution of epistasis to the maps was highly vari-
able (Figure 5B and Figure S3). For data set I, epistatic terms
explained 5.9% of the variation in the data. The contributions
of epistatic coefficients decayed with increasing order, with
fifth-order epistasis only explaining 0.1% of the variation in
the data. In contrast, for data set II, epistasis explains 43.3%
of the variation in the map. Fifth-order epistasis accounts for
6.3% of the variation in the map. The other data sets had
epistatic contributions somewhere between these extremes.

Accounting for nonlinear genotype-phenotype maps
alters epistatic coefficients

Finally, we probed to what extent accounting for nonlinearity
in phenotype altered the epistatic coefficients extracted from
each space. Figure 6 and Figure S4 show correlation plots
between epistatic coefficients extracted both with and with-
out linearization. The first-order coefficients were all highly
correlated between the linear and nonlinear analyses for all
data sets (Figure S5).

For the epistatic coefficients, the degree of correlation
depended on the degree of nonlinearity in the data set. Data
set I—which was essentially linear—had identical epistatic
coefficients whether the nonlinear scale was taken into ac-
count or not. In contrast, the other data sets exhibited scatter
off of the line. Data set IIl was particularly noteworthy. The
epistatic coefficients were systematically overestimated when
the nonlinear scale was ignored. Two large and favorable pair-
wise epistatic terms in the linear analysis became essentially
zero when nonlinearity was taken into account. These inter-
actions—M182T/g4205a and G283S/g4205a—were both
noted as determinants of evolutionary trajectories in the orig-
inal publication (Weinreich et al. 2006); however, our results
suggest the interaction is an artifact of applying a linear model
to a nonlinear data set. Further ~20% (six of 27) of the epi-
static coefficients flipped sign when nonlinearity was taken
into account (Figure 6, III, bottom-right quadrant).

Overall, we found that low-order epistatic coefficients
were more robust to the linear assumption than high-order
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Figure 5 High-order epistasis is present in genotype-phenotype maps. (A) Shows epistatic coefficients extracted from data sets -V (Table 1; data set
label circled above each graph). Bars denote coefficient magnitude and sign; error bars are propagated measurement uncertainty. Color denotes the
order of the coefficient: first (8;, red), second (B, orange), third (Bjx, green), fourth (B, purple), and fifth (Bjym, blue). Bars are colored if the coefficient
is significantly different than zero (z-score with P-value < 0.05 after Bonferroni correction for multiple testing). * denote relative significance: * P < 0.05,
** P < 0.01, *** P < 0.001. Filled min the grid below the bars indicates the identity of mutations that contribute to the coefficient. The names of the
mutations, taken from the original publications, are indicated to the left of the grid squares. (B) Subpanels show fraction of variation accounted for by
first- through fifth-order epistatic coefficients for data sets I-IV [colors as in (A)]. Fraction described by each order is proportional to area.

coefficients. Data set IV is a clear example of this behavior. The
map exhibited noticeable nonlinearity (Figure 4). The first-
and second-order terms were well correlated between the
linear and nonlinear analyses (Figure 6, Figure S4, and Fig-
ure S5). Higher-order terms, however, exhibited much poorer
overall correlation. While the R? for second-order coefficients
was 0.95, the correlation was only 0.43 for third-order
coefficients. This suggests that previous analyses of nonlinear
genotype-phenotype maps correctly identified the key muta-
tions responsible for variation in the map, but incorrectly
estimated the high-order epistatic effects.

Discussion

Our results reveal that both nonlinear scales and high-order
epistasis play important roles in shaping experimental geno-
type-phenotype maps. Five of the seven data sets we investi-
gated exhibited nonlinear scales, and all of the data sets
exhibited high-order epistasis, even after accounting for non-
linearity. This suggests that both should be taken into account
in analyses of genotype-phenotype maps.

Origins of nonlinear scales

We observed two basic forms of nonlinearity in these maps:
saturating, less-than-additive maps and exploding, greater-than-
additive maps. Many have observed less-than-additive maps in

which mutations have lower effects when introduced into
more optimal backgrounds (MacLean et al. 2010; Chou et al.
2011). Such saturation has been proposed to be a key factor
shaping evolutionary trajectories (Otto and Feldman 1997,
MacLean et al. 2010; Chou et al. 2011; Tokuriki et al. 2012;
Kryazhimskiy et al. 2014). Further, it is intuitive that opti-
mizing a phenotype becomes more difficult as that pheno-
type improves. Our nonlinear fits revealed this behavior in
three different maps.

The greater-than-additive maps, in contrast, were more
surprising: why would mutations have a larger effect when
introduced into a more favorable background? For the
B-lactamase genotype-phenotype map (III, Figure 4), this
may be an artifact of the original analysis used to generate
the data set (Weinreich et al. 2006). This data set describes
the fitness of bacteria expressing variants of an enzyme with
activity against B-lactam antibiotics. The original authors
measured the minimume-inhibitory concentration (MIC) of
the antibiotic against bacteria expressing each enzyme vari-
ant. They then converted their MIC values into apparent fit-
ness by sampling from an exponential distribution of fitness
values and assigning these fitness values to rank-ordered MIC
values (Weinreich et al. 2006). Our epistasis model extracts
this original exponential distribution (Figure S6). This result
demonstrates the effectiveness of our approach in extracting
nonlinearity in the genotype-phenotype map.
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Figure 6 Nonlinear phenotypes distort measured epistatic coefficients.
Subpanels show correlation plots between epistatic coefficients extracted
without accounting for nonlinearity (x-axis) and accounting for linearity
(y-axis) for data sets I-IV. Each point is an epistatic coefficient, colored by
order. Error bars are SDs from bootstrap replicates of each fitting ap-
proach.

The origins of the growth in the transcription factor/DNA
binding data set are less clear (IV, Figure 4). The data set
measures the binding free energy of variants of a transcrip-
tion factor binding to different DNA response elements. We
are aware of no physical reason for mutations to have a larger
effect on free energy when introduced into a background with
better binding. One possibility is that the genotype-phenotype
map reflects multiple features that are simultaneously altered
by mutations, giving rise to this nonlinear shape. This is a dis-
tinct possibility in this data set, where mutations are known to
alter both DNA binding affinity and DNA binding cooperativity
(McKeown et al. 2014).

Best practice

Because nonlinearity is a common feature of these maps,
linearity should not be assumed in analyses of epistasis. Given
a sufficient number of phenotypic observations, however, the
appropriate scale can be estimated by construction of a Pypg vs.
P44 plot and regression of a nonlinear scale model. With this
scale in hand, one can then transform the genotype-pheno-
type map onto a linear scale appropriate for analysis using a
high-order epistasis model. Our software pipeline automates
this process. It takes any genotype-phenotype map in a stan-
dard text format, fits for nonlinearity, and then estimates
high-order epistasis. It is freely available for download
(https://github.com/harmslab/epistasis).

One important question is how to select an appropriate
function to describe the nonlinear scale. By visual inspection,
all of the data sets we studied were monotonic in P,qq and
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could be readily captured by a power transform. Other maps
may be better captured with other functions. For example,
inspection of a Pyys vs. Pagq plot could reveal a nonmonotonic
scale, leading to a better fit with a polynomial than a power
transform. Another possibility is that external biological
knowledge motivates scale choice (Schenk et al. 2013).

The choice of model determines what fraction of the
variation is assigned to scale vs. “epistasis.” The more com-
plicated the function chosen, the more variation in the data is
shifted from epistasis and into scale. One could, for example,
fit a completely uninformative Lth-order polynomial, which
would capture all of the variation as scale and none as epis-
tasis. Scale estimation should be governed by the well-
established principles of model regression: find the simplest
function that captures the maximum amount of variation in
the data set without fitting stochastic noise. Because epistasis
is scatter off the scale line (noise), model-selection approaches
like the F-test, Akaike information criterion, and inspection of
fit residuals are a natural strategy for partitioning variation
between scale and epistasis.

Interpretation

Another powerful aspect of this approach is that it allows
explicit separation of two distinct origins of nonadditivity in
genotype-phenotype maps.

This can be illustrated with a simple, conceptual example.
Imagine mutations to an enzyme, expressed in bacteria, that
have aless-than-additive effect on bacterial growthrate. Toa
first approximation, this epistasis could have two origins. The
first is at the level of the enzyme: maybe the mutations have
specific, negative chemical interactions that alter enzyme
rate. The second is at the level of the whole cell: maybe,
above a certain activity, the enzyme is fast enough that some
other part of the cell starts limiting growth. Mutations
continue to improve enzyme activity, but growth rate does
not reflect this. These two origins of less-than-additive be-
havior will have different effects in a P,qq vs. Pops plot: sat-
uration of growth rate will appear as nonlinearity, and
interactions between mutations at the enzyme level will
appear as linear epistasis. Our analysis would reveal this
pattern and set up further experiments to tease apart these
possibilities.

This may also provide important evolutionary insights. One
important question is to what extent evolutionary paths are
shaped by global constraints vs. specific interactions that lead
to specific historical contingencies (Harms and Thornton
2014; Kryazhimskiy et al. 2014; Shah et al. 2015). For exam-
ple, recent work has shown specific epistatic interactions lead
to sequence-level unpredictability, while a globally less-than-
additive scale leads to predictable phenotypes in evolution
(Kryazhimskiy et al. 2014). Our analysis approach naturally
distinguishes these origins of nonadditivity, and thus these
evolutionary possibilities. Prevailing-magnitude epistasis
(de Visser et al. 2009), global epistasis (Kryazhimskiy et al.
2014), and diminishing-returns epistasis (Otto and Feldman
1997; MacLean et al. 2010; Chou et al. 2011; Tokuriki et al.
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2012) will all appear as nonlinear scales. In contrast, specific
interactions will appear in specific coefficients in the linear
epistasis model. Our detection of nonlinearity and high-order
epistasis in most data sets suggests that both forms of non-
additivity will be in play over evolutionary time.

High-order epistasis

Finally, our work reveals that high-order epistasis is, indeed, a
common feature of genotype-phenotype maps. Our study
could be viewed as an attempt to “explain away” previously
observed high-order epistasis. To do so, we both accounted
for nonlinearity in the map and propagated experimental un-
certainty to the epistatic coefficients. Surprisingly—to the
authors, at least—high-order epistasis was robust to these
corrections.

High-order epistasis can make huge contributions to
genotype-phenotype maps. In data set II, third-order and
higher epistasis accounts for fully 31.0% of the variation in
the map. The average contribution, across maps, is 12.7%.
We also do not see a consistent decay in the contribution of
epistasis with increasing order. In data sets II, V, and VI,
third-order epistasis contributes more variation to the map
than second-order epistasis. This suggests that epistasis
could go to even higher orders in larger genotype-phenotype
maps.

The generality of these results across all genotype-
phenotype maps is unclear. The maps we analyzed were mea-
sured and published because they were “interesting,” either
from a mechanistic or evolutionary perspective. Further, most
of the maps have a single, maximum phenotype peak. The
nonlinearity and high-order epistasis we observed may be
common for collections of mutations that, together, optimize
a function, but less common in “flatter” or more random ge-
notype-phenotype maps. This can only be determined by char-
acterization of genotype-phenotype maps with different
structural features.

The observation of this epistasis also raises important
questions: What are the origins of third, fourth, and even
fifth-order correlations in these data sets? What, mechanisti-
cally, leads to a five-way interaction between mutations? Does
neglecting high-order epistasis bias estimates of low-order
epistasis (Otwinowski and Plotkin 2014)? What can this
epistasis tell us about the biological underpinning of these
maps (Lehar et al. 2008; Hu et al. 2011, 2013; Taylor and
Ehrenreich 2015).?

The evolutionary implications are also potentially fascinat-
ing. Epistasis creates temporal dependency between muta-
tions: the effect of a mutation depends strongly on specific
mutations that fixed earlier in time (Bedau and Packard 2003;
Desai 2009; Harms and Thornton 2014; Shah et al. 2015).
How does this play out for high-order epistasis, which intro-
duces long-range correlations across genotype-phenotype
maps? Do these low magnitude interactions matter for evo-
lutionary outcomes or dynamics? These, and questions like
them, are challenging and fascinating future avenues for
further research.
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