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The mitochondrial DNA m.3243A > G mutation is well-known to cause a variety of clinical phenotypes, including diabetes, deafness,
and osteoporosis. Here, we report isolation and expansion of urine-derived stem cells (USCs) from patients carrying the m.3243A >
G mutation, which demonstrate bimodal heteroplasmy. USCs with high levels of m.3243A > G mutation displayed abnormal
mitochondrial morphology and function, as well as elevated ATF5-dependent mitochondrial unfolded protein response (UPRmt),
together with reduced Wnt/β-catenin signaling and osteogenic potentials. Knockdown of ATF5 in mutant USCs suppressed UPRmt,
improved mitochondrial function, restored expression of GSK3B and WNT7B, and rescued osteogenic potentials. These results
suggest that ATF5-dependent UPRmt could be a core disease mechanism underlying mitochondrial dysfunction and osteoporosis
related to the m.3243A > G mutation, and therefore could be a novel putative therapeutic target for this genetic disorder.
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INTRODUCTION
Mitochondrion is the center for energy production and its
dysregulation has been linked to various human diseases [1–3].
By metabolizing glucose and lipids through TCA cycle and
β-oxidation, respectively, mitochondria store biological energy in
adenosine triphosphate (ATP). This process requires the coordina-
tion of more than 80 proteins that form 5 major respiratory chain
complexes, thirteen of which are encoded by the mitochondrial
genome [4, 5]. In addition to the 13 respiratory chain subunits, the
mitochondrial genome also encodes 2 rRNAs and 22 tRNAs,
mutations of which have been reported to be involved in certain
diseases, such as Leigh syndrome, Kearns-Sayre syndrome, Lever
hereditary optic neuropathy (LHON), etc. [6, 7]. The mitochondrial
DNA A3243G (m.3243A > G) mutation in the tRNALeu (UUR) gene is
one of the most common mutations in the mitochondrial genome,
which is linked to a clinical syndrome termed MELAS (mitochon-
drial encephalo-myopathy, lactic acidosis, and stroke-like epi-
sodes) [8, 9]. The m.3243A > G mutation is also associated with
other clinical features, including maternally inherited sensori-
neural hearing impairment, as well as diabetes, accompanied by
other phenotypes, such as, cardiomyopathy, ataxia, basal ganglia
calcification, and macular retinal dystrophy [10]. Interestingly, a
previous case-control study indicated that the m.3243A > G
mutation is associated with premature bone aging, characterized
by reduced bone mass, impaired structure and strength [11]. Our
recent study further suggested that high levels of the m.3243A > G

mutation in blood leukocytes were significantly associated with
lower bone mineral density [12].
Such a broad spectrum of clinical manifestations could be

attributed to the heteroplasmic nature of the m.3243A > G
mutation, where mutant transcripts could present in different
ratio to wild-type transcripts in different cell types or tissues [13–
15]. Biochemical analysis revealed that high heteroplasmy levels of
the m.3243A > G mutation reduced mitochondrial tRNALeu (UUR)

abundance, decreased its aminoacylation, and thus inhibited
normal post-transcriptional modifications [16–20]. Cells with high
levels of the m.3243A > G mutation have impaired protein
synthesis and respiratory activity [21, 22]. However, the molecular
mechanism underlying the pathology of osteogenesis remains
unclear.
Recently, the mitochondrial unfolded protein response (UPRmt)

has been found to protect mitochondria from damages caused by
misfolded or mutated proteins [4, 23–26]. Loss of mitochondrial
DNA or imbalance between mitochondria-nuclear protein synth-
esis activates UPRmt, which in turn improves mitochondrial
function and promotes survival in C. elegans [27, 28]. ATF5 is a
transcription factor functions in the UPRmt pathway. It targets
genes involved in mitochondrial protein homeostasis [29, 30],
including mtHSP70, HSP60 and LONP1. In contrast to this positive
role, in C. elegans, constitutively active UPRmt has been reported to
increase mutated mitochondrial DNA, leading to mitochondrial
dysfunction [31, 32].
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To examine the molecular etiology underlying the mitochon-
drial disorder caused by the m.3243A > G mutation, we generated
urine-derived stem cells (USCs) from patients with the m.3243A >
G mutation. We reported that high levels of m.3243A > G
heteroplasmy activated ATF5-dependent UPRmt, which in turn
inhibited mitochondrial functions, the m.3243A > G mutation
simultaneously inhibited the Wnt/β-catenin pathway, which is
known to be essential for osteogenesis [33]. Downregulation of
UPRmt by ATF5 knockdown rescued the defects in mitochondrial
function, disinhibited Wnt/β-catenin, and consequently improved
osteogenesis from mutant USCs. Our study provided the first
connection between UPRmt and osteogenesis, suggesting a
possible mechanism underlying the pathology of m.3243A > G
related osteoporosis, and identified ATF5 as a potential therapeu-
tic target for this disease.

RESULTS
Clinical characteristics of patients with the m.3243A > G
mutation
A total of 13 patients (8 males and 5 females) with the m.3243A > G
mutation as well as 13 age, sex, BMI-matched healthy controls were
enrolled in this study. Clinical characteristics of all subjects were
shown in supplementary Table S1. Compared to controls, the
median levels for HbA1c were significantly higher in the m.3243A >
G mutation group (7.8% vs. 5.7%, P < 0.01) (Fig. 1A and Table S1).
Twelve out of 13m.3243A > G carriers were diagnosed with
diabetes mellitus (92.3%). The mean age at diagnosis was
40.75 ± 14.50 years, and mean diabetes duration was 6.67 ± 7.62
years, which were typical for patients with this genetic disorder. As
expected, another typical feature of this disease, bilateral
sensorineural hearing loss was observed in 8 out of 13 patients
(61.54%), In addition to these two well-known clinical manifesta-
tions, a high proportion (53.85%) of m.3243A > G patients were
diagnosed with osteoporosis/osteopenia. Bone mineral densities
(BMD) of total hip and femoral stem in mutation carriers were
significantly lower than those of controls (total hip: 0.87 ± 0.11 vs.
0.99 ± 0.12 g/cm2, femoral stem: 1.04 ± 0.13 vs. 1.18 ± 0.16 g/cm2;
Ps < 0.05) (Fig. 1B and Table S1), which was consistent to previous
reports [11] demonstrating osteoporosis being a novel disease
related phenotype. Among many other possibilities, the decreased
BMD was most likely resulted from deficits in osteogenic
differentiation from mesenchymal stem cells (MSCs).

Isolation and characterization of USCs from controls and
patients with the m.3243A > G mutation
The average heteroplasmy levels of the m.3243A > G mutation in
leukocytes, saliva, and urine sediment were 21.15 ± 11.15%,
28.06 ± 12.93% and 64.24 ± 18.81%, respectively (Table S1 and
Fig. 1C), indicating that urine sediment was enriched for the
m.3243A > G mutation. USCs are mainly composed of MSC-like
cells, which can self-renew and differentiate to osteocytes,
chondrocytes, as well as adipocytes [34]. Patients-specific USCs
could be an ideal source for studying the cellular and molecular
mechanisms underlying m.3243A > G mutation-related diseases,
particularly, osteoporosis.
We derived USCs from three healthy individuals and three

patients with the m.3243A > G mutation, whose detailed clinical
information was presented in Table 1. USCs were isolated from
urine samples by minimal processing as shown in Fig. 1D. After
5–7 days of the initial plating, small, compact cell clusters derived
from individual cells were observed (Passage 0, P0). These cells
began to form larger colonies after 7 days of additional culturing
(P1, Fig. 1D). We were able to isolate and expand 11, 12 and 13
USC clones from Patient 1, 2, and 3, respectively. The levels of
heteroplasmy in these patient-specific USC clones were evaluated
by pyrosequencing at P3 (Fig. 1D, E and S1). The USC clones
showed a bimodal distribution of mutation heteroplasmy, e.g.

either high (>90%) or low (<5%) in m.3243A > G contents, with
only a few clones containing medium levels of the mutation (Fig.
1E, F). We termed USC clones with high mutation rates (>90%) as
“Mutant-high (Mut-H)”, and low mutation rates (<5%) as “Mutant-
low (Mut-L)”. The morphologies of USC clones, whether or not
carrying the genetic mutation, were uniformly spindle-like,
characteristic of MSCs. These USCs retained robust proliferation
capabilities after several passages (Fig. 1G). The heteroplasmy
levels of USCs remained the same for at least 7 passages,
suggesting a stable transmission of the mutation (Table S2 and
S3). The m.3243A > G mutation did not appear to alter the
karyotype of the USCs (SI Fig. S2). Flow cytometry revealed that all
USC clones from affected patients and controls showed stable
expression of SSEA-4 (SI Fig. S3), as well as other MSC cell surface
markers (CD29, CD73, CD90), renal epithelial marker (CD13), and
epithelial basal cell marker (CD44). As expected, the USCs were
negative for hematopoietic stem cell markers (CD34, CD45),
endothelial lineage markers (CD31), and human leukocyte antigen
(HLA-DR). These data indicated that these cells were originated
from renal tissues, rather than from hematopoietic or endothelial
lineages.

Impaired mitochondrial morphology and function in mutant-
high USCs
The bimodal segregation and stable transmission of the mtDNA
mutation heteroplasmy provided us an ideal isogenic setting for
further analyses. We examined the mitochondrial morphology of
patient-specific USCs with high and low mutations as well as
controls by using transmission electron microscopy (TEM). As
shown in Fig. 2, mitochondria of control and Mut-L USCs were
enriched with normal cristae (Fig. 2A–a, b; a’, b’; a”, b”). However,
mitochondria of Mut-H USCs displayed abnormal cristae structures
(Fig. 2A–c, c’, c”, 2B). Healthy mitochondria displayed dynamically
connected tubular structures, which were elongated and sausage-
like (Fig. 2A–a), while Mut-H USCs contained much less elongated
and sausage-like mitochondria (Fig. 2C). Instead, mitochondria of
Mut-H USCs appeared swollen and with decreased matrix density.
From TEM images, we also observed connected mitochondria,
indicative of fission or fusion events (Fig. 2A, arrow heads). The
percentage of mitochondria undergoing fission/fusion in Mut-H
USCs was significantly lower than those in Mut-L and control USCs
(Fig. 2D). Together, these results demonstrated that mitochondrial
morphology was significantly impaired by high but not low levels
of m.3243A > G mutation.
Mitochondrial functions were further examined by reactive

oxygen species (ROS) and mitochondrial membrane potentials
(ΔΨm). By staining cells with DCFH-DA, a well-established marker
for intracellular ROS, we showed that Mut-H USCs had higher
levels of ROS, as compared to Mut-L and control USCs (Fig. 2E, F).
In addition, by staining USCs with JC-1, we found that Mut-H USCs
had much lower ΔΨm than Mut-L and control USCs (Fig. 2G, H).

High M.3243A > G heteroplasmy levels activated UPRmt and
reduced Wnt/β-catenin signaling in USCs
RNA sequencing was performed to determine the molecular basis
of the morphological and physiological changes between Mut-H
and Mut-L USCs (Fig. 3A). Gene ontology (GO) analysis exhibited
enriched expression of several gene families in Mut-H versus Mut-
L USCs (Fig. 3B, C). Genes in NAD+/NADH metabolic pathway as
well as genes in response to oxygen levels, which typically
regulate mitochondrial functions, were affected (Fig. 3B, C).
Interestingly, a potent Wnt ligand, WNT7B as well as a core Wnt
signaling component, GSK3B, were down-regulated in Mut-H USCs
(Fig. 3D), consistent with the notion that Mut-H USCs had reduced
osteogenic potentials. Since impaired mitochondrial function
could induce UPRmt, we also examined a panel of 10 UPRmt

genes (ATF5, HSPA4, HSPD1, LONP1, DDIT3, SPG7, HSPA9, DNAJA3,
CLPP, ATF4), and found out that, the average expression level of
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these genes was elevated in Mut-H USCs (Fig. 3E). We confirmed
this result by RT-qPCR (Fig. 4A). Western blot further validated that
the levels of these UPRmt-related proteins were also elevated in
Mut-H USCs (Fig. 4B–G). In addition, decreased expression of
WNT7B (Fig. 4H), as well as decreased levels of p-GSK3β in Mut-H
USCs were also confirmed (Fig. 4I, J).

UPRmt inhibition rescued defective mitochondrial functions in
Mut-H USCs
ATF5 is a critical transcription factor mediating UPRmt in human
cells [30]. In our study, upon ATF5 knockdown by siRNA, the
expression levels of mtHSP70, HSP60 and LONP1 were greatly
reduced in all USCs (Fig. 5A), consistent with a critical role of ATF5
in regulating UPRmt. To further investigate the role of UPRmt in
m.3243A > G induced mitochondrial deficits, we examined ΔΨm

and ROS after ATF5 knockdown. ATF5 deficiency increased ΔΨm

(Fig. 5B, C), and reduced ROS levels (Fig. 5D, E) in all USCs.
Importantly, the abnormally high ROS levels in Mut-H USCs were
profoundly reduced (Fig. 5D, E), reaching wild-type levels. These
results suggest that targeting ATF5-mediated UPRmt could

improve mitochondrial functions that are impaired by high level
of the m.3243A > G mutation.

UPRmt inhibition alleviated deficits in osteogenesis from
m.3243A > G USCs
Since inhibiting UPRmt improved mitochondrial functions in Mut-H
USCs (Fig. 5), given that ATF5 has been reported to play a
regulatory role during osteogenesis [33], we examined whether
inhibition of ATF5 could rescue the osteogenesis defect. Upon
ATF5 knockdown, the levels of GSK3B and WNT7B were increased
in all USCs, and restored to wild-type levels in Mut-H USCs (Fig. 6A,
B). RUNX2, OCN and BMP2 are classic markers for osteogenesis. The
osteogenesis defect was shown by immunocytochemical analyses
as well as Alkaline Phosphatase and Alizarin Red S staining (Fig.
S4). Knockdown of ATF5 increased the expression of RUNX2, OCN
and BMP2 (Fig. 6C–E), suggesting enhanced osteogenic potentials.
Further, ATF5 knockdown corrected the osteogenesis defect in
m.3243A > G Mut-H USCs (Fig. 6F), suggesting this gene may serve
as a potential therapeutic target for treatment of osteoporosis
related to m.3243A > G mutation.

Fig. 1 Isolation and proliferation of urine-derived mesenchymal stem cells (USCs) from patients with mitochondrial DNA 3243A > G
mutation and health controls. Box plots of HbA1c levels (A) and BMD T-score at total hip (B) in 13m.3243A > G mutation carriers and 13 age,
sex, BMI-matched healthy controls. C Box plot of m.3243A > G mutation frequency in leukocytes, saliva and urine sediment of 13m.3243A > G
mutation carriers. D A schematic workflow of isolation urine-derived stem cells from urine. Urine samples were collected from patients with
mt.3243A > G mutation and healthy controls and then centrifuged. Cells in the urine sample were resuspended in fresh USC medium, plated
on 96-well plated coated with gelatin for 7 days. Colonies were identified and sub-cultured in 12-well plate, 6-well plate and 10 cm plate to
expand. The levels of heteroplasmy in the derived USC clones were evaluated by pyrosequencing at passage 3 and marked for further
analysis. E The USCs showed a bimodal degree of mutation heteroplasmy, e.g., either high (>90%) or low (<5%) m.3243A > G contents, with
only few clones containing medium level of mutation from three m.3243A > G mutation carriers. F The distribution of mutant-low, mutant-
medium and mutant-high USC clones from three m.3243A > G mutation carriers. G USCs retained a robust proliferation capability after several
passages. No differences in cell morphology were found in USCs with different heteroplasmy levels. Scale bar= 50 µm.
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DISCUSSION
In this study, we reported the first case of generating urine-
derived mesenchymal stem cells (USCs) from m.3243A > G
patients. We discovered that ATF5-mediated UPRmt could be an
essential mechanism underlying the impaired mitochondrial
function and poor osteogenic potentials in Mut-H USCs. Our
study represented one of many efforts to circumvent the hurdles
in establishing appropriate in vitro models for mitochondrial
mutation research. The lack of effective in vitro and in vivo models
of mitochondrial DNA mutation has hampered mechanistic
studies [35]. The traditional cytoplasmic hybrid (cybrid) cell lines
[36] or human induced pluripotent stem (hiPS) cells were either
artificial or laborious to generate [15, 37, 38]. HiPS cells often carry
additional genetic and mitochrondral mutations created during
the induction process [39, 40]. Recently, we and others have
successfully derived USCs from human subjects through a simple,
low-cost, and non-invasive method [41, 42]. One interesting
feature of our USCs from patients with the m.3243A > G mutation
was the bimodal distribution of heteroplasmy. Some clones were
nearly homoplasmic wild-type while the majorities were nearly
homoplasmic mutant-type. The mutant-high USCs could be an
ideal in vitro model for studying the cellular and molecular
alterations resulted from the m.3243A > G mutation, while
mutant-low USCs could be potential cell sources for autologous
cell-replacement therapy. Medium heteroplasmy is potentially
linked to a growth disadvantage, which remains to be determined.
Our results provided supports to the emerging role of m.3243A >G

in bone mineralization deficiency. We and another group recently
reported that m.3243A >G mutation was associated with loss of bone
density in affected patients [11, 12]. In the current study, we further
confirmed this newly characterized pathological phenotype (Table 1),
and started to unveil the underlying signaling pathways linking the
m.3243A >G mutation to the loss of bone density. By taking
advantages of the in vitro USCs model, we showed that activation
of the mitochondrial stress response UPRmt and the decline in the
Wnt/β-catenin pathway could result in poor osteogenic potentials of
Mut-H USCs. Inhibition of UPRmt by knocking down of ATF5 reversed
the expression of GSK3B and WNT7B, resulting in increased
mineralization of in vitro cultured Mut-H USCs. Our study has
therefore suggested that ATF5 could be a novel and potential
therapeutic target for treating osteoporosis due to m.3243A >G. The
improved osteogenesis from ATF5-depleted USCs might be linked to
improved mitochondrial functions. It remains to be determined
whether other m.3243A >G-associated pathological phenotypes such
as diabetes, deafness, and other symptoms in MELAS could also be
ameliorated by ATF5 targeted inhibition.
The upstream signaling turning on UPRmt in mutant-high

m.3243A > G remains unclear. UPRmt can be activated by an
imbalance between mitochondrial versus nuclear protein synth-
esis. Therefore, one possibility is that the m.3243A > G mutation to
tRNA gene reduces protein synthesis in the mitochondria,
triggering the mitonuclear imbalance, hence UPRmt activation.
Indeed, decreased mitochondrial translation in m.3243A > G cells
has been reported in several studies [21, 22], and increased
expression of mitochondrial stress-responsive genes including
heat shock protein (HSPs) have also been reported [16].
Interestingly, mutant-low USCs did not induce UPRmt, nor did
they have altered osteogenesis or mitochondrial morphology or
functions. These results were somewhat expected, because the
mutant-low USCs in this study have mutation rate <5%, which was
not much different from wild-type cells.
The finding that UPRmt played a negative role in mitochondrial

function and osteogenesis was surprising. UPRmt targeted genes
involved in protein homeostasis and had been shown in many
studies to serve as a positive modulator of mitochondrial function
and promoted survival. Loss of critical regulator such as ATF5 and
its homologs ATFS-1 compromised cell viability and reduced
lifespan of C. elegans. However, two recent studies showed thatTa
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Fig. 2 Impaired mitochondrial morphology and function in m.3243A > G mutant-high USCs. A Mitochondrial morphology as examined by
transmission electric microscopy (TEM). Mitochondrial morphology in Ctr USCs (a–a”: a. Cross-section of Ctr USCs showed round, sausage-like
and elongated mitochondria; a’. Enlarged mitochondrial with rich cristae; a”. Mitochondrial junction indicating fission/fusion events (purple
arrow)), Mut-L USCs (b–b”, similar to those in controls), and Mut-H USCs (c–c”: c. cross-section of Mut-H USCs showed mostly abnormally round,
little sausage-like and no elongated mitochondria; c’. Enlarged mitochondria lacking normal cristae; and c”. abnormal mitochondrial junctions).
B Quantification plot showed Mut-H USCs contained high levels of mitochondria with impaired cristae structure. C Quantification plot showed
Mut-H USCs contained less elongated and sausage-like mitochondria. D Quantification plot showed Mut-H USCs contained less fission/fusion
junctions. E Intracellular reactive oxygen species (ROS) generation was measured by flow cytometry detecting DCF fluorescence intensity. F
Quantification plot for E. The ROS level was increased in Mut-H USCs. G The percentage of abnormal-MMP cells was measured by flow
cytometry detecting the percentage of green fluorescence of JC-1 dye. H Quantification plot for G. The mitochondrial membrane potential
was decreased in Mut-H USCs USCs. Scale bar: 6 µm. Mitochondria with indicated morphologies were quantified from TEM images. *P < 0.05,
**P < 0.01, ***P < 0.001.
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UPRmt could also function to promote the expansion of defective
mtDNA, leading to accumulation of defective mitochondria,
whereas UPRmt inhibition preferentially depleted defective mtDNA
[31, 32]. The UPRmt could function similarly in our study, where
UPRmt activation in USCs kept high levels of m.3243A > G
mutation, leading to compromised mitochondria and reduced
osteogenesis. On the contrary, inhibition of UPRmt by ATF5
knockdown improved mitochondrial function and promoted
osteogenesis, through mechanisms involving amplified Wnt
signaling. It will be important to study at the molecular level,
whether and how UPRmt regulates m.3243A > G heteroplasmy in
the disease contexts.
Taken together, by establishing human USCs as an in vitro

model to study mitochondria DNA mutations, we revealed an
important role of ATF5-dependent UPRmt in maintaining mito-
chondrial functions and osteogenic potentials. Our study provided
new insights for better understanding osteoporosis in patients
with m.3243A > G mutation and identified ATF5 being a potential
therapeutic target for this pathological condition.

MATERIALS AND METHODS
Human subjects
This study was approved by the Institutional Review Board of Shanghai
Jiao Tong University Affiliated Sixth People’s Hospital and was conducted
in accordance with the Declaration of Helsinki. Written informed consent
was obtained from each subject. Participants were recruited to screen for
the m.3243A > G mutation at the Shanghai Jiao Tong University Affiliated

Sixth People’s Hospital. A total of 13 participants carrying the m.3243A > G
mutation were found, including 12 carriers with diabetes and 1 carrier with
normal glucose tolerance. In addition, thirteen sex- and age-matched
healthy controls with no m.3243A > G mutation, no history of diabetes, no
hearing difficulties and no osteoporosis were also enrolled. The general
clinical characteristics of each participant (e.g., history of diabetes and
complications, treatment, as well as mitochondria-associated symptoms)
were obtained through standard questionnaires and comprehensive
clinical examinations.

m.3243A > G mutation analysis
Peripheral blood leukocytes, saliva, and urine samples were obtained from
all subjects. DNA was extracted from samples using an automated nucleic
acid extraction instrument (Lab-Aid 820; BioV, China). High-resolution
melting analysis was used for rapid m.3243A > G mutation scanning. The
accurate quantification of the heteroplasmy levels of the m.3243A > G
mutation in different samples was determined by pyrosequencing as
previously described [43].

Cell culture
Urine samples from three m.3243A>G participants and three healthy
individuals were collected and cultured. Isolation and amplification of USCs
has been described before [34, 44]. Fresh urine samples (200ml) from
patients were processed immediately by adding penicillin (10 kU/ml) and
streptomycin (10mg/ml) to prevent contamination, then centrifuged and
washed with phosphate-buffered saline (PBS). The sediment containing live
cells was resuspended in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 2 % (vol/vol) fetal bovine serum (FBS; Gibco, USA), 10 ng/
ml of human epidermal growth factor (hEGF), 2 ng/ml of platelet-derived

Fig. 3 Different transcriptional profiles between Mut-H and Mut-L USCs. A Heatmap of whole transcriptome data showing different gene
transcription from Mut-H to Mut-L USCs. B Gene ontology (GO) analysis exhibit different enrichment of gene families in Mut-H USCs. C Gene
ontology (GO) analysis exhibit different enrichment of gene families in Mut-L USCs. D GSK3B and WNT7B mRNA expression decreased in Mut-
H USCs. E A panel of ten genes related to UPRmt was found to express higher in Mut-H USCs. *P < 0.05, **P < 0.01.
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growth factor (PDGF), 1 ng/ml of transforming growth factor (TGF)-β, 2 ng/ml
of basic fibroblast growth factor (bFGF), 0.5 μM hydrocortisone, 25 μg/ml of
insulin, 20 μg/ml of transferrin, 549 ng/ml of epinephrine, 50 ng/ml of
triiodothyronine (T3), L-glu and antibiotics. The cell suspension was plated
into gelatin-coated 96-well plates and incubated at 37 °C in a humidified
atmosphere with 5 % CO2. After 7 days, nonadherent cells were removed by
washing with PBS and colonies derived from single cells were obtained. The
cells were passaged using 0.25% trypsin before confluence.

Identification of USC surface markers by flow cytometry
The protocol to characterize cell surface markers by flow cytometry was
modified [44]. Briefly, cells were blocked with cold PBS containing 1% bovine
serum albumin (BSA) for 30min, then incubated with the following
fluorescence-conjugated antibodies (Becton Dickinson, USA) for 1 h: CD29-
PE, CD73-PE, CD90-PE, CD44-FITC, CD13-FITC, SSEA4-PE, CD31-FITC, CD45-FITC,
CD34-PE and HLA-DR-PE. Isotype-matched monoclonal antibodies were used
as controls (BD Biosciences). Cells were washed to remove unbound antibodies
and analyzed by using Guava easyCyte™ (Millipore, Billerica, MA, USA).

Karyotype analysis
Karyotype analysis was used to test chromosomal stability of USCs at
passage 9. Cells were incubated in 20 µg/ml colchicines for 4 h at room
temperature and then treated with 0.075mM potassium chloride for
15min, finally fixed with methanol-to-acetic acid solution (3:1). Geimsa
staining were performed to visualize G-banding. Images were captured by
microscope (BX51; Olympus, Japan).

RNA sequencing and library preparation
Total RNA extraction. Total RNA was extracted from the tissues using
Trizol (Invitrogen, Carlsbad, CA, USA) according to manual instruction.

About 60mg of tissues were ground into powder by liquid nitrogen in a
2ml tube, followed by being homogenized for 2 min and rested
horizontally for 5 min. The mix was centrifuged for 5 min at 12,000 × g at
4 °C, then the supernatant was transferred into anew EP tube with 0.3 ml
chloroform/isoamyl alcohol (24:1). The mix was shacked vigorously for 15 s,
and then centrifuged at 12,000 × g for 10 min at 4 °C. After centrifugation,
the upperaqueous phase where RNA remained was transferred into a new
tube with equal volume ofsupernatant of isopropyl alcohol, then
centrifuged at 13,600 rpm for 20min at 4 °C. Afterdeserting the super-
natant, the RNA pellet was washed twice with 1 ml 75% ethanol, then the
mix was centrifuged at 13,600 rpm for 3min at 4 °C to collect residual
ethanol, followed by thepellet air dry for 5-10min in the biosafety cabinet.
Finally, 25–100 µl of DEPC-treatedwater was added to dissolve the RNA.
Subsequently, total RNA was qualified and quantified using a Nano Drop
and Agilent 2100 bioanalyzer (Thermo Fisher Scientific, MA, USA).

mRNA library construction. Oligo(dT)-attached magnetic beads were used to
purified mRNA. Purified mRNA was fragmentedinto small pieces with fragment
buffer at appropriate temperature. Then First-strand cDNA wasgenerated using
random hexamer-primed reverse transcription, followed by a second-strand
cDNAsynthesis. afterwards, A-Tailing Mix and RNA Index Adapters were added
by incubating to endrepair. The cDNA fragments obtained from previous step
were amplified by PCR, and productswere purified by Ampure XP Beads, then
dissolved in EB solution. The product was validated on the Agilent
Technologies 2100 bioanalyzer for quality control. The double stranded PCR
productsfrom previous step were heated denatured and circularized by the
splint oligo sequence to get the final library. The single strand circle DNA (ssCir
DNA) was formatted as the final library. The final library was amplified with
phi29 to make DNA nanoball (DNB), which had >300 copies of one molecular,
DNBs were loaded into the patterned nanoarray and single end 50 basesreads
were generated on BGIseq500 platform (BGI-Shenzhen, China)

Fig. 4 Mut-H USCs had elevated UPRmt and reduced GSK3B and WNT7B. A The mRNA levels of UPRmt target genes (ATF5, HSP70, HSP60 and
LONP1) were elevated in Mut-H USCs. Total RNAs were extracted from Ctr, Mut-L and Mut-H USCs, and expression of UPRmt target genes were
quantified through real-time quantitative PCR (RT-qPCR). B–G The protein levels of UPRmt target genes (ATF5, HSP70, HSP60 and LONP1) were
elevated in mutant-high USCs. Total protein lysates were extracted from USCs and protein levels were analyzed by western blot. β-actin served as
internal loading control. C, E, G were quantification plot for B, D, F, respectively. H mRNA levels of WNT7B were reduced in Mut-H USCs. I Protein
levels of p-GSK3β were decreased in Mut-H USCs. GADPH serves as internal control. J Quantification plot for I. *P< 0.05, **P < 0.01, ***P < 0.001.
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Transmission electron microscopy (TEM)
Cells were fixed in 2.5% glutaraldehyde, and then loaded to copper grids
coated with Formvar. After dehydration through a graded series of ethanol,
the cell samples were embedded in Epon. Ultrathin sections were stained
with 2% uranyl acetate and lead citrate, then examined by TEM (H-7650,
HITACHI, Japan)

ROS measurement
DCFH-DA probe was used for intracellular ROS measurement. Briefly, cells
were washed with PBS and harvested, followed by incubation with 10 µM
DCFH-DA at 37 °C for 30min in the dark. Cells were then washed with PBS
and resuspended in DMEM. Fluorescence intensity was detected by a
Fluorescence Microscope (Nikon Ti-U, Tokyo, Japan) with excitation (Ex)
and emission (Em) wavelengths of 488 and 525 nm and the images were
obtained with a Nikon Digital Sight DS-Fi2 camera. All fluorescence
intensities were measured by ImageJ. Cellular ROS contents were also
measured using a Cytomix FC500 flow cytometer.

Mitochondrial membrane potential measurement. Tetra-ethyl-benz-imida-
zolyl-carbocyanine iodide (JC-1) was used to measure mitochondrial
membrane potential as described before [45, 46]. USCs in DMEM were
incubated with an equal volume of staining solution containing 5 μg/ml
JC-1 at 37 °C for 20min. Cells were washed three times with PBS and
resuspended in DMEM. The samples were observed under a Fluorescence
Microscope with Ex/Em wavelengths of 490/530 nm for JC-1 monomers
showing green fluorescence and Ex/Em wavelengths of 525/590 nm for

JC-1 aggregates showing red fluorescence. The ratio of red fluorescence
and green fluorescence represented the ΔΨm of USCs. Fluorescence
intensities were measured by ImageJ software [45]. The samples were also
analyzed with the Cytomix FC500 flow cytometer [47]. Mitochondrial
membrane potential abnormality was expressed as “increases in the
percentage of abnormal-MMP cells”.

Real-time quantitative PCR (RT-qPCR). Total RNA was isolated by using
Trizol and reverse transcribed by using HiScript II Q RT SuperMix for qPCR
(Vazyme, China). RT-qPCR was performed by using AceQ Universal SYBR
qPCR Master Mix (Vazyme, China) with corresponding primer sets, which
can be found in the supplemental Table S4. Gene expression levels were
calculated using the 2−ΔΔCt method (Livak and Schmittgen 2001). All
assays were repeated at least three times.

Western blotting
The total proteins were extracted from USCs using RIPA Lysis Buffer
(Beyotime, Shanghai, China). Total cell lysates were separated on 10%
sodium dodecyl sulfate polyacrylamide gel electrophoresis and trans-
ferred onto polyvinylidene fluoride membranes. After blocking with 5%
nonfat dried milk in TBST, blots were probed with primary antibodies to
ATF5, mtHSP70, HSP60, LONP1, β-actin (Abcam, USA. ATF5: ab184923,
mtHSP70: ab171089, HSP60: ab190828, LONP1: ab103809, β-actin:
ab8226) overnight at 4 °C and secondary antibody (Abcam, Cambridge,
MA, USA) incubation at 37 °C for 1 h according to standard protocols.

Fig. 5 ATF5 knockdown reversed mitochondrial function in Mut-H USCs. A ATF5 knockdown decreased UPRmt related gene expression.
USCs were transfected with siRNA specific to ATF5 for 48 h and the mRNA levels of UPRmt related genes (ATF5, HSP70, HSP60 and LONP1)
expression were quantified by RT-qPCR. B Mitochondrial membrane potential was increased by ATF5 knockdown. USCs were transfected with
siRNA specific to ATF5 for 48 h and mitochondrial membrane potential was measured using fluorescence probe JC-1 assay system. Red color
indicates cells with normal mitochondrial membrane potential while green indicates cells with loss of mitochondrial membrane potential. C
Quantification plot for B. D Intracellular ROS was decreased by ATF5 knockdown. USCs were transfected with siRNA specific to ATF5 for 48 h
and stained with DCFH-DA. Green color indicate ROS-positive cell population. E Quantification plot for D. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001. Scale bar= 50 um.
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Immunoreactive proteins were visualized using an electrochemilumines-
cence system (Tinon, China).

siRNA knockdown
The siRNAs used for downregulation of the capsid genes as well as the
negative control siRNA were obtained from GenePharma, Shanghai,
China (ATF5 siRNA: GCGAGUUUGAUUUCAAGCUTT, AGCUGUGAAAUCAAC
UCGCTT). The transient transfection of siRNA was performed with the
siRNA-Mate transfection reagent (GenePharma) according to manufac-
turer’s instruction.

Osteogenic differentiation and identification
When USCs reached 80% confluence, cells were induced to differentiated
into osteogenic lineage cells by osteogenic induction media (Cyagen
Biosciences, China). To investigate the effect of inductive osteogenesis by
gene transfection only, ATF5 siRNA transduced USCs were cultured in
osteogenic induction media at 37 °C and 5% CO2. The medium was
replaced every two to three days. After 14 days induction, alkaline
phosphatase staining was performed by an Alkaline Phosphatase Kit
(Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s
instructions. After 21 days induction, Alizarin Red S staining was utilized to
detect calcified matrix deposition as described before [48]. Briefly, cells
were washed with PBS and fixed with 4% formaldehyde solution for

10min, then stained with 1% Alizarin Red S for 5 min. Cells were washed
with PBS thoroughly to remove unbound dye and microscopic imaged.

Statistical analysis
Data were expressed as the mean ± STD or as median (interquartile range
25–75%) as appropriate. Differences between m.3243A>G carriers and
controls were determined using the Student’s t-test or the Mann–Whitney
U-test. Differences among mutant-high, mutant-low and control were
analyzed by one-way ANOVA with Tukey’s correction for multiple compar-
isons. All P-values were two-sided, and values of P< 0.05 were considered
statistically significant (*P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001). All
statistics were performed with GraphPad Prism 8.
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