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Activation of pancreatic digestive zymogens within the pancreatic acinar cell may be an early
event in the development of pancreatitis. To detect such activation, an immunoblot assay has
been developed that measures the relative amounts of inactive zymogens and their respective
active enzyme forms. Using this assay, high doses of cholecystokinin or carbachol were found to
stimulate the intracellular conversion of at least three zymogens (procarboxypeptidase Al,
procarboxypeptidase B, and chymotrypsinogen 2) to their active forms. Thus, this conversion
may be a generalized phenomenon of pancreatic zymogens. The conversion is detected within
ten minutes of treatment and is not associated with changes in acinar cell morphology; it has
been predicted that the lysosomal thiol protease, cathepsin B, may initiate this conversion.
Small amounts of cathepsin B are found in the secretory pathway, and cathepsin B can activate
trypsinogen in vitro; however, exposure of acini to a thiol protease inhibitor (E64) did not block
this conversion. Conversion was inhibited by the serine protease inhibitor, benzamidine, and by
raising the intracellular pH, using chloroquine or monensin. This limited proteolytic conversion
appears to require a low pH compartment and a serine protease activity. After long periods of
treatment (60 minutes), the amounts of the active enzyme forms began to decrease; this
observation suggested that the active enzyme forms were being degraded. Treatment of acini
with E64 reduced this late decrease in active enzyme forms, suggesting that thiol proteases,
including lysosomal hydrolases, may be involved in the degradation of the active enzyme forms.
These findings indicate that pathways for zymogen activation as well as degradation of active
enzyme forms are present within the pancreatic acinar cell.

INTRODUCTION

In studies performed almost 100 years ago, Mouret found that excessive choliner-
gic stimulation was associated with the development of pancreatic injury [1]. The
reasons behind the development of such injury were unknown. Mouret, however,
suggested that activation of trypsin within the pancreas might be an important event
in this process. Subsequently, with some supporting evidence, it has been predicted
that an important initial event in the development of pancreatitis is the intrapancre-
atic proteolytic conversion of digestive zymogens to their active forms [2-4]. Steer
and Meldolesi have popularized the notion that this conversion may take place
within the pancreatic acinar cell [5]. Two major mechanisms have been proposed to
initiate the proteolytic conversion of zymogens within the acinar cell: (1) trypsinogen
activation by the lysosomal hydrolase cathepsin B [6] or (2) trypsinogen autoactiva-
tion [5]. Direct evidence for either type of proteolytic event within the acinar cell has,
however, been lacking.
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TABLE 1
The pH of Intracellular Compartments within the

Pancreatic Acinar Cell

pH pH
Compartment (from [5]) (from [6])

Nucleus 7.0 7.0
Golgi stack 7.0 6.8
Condensing vacuoles 5.6 6.2
Zymogen granules 6.5 6.6
Lysosomes 5.3 ND

Following incubation in the weak base DAMP, pancre-
atic acini were fixed in glutaraldehyde, embedded in
LR gold, and processed for immune electron micros-
copy, using a gold-rabbit anti-mouse secondary anti-
body. The number of gold particles was counted over
each compartment, and the relative pH was calculated
as described [5].

The aim of our studies has been to develop a system in which intracellular
proteolysis of pancreatic zymogens may be detected. The design and interpretation
of these studies is based on a body of knowledge that has established the pancreatic
acinar cell as a paradigm of a protein-synthesizing and -exporting system [7].

BACKGROUND

Pancreatic Proteins: Synthesis, Sorting, and Transport

Digestive Secretory Proteins The vectorial pathway of protein synthesis, storage,
and export within the pancreatic acinar cell has been reviewed [8]. Pancreatic
digestive zymogens are synthesized on ribosomes attached to the endoplasmic
reticulum and released into its lumen. Following transfer to the Golgi complex,
digestive enzymes are sorted away from other proteins, such as lysosomal hydrolases,
and directed into the secretory compartment. Most sorting of digestive zymogens
into the secretory compartment is thought to take place within the Golgi complex.
The estimated pH varies among the different compartments along the synthetic
pathway [9,10] and is summarized in Table 1. In the pancreatic acinar cell, the pH is
acidic within the Golgi complex and falls further in the condensing vacuoles.
Although the pH increases in the zymogen granules, they are still slightly acidic.
While the roles of these pH variations are not entirely clear, a body of evidence
suggests that the pH in various intracellular compartments plays an important role in
protein sorting in many systems. In the region adjacent to the trans-Golgi complex,
small vesicles containing digestive zymogens appear to fuse and form larger vesicles,
known as condensing vacuoles. As these condensing vacuoles move toward the apical
pole, they become more electron-dense and smaller. The decrease in size is due in
part to the pinching off of membrane, which presumably returns to the Golgi
complex. These mature zymogen granules represent the final storage compartment
for digestive zymogens.
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Lysosomal Hydrolases Lysosomal hydrolases travel through the same synthetic
compartments as that described for digestive zymogens until they reach the Golgi
complex. At that site, lysosomal enzymes undergo a specific covalent modification
that separates these enzymes from the digestive enzymes destined for export. During
biosynthesis, mannose residues, which are phosphorylated on their 6 carbon atom,
are added to the oligosaccharide chains of lysosomal enzymes by domain-specific
enzymes, which recognize only lysosomal hydrolases. In the Golgi complex, these
mannose 6-phosphate residues are recognized by mannose 6-phosphate receptors,
which remove them from the secretory pathway and target them to lysosomes [11].
The receptors accomplish this sorting by specifically binding to the lysosomal
enzymes in the Golgi complex and transporting them to an acidic pre-lysosomal
compartment. The low pH releases the mannose 6-phosphate receptor from the
lyosomal enzyme, and the receptor recycles back to the Golgi complex for another
round of sorting. The hydrolases then reach the primary lysosome through a
non-receptor-mediated pathway. Under normal conditions, this sorting mechanism
efficiently sequesters lysosomal enzymes. In the pancreatic acinar cell, however, this
separation appears not to occur with complete fidelity, even under normal conditions
[12]. Several percent of lysosomal hydrolase activity may be found in the secretory
compartment even under basal conditions [13]. The mechanism for entry of lyso-
somal enzymes into the secretory compartment is unknown. Furthermore, since most
lysosomal enzymes exhibit an acidic pH optimum, it is unclear if the lysosomal
enzymes are active in the zymogen granule.

Effect ofNeurohumoral Stimulation on Digestive Zymogen Release

The major function of the pancreatic acinar cell is the release of digestive
zymogens in response to a meal. The principal mediators of this secretion are
cholecystokinin and acetylcholine. Both of these agents have a direct effect on the
acinar cell. Treatment of pancreatic acinar cells with either cholecystokinin or
acetylcholine results in exocytosis of zymogen granules and stimulation of protein
secretion. Both of these natural ligand agonists generate a biphasic dose response for
enzyme secretion. Following maximal stimulation with either ligand, there is a peak
release of secretory protein. Treatment with higher doses, known as hyperstimula-
tion, results in retention of secretory products within the acinar cell and diminished
amounts of protein secretion [14]. The mechanism of this high-dose inhibition of
secretion is unknown. Similarly, these secretagogues also exhibit a biphasic secretory
dose-response curve in vivo and inhibit pancreatic secretion at very high doses
[15,16]. It is notable that treatment of animals with these high doses of secretagogue
also generates pancreatitis.

Cholecystokinin interacts with at least two major receptor forms on the pancreatic
acinar cell. Its interaction with a high-affinity form of the receptor results in
stimulation of acinar cell enzyme secretion. When cholecystokinin interacts with the
low-affinity receptor form, secretion is diminished [17]. The interaction of cholecys-
tokinin with its low-affinity receptor form is also associated with the development of
experimental pancreatitis [18]. It has been predicted that the pancreatitis induced by
cholecystokinin as well as other agents is initiated by the aberrant intracellular
activation of pancreatic zymogens. This activation would require intracellular prote-

409



GORELICK ET AL.

olysis and may require conditions now established for several intracellular proteo-
lytic pathways.

Pancreatic Proteins: Proteolytic Processing

Proteolytic events may be divided into two major categories: (1) limitedproteolysis,
a mechanism often used for the gene-ration of biologically active proteins or peptides
from inactive precursor molecules, and (2) proteolytic degradation.

Limited Proteolysis Many proteins are synthesized in an inactive precursor
form (zymogen) that is later converted to its active state by limited proteolytic
cleavage. This type of proteolytic event may occur within the cell or extracellularly.
For peptide hormones and neurotransmitters such as endorphins, this proteolysis
takes place within the cell along the synthetic pathway. The intracellular processing
events responsible for generating biologically active peptides utilize a complex
proteolytic cascade, often involving specific endoproteases. The activity of some of
the proteases along this pathway may be influenced by pH or divalent cations. Thus,
some steps of limited intracellular proteolysis may be regulated.

Limited proteolysis is also a mechanism for activating a variety of enzymes by
catalyzing the removal of internal inhibitory domains from enzyme precursors known
as zymogens. The activation of many pancreatic digestive enzymes within the lumen
of the small intestine is one of the best-known examples of this form of limited
proteolysis. The first step in this activation occurs when pancreatic zymogens reach
the small intestine. Enterokinase, a protease found only in the proximal small bowel,
proteolytically cleaves trypsinogen to generate trypsin. In turn, trypsin activates an
enzyme cascade by removing the inhibitory domain from other pancreatic zymogens.
This elegant mechanism helps to assure that pancreatic digestive zymogens become
active only within the small intestine.

Within the acinar cell, other mechanisms have the potential to allow increased
trypsinogen to be activated and initiate a proteolytic cascade. These mechanisms
include the activation of trypsinogen through either autocatalysis or cleavage by
lysosomal hydrolases. Theoretically, these effects may be magnified by decreased
pancreatic trypsin inhibitor activity.
Some zymogens have small, but measurable amounts of enzymatic activity. Thus,

under the appropriate conditions, the catalytic activity present within trypsinogen
alone is sufficient to support its autoactivation [19]. In the normal physiological state,
this autoproteolysis occurs at a low rate; it is increased at an acidic pH and is
dependent on divalent cations. Trypsinogen may also be activated by other intracel-
lular hydrolases. The best example of this process utilizes cathepsin B, a lysosomal
hydrolase that can convert trypsinogen to trypsin [20]. The optimum conditions for
the activation of trypsinogen by cathepsin B require an acidic pH [19]. Thus, the
major pathways having the potential to generate active trypsin within the acinar cell
both exhibit an acidic pH.

Pancreatic trypsin inhibitor is co-packaged with trypsinogen in the secretory
pathway. When trypsin is generated, pancreatic trypsin inhibitor blocks trypsin
activity by binding to its active site. Thus, premature activation of trypsinogen may be
quenched by the endogenous pancreatic trypsin inhibitor. There is, however, suffi-
cient pancreatic trypsin inhibitor to block less than 5 percent of potential cellular
trypsin activity. Furthermore, the interaction of pancreatic trypsin inhibitor with
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trypsin is pH-dependent, diminishing at acidic pH. Thus, under low pH conditions or
in the event that large amounts of trypsinogen were activated, the ability of
pancreatic trypsin inhibitor to block trypsin activity could be easily overwhelmed.
Under the appropriate conditions, any of these pathways could promote the prema-
ture activation of the zymogen cascade within the pancreatic duct or the acinar cell
itself.

Proteolytic Degradation The intracellular degradation of proteins has several
important functions: (1) degradation of endogenous or exogenous proteins that are
potentially harmful to a cell, (2) limiting the amount of protein available for either
secretion or intracellular functions, and (3) recycling amino acids for utilization in
other proteins.

Protein degradation takes place both within membrane-bound compartments and
within the cytoplasm. The major enzymes responsible for protein breakdown in
membrane-bound compartments are lysosomal hydrolases. Proteins may be directed
to lysosomal compartments in the pancreas by (1) traveling through the endocytic
pathway, (2) fusion of random membrane compartments (autophagy) or mature
zymogen granules (crinophagy) with lysosomes, and (3) specific targeting signals on
cytoplasmic proteins that direct them to lysosomes.

Mixing of lysosomal hydrolases with digestive zymogens has been observed in the
exocrine pancreas. For example, under basal conditions, some lysosomal hydrolases
are targeted to the secretory compartment. Under conditions which induce experi-
mental pancreatitis, the amount of lysosomal hydrolases increases within the secre-
tory compartment [21]. This increase may occur through mis-sorting of lysosomal
hydrolases into the secretory compartment at the level of the Golgi complex or
through abnormal autophagic fusion events. In that respect, both crinophagic and
autophagic figures are often described in experimental models of pancreatitis [5].
Some studies have found that these figures contain both digestive zymogens and
lysosomal hydrolases [5].

This background information indicates that two general classes of proteolytic
events have the potential to influence intracellular zymogen proteolysis. First,
digestive zymogens may undergo limited proteolysis within the acinar cell and be
converted to active enzyme forms. Second, additional proteolytic events may degrade
active enzyme forms.

IN VITRO EFFECT OF HIGH DOSES OF CHOLECYSTOKININ
AND CARBACHOL ON ZYMOGEN CONVERSION

Stimulation ofLimited Proteolytic Conversion ofZymogens

To examine the ability of neurohumoral agents to regulate the intracellular
proteolysis of pancreatic zymogens, isolated pancreatic acini were treated with
various doses of either the fully active cholecystokinin octapeptide or the cholinergic
agonist, carbachol. A sensitive immunoblot technique was developed for the purpose
of measuring the conversion of pancreatic zymogens to forms of lower molecular
weight [22]. This assay quantitatively detects differences in the molecular weight of a
zymogen following its proteolysis. The antibodies used in this study recognize both
the zymogen and its active enzyme form. As shown in Fig. 1, hyperstimulation of
isolated acini by either cholecystokinin or carbachol for 30 minutes stimulated a
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Carboxypeptidase Al Carboxypeptidase B Chymotrypsin 2

ICot CARB CCK Cont CARB CCK Cont CARB CCK

FIG. 1. Hyperstimulation of pancreatic acini is associated with the proteolytic processing of
several zymogens. Following treatment with media alone (Cont), carbachol hyperstimulation
(CARB, 10-3M), or cholecystokinin octapeptide hyperstimulation (CCK, 10-7M) for 30 min-
utes, acinar proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electropho-
resis and processed for immunoblot analysis as described [22]. Immunoblots were incubated in
antisera that specifically label zymogens as well as their active enzyme forms, and bound
antibody was detected, using 1251-goat anti-rabbit IgG followed by autoradiography. The darkly
labeled bands surrounded by the heavy brackets indicate the zymogens. The more lightly
labeled bands marked by the interrupted brackets are the proteolytic products generated by
hyperstimulation.

dramatic increase in lower molecular forms of at least three zymogens. The electro-
phoretic mobility of these species of lower molecular weight each corresponds to that
reported for their respective active enzyme forms.

Additional studies performed in our laboratory indicate that the species of lower
molecular weight generated within acini are likely to represent active enzyme forms.
Exposure of purified pancreatic zymogens to trypsin has been previously shown to
result in the generation of active enzymes. After similar treatment and immunoblot
analysis, a discrete band of 35 kD with carboxypeptidase Al immunoreactivity is
generated [22]. By the use of two-dimensional immunoblot analysis, this newly
generated band was found to co-migrate with the 35 kD species detected in
pancreatic acini. Using the same analysis, the 35 kD procarboxypeptidase immunore-
active species generated in acini was also found to co-migrate with purified recombi-
nant carboxypeptidase Al [22]. Together, these findings strongly suggest that the
forms of lower molecular weight of these enzymes generated by hyperstimulation are
likely to represent active forms of the respective zymogens.
To determine the site of this conversion, pancreatic acini were carefully separated

from the incubation media following stimulation. The forms of lower molecular
weight of the enzymes were detectable only within an acinar pellet and not in the
media. Thus, this conversion appears to take place within isolated acini and is likely
to be an intracellular event.
The amount of conversion to forms of lower molecular weight varied with the

individual zymogen studied. In some experiments, as much as 10 percent of the
cellular pool of carboxypeptidase Al was converted to a form of lower molecular
weight. In similar assays of carboxypeptidase B and chymotrypsinogen 2, the amount
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of conversion was considerably less, rarely exceeding 2 percent of the cellular pool.
Since the conversion was qualitatively similar for all the zymogens examined, our
subsequent studies used only measurements of carboxypeptidase to characterize this
event.

Time Course of Conversion

The enhanced conversion observed following hyperstimulation occurs rapidly and
was often significantly above control values following as little as ten minutes of
stimulation (Fig. 2). The peak amount of conversion occurs within 30 to 45 minutes;
by 60 minutes, the amount of the proteins of lower molecular weight began to decline
toward control levels. Since the forms of lower molecular weight of the enzyme were
not released into the media, this decline at the later time periods suggests that they
are being degraded. Thus, the time course depicted in Fig. 2 may reflect a dynamic
process of both conversion of zymogens to forms of lower molecular weight and the
subsequent degradation of the species of low molecular weight.

Protease andpH Requirements for This Conversion

The proteolytic activity and pH requirements for conversion of carboxypeptidase
A were next examined (Fig. 3). The addition of soybean trypsin inhibitor, a 21 kD cell
impermeant serine protease inhibitor, did not alter the stimulated conversion.
Addition of the peptide benzamidine, a small-cell permeant serine protease inhibi-
tor, completely blocked this conversion. The effects of benzamidine occurred without
altering the secretory response of the acinar cell to cholecystokinin (CCK). Addition
of E64, a cell-permeant thiol protease inhibitor [23], did not block conversion of
procarboxypeptidase Al to lower molecular forms. Thus, the conversion initiated by
cholecystokinin appears to require a serine, but not a thiol protease activity.
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FIG. 3. Effect of protease
inhibitors on the conversion
of carboxypeptidase Al fol-
lowing CCK hyperstimula-
tion for 30 minutes. Acini
were pre-incubated for ten
minutes with either the ser-
ine protease inhibitors
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To examine the pH requirements for this conversion, acini were exposed to either
monensin or chloroquine; both of these agents raise the pH of acidic intracellular
compartments. Both treatments blocked the conversion stimulated by high doses of
cholecystokinin (Fig. 4). These findings suggest that, in addition to a serine protease
activity, this conversion requires a low pH compartment.

Effect ofBlocking Thiol Proteases on Zymogen Conversion

The effect of inhibition of thiol proteases on the time course of procarboxypepti-
dase Al conversion was examined by pre-incubating acini in E64. As shown in Fig. 5,
this treatment resulted in greater recovery of carboxypeptidase Al at later time
points. This dose of E64 was sufficient to block virtually all thiol protease activity
within acinar cells [22]. Pre-treatment of cells with E64 did not change the secretory
response (amylase release) in response to carbachol, indicating that E64 was
influencing a post-receptor event [data not shown].
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Acinar Morphology Following Secretagogue Exposure

To examine the effects of hyperstimulation on acinar cell morphology, acini were
hyperstimulated by carbachol for various periods of time, fixed, sectioned, and
stained (Fig. 6). Examination of control tissue (Fig. 6a) demonstrates darkly stained,
apically localized zymogen granules. In some cells, clear vacuoles of various sizes are
evident in the region of the Golgi complex. The number or size of these vacuoles did
not, however, change over the time course of treatment. Notably, blebbing of the
basolateral membranes was observed following 30 minutes of hyperstimulation.
Identical results were observed in acini following hyperstimulation by CCK.

DISCUSSION

An important feature of the pancreatic acinar cell is the safeguarding measures
that are taken to prevent the intracellular activation and release of digestive
enzymes. These protective mechanisms include: (1) synthesis of many digestive
enzymes as inactive zymogens, (2) segregation of digestive enzymes into a distinct
membrane-bound compartment, (3) condensation of secretory proteins, (4) co-
packaging of protease inhibitors with digestive zymogens, and, from the present
study, (5) co-packaging of enzymes that degrade active enzyme forms. It has been
predicted that, under pathological conditions, limited proteolysis may lead to
zymogen activation to a degree that overwhelms the protective mechanisms of the
acinar cell. These active enzymes may then attack the acinar cell and initiate
pancreatitis.
Our studies indicate that several classes of proteolytic events may influence the

intracellular processing of pancreatic zymogens. The first event involves the limited
proteolytic cleavage of at least several zymogens to active enzyme forms. This event
has been designated zymogen conversion. Although no carboxypeptidase B or
chymotrypsinogen 2 is present in the basal state, a small amount of carboxypeptidase
Al is present within acini even under control conditions. Carboxypeptidase Al is
distinct in its requirement for a secondary hydrolysis step prior to expressing
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FIG. 6. Effect of hyperstimulation on acinar cell morphology. Following treatment with buffer control
or carbachol hyperstimulation, acini were fixed in glutaraldehyde (3 percent in cacodylate buffer),
dehydrated, and embedded in Epon. Sections were stained with toluidene blue. a. Control. b. Five
minutes' hyperstimulation. c. 15 minutes' hyperstimulation. d. 30 minutes' hyperstimulation. No
differences in acinar cell vacuolization were observed over this time course.

enzymatic activity [24]. Thus, the immunological detection of carboxypeptidase Al
within the acinar cell, even in the basal state, does not indicate that active enzyme is
present. To state that active enzymes are being generated by this treatment will
require direct measurements of enzymatic activities in our systems. These studies are
under way.
The intracellular site of this enzyme is unknown. It has been suggested that a low

pH compartment is required for such conversion. This requirement would favor an
environment known to have a low pH, such as the Golgi complex or the condensing
vacuole. Under pathologic conditions, however, pH changes within other compo-
nents of the secretory pathway may also fall to levels sufficient to support zymogen
conversion.
Another feature of this conversion is that only a limited amount of the zymogen

pool is converted. There are several explanations for this observation, including: (1)
the conversion takes place within a distinct and limited pool of zymogens, and (2)
co-factors required for this conversion are depleted. Several distinct pools of
zymogens are present within acinar cells. That found in the condensing vacuole exists
under some of the lowest pH conditions in the cell and has not yet undergone the
tight packing present in the secretory granule. Other candidate pools are those
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destined for constitutive secretion or export in the basal state [25,26]. Although little
is known about this pool, it appears that some of the secretory products from this
pool are different from those contained in storage granules. Specific probes, such as
monoclonal antibodies that distinguish between zymogens and active enzyme forms,
are required to localize the site of this conversion.

Limited Proteolysis ofZymogens to Active Enzyme Forms

All three zymogens examined in this test system showed some conversion to active
enzyme forms under conditions of hyperstimulation. Therefore, it is likely that this
phenomenon occurs with other digestive zymogens and reflects the limited proteo-
lytic conversion of the zymogen cascade.
The biochemical events regulating this conversion are unknown. The major events

which have been predicted to mediate such a conversion are: (1) trypsinogen
autoactivation, (2) trypsinogen activation by the lysosomal hydrolase cathepsin B,
and (3) diminished activity of pancreatic trypsin inhibitor. Since the first two events
proceed optimally at a low pH, the inhibitory effect of chloroquine and monensin
does not distinguish between these mechanisms. The dramatic effect of benzami-
dine, a serine protease inhibitor, on this conversion favors a major role for a serine
protease in this conversion, however. Conversely, the lack of inhibition by the thiol
protease inhibitor, E64, makes it unlikely that the lysosomal thiol protease cathepsin
B has a role in this conversion. Finally, this conversion occurs extremely rapidly,
taking place prior to any of the events such as autophagy or crinophagy that are
associated with the redistribution of lysosomal enzymes. Thus, this conversion is
likely to take place in a pre-formed compartment along the secretory pathway.
The current findings favor a mechanism for the initiation of this conversion which

involves the autoactivation of trypsinogen by a serine protease (Fig. 7). Since small
amounts of the active enzyme forms are found within the acinar cell even in the basal
state, it is possible that the conversion represents amplification of an ongoing event.
For example, during zymogen granule condensation, the low pH of the condensing
vacuole may allow for some zymogen conversion. If the normal process of condensa-
tion, including raising the vacuole pH, is inhibited by hyperstimulation, the nominal
zymogen conversion found in this compartment may be amplified. A lower pH would
also diminish the affinity of the pancreatic trypsin inhibitor for trypsin and would
decrease the inhibition of active enzymes. Thus, the enhanced conversion may reflect
a shift in dynamic equilibrium of this system to conditions which favor the generation
of active enzyme forms. This model would help to explain the necessity for multiple
safety mechanisms to eliminate enzymes which become active within the secretory
compartment.

Proteolytic Degradation ofActive Enzyme Forms

One of these safety mechanisms may be additional proteolytic events that specifi-
cally degrade active enzyme forms. Our preliminary studies indicate that, following
long periods of hyperstimulation, the amounts of carboxypeptidase Al decrease. The
most plausible explanation for this decrease is the degradation of carboxypeptidase
Al. The addition of the thiol protease inhibitor E64 to the incubation media
dramatically reduces the disappearance of carboxypeptidase Al following prolonged
stimulation. These findings suggest that a thiol protease activity may play an
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CCK carbachol
Hyperstimulation

FIG. 7. Theoretical diagram for proteolytic zymogen conversion in
pancreatic acinar cells. Hyperstimulation of the acinar cell by either
cholecystokinin (CCK) or carbachol stimulates pathways that lead to
zymogen conversion. Although these agents stimulate enzyme secretion in
lower doses, hyperstimulation is associated with blocked secretion and
retention of enzymes within the acinar cell. The expanded panels to the
right reflect conclusions drawn from data presented in the text. Limited
proteolytic zymogen conversion is dependent on a serine protease activity
and a low pH compartment. Indirect evidence suggests that the first step
in this conversion may be trypsinogen autoactivation. The serine protease
and low pH have been assigned the same compartment as the conversion.
These factors may, however, influence the conversion at any point along a
signaling pathway. In a second proteolytic step, active enzyme forms are
degraded and inactivated by a thiol protease. It is possible that the
lysosomal hydrolases, many of which are thiol proteases, found within the
zymogen granule are responsible for degradation of active enzyme forms.

important role in degrading zymogens that have been converted to an active form
within the cell.
The identity of the thiol protease and the site of this enzyme degradation are

unknown. Many lysosomal hydrolases as well as the cytoplasmic protease calpain are
thiol proteases and are candidates for mediating this reaction. The lysosomal
proteases that are present in the secretory compartment may act to degrade rapidly
any enzymes that become active within that compartment. This role for lysosomal
hydrolases contrasts with the central role they have been previously assigned in
initiating zymogen activation. The calpain family of cytoplasmic thiol proteases
provides a mechanism to degrade active enzymes that have escaped the limiting
membrane of the zymogen granule. Thus, thiol proteases contained within the
zymogen granule or the cytoplasm provide potential pathways for protecting the
pancreatic acinar cell against the intracellular activation of zymogens.

Since it appears that lysosomal enzymes are present in the zymogen granule even
in the basal state [12,13] an unsolved question regards their enzymatic activity in this
compartment. One possibility is that the lysosomal enzymes are inactive in the basal
state, but only become active under the same conditions required for zymogen
conversion, such as a decrease in pH.
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Relevance to Pancreatitis

It is attractive to speculate that the enhanced proteolysis detected within hyperstim-
ulated acini is a mechanism responsible for some of the damage observed in
hyperstimulation pancreatitis. The two experimental systems share some similarities.
Both require high doses of neurohumoral agonists. With regard to cholecystokinin,
both systems appear to utilize the same receptor subtype. For example, the hyperstim-
ulation pancreatitis elicited in the rat requires cholecystokinin to interact with its
low-affinity receptor form [18]. In preliminary studies, we observed that the OPE
analog of cholecystokinin, a peptide that stimulates the high- but not the low-affinity
form of the cholecystokinin receptor, does not stimulate the conversion of zymogens
in isolated acini. Similar to the observations made in vivo, when the OPE peptide was
co-administered with cholecystokinin to isolated acini, it blocked the proteolytic
effects of hyperstimulation. Thus, both the conversion reaction detected in pancre-
atic acini in vitro and pancreatitis in vivo appear to require the interaction of
cholecystokinin with its low-affinity receptor.

Therefore, the conversion reaction described in our studies provides an attractive
potential mechanism for generating active enzymes within the pancreatic acinar cell.
Further studies are needed, however, to clarify the relationship between the in vivo
and in vitro systems. A prediction derived from the in vitro studies is that the serine
protease inhibitor, benzamidine, might block hyperstimulation pancreatitis in intact
animals. The same studies indicate that the thiol protease inhibitor, E64, should have
little effect on this form of pancreatitis and may even make it worse. It would be
useful to detect the conversion of zymogens to their lower molecular weight forms
using in vivo models of pancreatitis. Our preliminary studies indicate, however, that
this task may be difficult since within acini the converted forms are (1) generated
transiently and (2) appear to be degraded immediately when acini are manipulated.
An additional confounding factor is the variability in the relative amounts of basal
zymogen conversion that have been observed among individual animals. Despite
these technical difficulties, it will be important to pursue studies that attempt to
detect zymogen conversion in vivo.
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