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Abstract 

Background:  Biomedical translational science is increasingly using computational rea-
soning on repositories of structured knowledge (such as UMLS, SemMedDB, ChEMBL, 
Reactome, DrugBank, and SMPDB in order to facilitate discovery of new therapeutic 
targets and modalities. The NCATS Biomedical Data Translator project is working to 
federate autonomous reasoning agents and knowledge providers within a distributed 
system for answering translational questions. Within that project and the broader 
field, there is a need for a framework that can efficiently and reproducibly build an 
integrated, standards-compliant, and comprehensive biomedical knowledge graph 
that can be downloaded in standard serialized form or queried via a public application 
programming interface (API).

Results:  To create a knowledge provider system within the Translator project, we have 
developed RTX-KG2, an open-source software system for building—and hosting a web 
API for querying—a biomedical knowledge graph that uses an Extract-Transform-Load 
approach to integrate 70 knowledge sources (including the aforementioned core six 
sources) into a knowledge graph with provenance information including (where avail-
able) citations. The semantic layer and schema for RTX-KG2 follow the standard Biolink 
model to maximize interoperability. RTX-KG2 is currently being used by multiple Trans-
lator reasoning agents, both in its downloadable form and via its SmartAPI-registered 
interface. Serializations of RTX-KG2 are available for download in both the pre-canon-
icalized form and in canonicalized form (in which synonyms are merged). The current 
canonicalized version (KG2.7.3) of RTX-KG2 contains 6.4M nodes and 39.3M edges with 
a hierarchy of 77 relationship types from Biolink.

Conclusion:  RTX-KG2 is the first knowledge graph that integrates UMLS, SemMedDB, 
ChEMBL, DrugBank, Reactome, SMPDB, and 64 additional knowledge sources within 
a knowledge graph that conforms to the Biolink standard for its semantic layer and 
schema. RTX-KG2 is publicly available for querying via its API at arax.​rtx.​ai/​api/​rtxkg2/​
v1.2/​opena​pi.​json. The code to build RTX-KG2 is publicly available at github:​RTXte​am/​
RTX-​KG2.
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Background
In translational biomedicine, there is a longstanding need to integrate structured knowl-
edge as a substrate for computational reasoning  [1], such as for drug repositioning or 
finding new therapies for monogenic disorders. Efforts to define a lingua franca for a 
computable and comprehensive biomedical knowledge graph have seen a pivot from 
controlled vocabularies  [2–6] (and their integration in the Unified Medical Language 
System (UMLS) Metathesaurus  [7]) to ontologies in standardized computable repre-
sentations  [8–10]. The World Wide Web has fueled the development of online knowl-
edge-bases updated by literature curation teams, such as KEGG  [11], PubChem  [12], 
DrugBank  [13], ChEMBL  [14], the UniProt Knowledgebase (UniProtKB)  [15], the 
Small Molecule Pathway Database (SMPDB) [16, 17], and Reactome [18]. At the same 
time, advances in natural language processing (NLP)  [19–24] have enabled systematic 
extraction of structured knowledge from the biomedical literature, such as the Seman-
tic MEDLINE [25] Database (SemMedDB)  [26]. Community-driven ontology develop-
ment  [27–31], literature curation, and the use of NLP together have driven growth of 
structured biomedical knowledge-bases, albeit in forms that are not semantically inter-
operable due to the use of different systems of concept identifiers, semantic types, and 
relationship types [32].

There have been numerous efforts to address the lack of semantic interoperability of 
structured biomedical knowledge, particularly in knowledge representation  [33]. BIO-
ZON  [34], BioGraphDB  [35], Hetionet  [36], SPOKE  [37, 38], EpiGraphDB  [39], and 
DRKG [40] used standard sets of identifier types; and Bio2RDF [41], KaBOB [42], and 
HKGB  [43] used ontologies  [30, 31] for knowledge linking. ROBOKOP  [44, 45], Bio-
Things  [46], and mediKanren  [47, 48] use concept and relationship types from the 
recently-developed Biolink model [49–51]. Biolink is a high-level ontology that provides 
mappings of semantic types and relation types to other ontologies. Biolink advanced the 
field by (i) providing mappings of semantic types and relation types to other ontologies; 
(ii)  standardizing and ranking preferred identifier types for various biological entities; 
and (iii)  providing hierarchies of relation types and concept types needed to provide 
a semantic layer for biological knowledge graphs. In 2016, the National Center for 
Advancing Translational Sciences (NCATS) launched the Biomedical Data Translator 
project [52], a multi-institution effort to develop a distributed computational reasoning 
and knowledge exploration system for translational science. After a feasibility assess-
ment phase in 2017–2020, the project began construction of the Translator system’s 
components such as reasoning agents, knowledge providers, and central controller sys-
tem in 2020. The RTX-KG2 system is a registered knowledge provider within Translator. 
To ensure that Translator’s various systems can interoperate, Biolink has been adapted 
as the semantic layer for concepts and relations for knowledge representation within the 
Translator project.

Because biomedical knowledge-bases collectively use various semantically overlap-
ping controlled vocabularies for concept types like diseases, drugs, phenotypes, and 
pathways, integrating knowledge into a graph entails grappling with the problem of 
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multiple identifiers for a single concept; for example, the concept “paracetamol” has 
many identifiers, such as UMLS:C0000970, DRUGBANK:DB00316, CHEBI:46195, 
and CHEMBL112. While most biomedical knowledge graph efforts map concepts to 
canonical identifiers from semantic type-specific controlled vocabularies during initial 
graph construction, Monarch [53–55] constructed a linked graph of concept identifiers 
and then used clique detection to identify identical concepts before selecting a repre-
sentative canonical identifier (a step that is called graph “canonicalization” [56]) for each 
clique. To date, biomedical knowledge graphs of which we are aware (with the excep-
tion of Bio2RDF [41]) are either canonicalized or standardized on a single identifier type 
for each semantic type, rather than providing both canonicalized and pre-canonicalized 
graphs; the latter form is important in order to support users that wish to apply their 
own canonicalization algorithm.

Previous efforts to develop integrated biomedical knowledge systems have used vari-
ous database types, architectural patterns, and automation frameworks. For persistence, 
knowledge systems have used relational databases [34], distributed graph databases [33, 
57], multimodal NoSQL databases  [35, 57], RDF triple-stores  [41, 42, 58], document-
oriented databases [32, 46, 54], and—with increasing frequency [36, 37, 39, 44, 54]—the 
open-source graph database Neo4j  (github:​neo4j/​neo4j). Knowledge systems have also 
differed in terms of the ingestion method used in their construction; many systems [32, 
35, 41, 42, 54] utilized an extract-transform-load  (ETL) approach, whereas others  [44, 
46, 59] used API endpoints to query upstream knowledge sources; one  [39] blended 
both ETL and API approaches for knowledge graph construction. For automation, pre-
vious efforts have used general-purpose scripting languages  [36, 37, 41, 42, 44, 59, 60], 
batch frameworks [32], rule-based build frameworks [33, 35, 61], semantic web-compli-
ant build frameworks such as PheKnowLator [62], and parallel-capable systems such as 
Snakemake [63]. While previous efforts have resulted in biomedical knowledge graphs 
incorporating (individually) UMLS, SemMedDB, multiple major drug knowledge bases 
(such as ChEMBL and DrugBank), a standards-compliant semantic layer, and a parallel 
build system, so far as we are aware, none have incorporated all of these features in a 
single system providing both canonicalized and pre-canonicalized knowledege graphs.

Introduction

We have developed RTX-KG2, an open-source biomedical knowledge graph repre-
senting biomedical concepts and their relationships. RTX-KG2 integrates 70 sources 
including the major sources UMLS, SemMedDB, ChEMBL, DrugBank, SMPDB, 
Reactome, KEGG, and UniProtKB using a modular build system leveraging the par-
allel-capable workflow framework, Snakemake. The semantic layer for RTX-KG2 
is based on the standards-based Biolink model and it is provided in two stages, a 
pre-canonicalized graph version (RTX-KG2pre, in which semantically duplicated 
concepts with distinct identifiers are distinct nodes) and a canonicalized version 
(RTX-KG2c) in which equivalent concepts described using different identifier sys-
tems are identified as a single node. These key design choices reflect the goals of 
(i) supporting interoperability and composability with other biomedical knowledge-
bases in the Translator system and (ii) providing a comprehensive knowledge graph 
with a standards-based semantic layer that is amenable to computational reasoning. 

https://github.com/neo4j/neo4j
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Both RTX-KG2pre and RTX-KG2c are directed multigraphs with node and edge 
annotations that follow the Biolink model. The software repository for RTX-KG2, 
including all code to build the database, is publicly available at the github:​RTXte​
am/​RTX-​KG2 GitHub project. Users can access RTX-KG2 content via any of three 
channels: (i)  a single-file download version of the canonicalized RTX-KG2 knowl-
edge graph (KG2c) (or, if needed, the pre-canonicalized RTX-KG2pre knowledge 
graph); (ii)  a publicly accessible, SmartAPI  [64]-registered API for querying RTX-
KG2; and (iii)  a web browser interface for querying RTX-KG2. RTX-KG2 uses an 
ETL approach for knowledge graph construction and it automates builds using 
Snakemake; together, these enable efficient knowledge graph construction. RTX-
KG2 is a built-in knowledge database for ARAX (Autonomous Relay Agent X) [65], a 
Web-based computational biomedical reasoning system that our team is also devel-
oping for answering translational science questions such as questions related to drug 
repositioning, identifying new therapeutic targets, and understanding drug mech-
anisms-of-action. We are developing RTX-KG2 and ARAX as a part of the NCATS 
Translator project. Here, we enumerate the knowledge sources that are incorporated 
into RTX-KG2 (in the "Sources and their file formats" section; outline the processes 
for building RTX-KG2pre from its upstream knowledge sources  (in  the "Building 
RTX-KG2pre from upstream sources" section) and for building the canonicalized 
RTX-KG2c  (in the  "Building RTX-KG2c, the canonicalized version of RTX-KG2" 
section); describe the schema for RTX-KG2  (in the  "RTX-KG2 schema and RTX-
KG2pre Biolink compliance" section); describe the RTX-KG2 build system soft-
ware (in the "RTX-KG2 build system and software" section); provide statistics about 
the size and semantic breadth of RTX-KG2 (in the "RTX-KG2 content and statistics" 
section); and discuss how it is being used for translational reasoning as well as in 
conjunction with the ARAX system (in the "Utility and discussion" section).

Construction and content
In this section, we describe how RTX-KG2 is constructed; provide an overview of 
its graph database schema; and summarize its content in terms of sources, semantic 
breadth, and size. The overall build process, along with the various outputs of RTX-
KG2, is depicted in Fig. 1.

Broadly speaking, the RTX-KG2 build system does four things: it (i) loads information 
from source databases (blue triangles in Fig. 1) via the World Wide Web as described 
in  the  "Sources and their file formats" section; (ii)  integrates the knowledge into a 
precursor knowledge graph called RTX-KG2pre (upper green hexagon in Fig.  1) and 
hosts it in a Neo4j database (upper orange cloud in Fig. 1) as described in  the "Build-
ing RTX-KG2pre from upstream sources" section; (iii)  coalesces equivalent concept 
nodes into a canonicalized knowledge graph called RTX-KG2c (brown circle in Fig. 1) 
as described in  the "Building RTX-KG2c, the canonicalized version of RTX-KG2" sec-
tion, with a schema that is described in the "RTX-KG2 schema and RTX-KG2pre Biolink 
compliance" section; and (iv) provides various knowledge graph artifacts and services as 
described in the "RTX-KG2 content and statistics" section. We provide technical details 
of the RTX-KG2 build system in the "RTX-KG2 build system and software" section.

https://github.com/RTXteam/RTX-KG2
https://github.com/RTXteam/RTX-KG2
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Sources and their file formats

RTX-KG2 integrates 70 sources (Table 1), 50 of them via a resource description frame-
work (RDF)-based ingestion method and 20 of them via a direct-to-JSON ingestion 
method.

Sources are loaded in a specific order controlled by a configuration file, with prece-
dence applying to the assignment of Biolink categories to nodes.

RDF‑based sources

Of the 50  RDF-based sources, the system ingests 27 in Terse RDF Triple Language 
(TTL  [99]) format and 23 as OWL ontologies in RDF/XML format  [67] (which we 
abbreviate here as “OWL”). Of the 27 TTL sources, 26 are from the UMLS, obtained as 
described in "umls2rdf and owltools" section; the remaining source is a TTL representa-
tion of the Biolink model, which defines the semantic layer for RTX-KG2, including hier-
archies of concept types and relation types (see the "RTX-KG2 content and statistics" 
section). In addition to concept type and relation type hierarchies, the Biolink model 
provides equivalence mappings of the Biolink types to classes in other high-level ontol-
ogies (such as biolink:Gene being equivalent to SIO:010035) and of the Biolink 
concept types to prioritized lists of identifier types for the concept type1. Each knowledge 
source’s concepts are assigned Biolink concept semantic types—which are called “cat-
egories” in the Biolink model—and relationships are assigned Biolink relationship types 

Fig. 1  Overall Workflow of RTX-KG2. Blue triangle: individual external source; light blue cloud: external API 
endpoint; yellow parallelogram: tab-separated value (TSV) file-set; green hexagon: JavaScript Object Notation 
(JSON) File; orange cloud: API endpoint output; grey rectangle: SQLite [66] database; brown circle: abstract 
object-model representation of KG2c; turquoise computer: user/client computer; orange server: Translator 
knowledge graph exchange (KGE) server

1  An example identifier type prioritization would be for the semantic type “gene”, to prefer (from most to least preferred) 
identifier types from Ensembl Gene, NCBI Gene, and Human Gene Nomenclature Committee (HGNC).
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at the time that the source is ingested. All but two of the 23 OWL-format sources are 
ontologies from the OBO Foundry [31]; the remaining two OWL-format sources are the 
Experimental Factor Ontology (EFO) [74] and Orphanet Rare Disease Ontology [100].

Direct‑to‑JSON sources

With the direct-to-JSON method, sources are ingested in seven different file formats (in 
"Sources and their file formats" section). One source, KEGG, is queried via an API rather 
than using a flat file download, due to the lack of a download option for users that do not 
have a commercial license. For the 20 direct-to-JSON sources, the RTX-KG2 system has 
one ETL module for each source, with each module producing a source-specific JSON 
file in the RTX-KG2 JSON schema (see the "RTX-KG2 schema and RTX-KG2pre Biolink 
compliance" section) (in contrast, for the 50 RDF-based sources, the system has a single 
ETL module for ingesting all sources together). The RDF-based method merges all of the 
OWL and TTL sources (class-based), without flattening the ontologies (i.e., preserving 

Table 1  RTX-KG2 integrates 70 knowledge sources into a single graph. Each row represents a server 
site from which sources were downloaded.

Columns as follows: Name, the short name(s) of the knowledge sources obtained or the distribution name in the cases 
of UMLS and OBO Foundry; #, the number of individual sources or ontologies obtained from that server; Format, the file 
format used for ingestion (see below); Method, the ingestion method used for the source, either  D2J  for direct-to-JSON or  
RBM  for the RDF-based method. File format codes: CSV, comma-separated value; DAT, SWISS-PROT-like DAT format; JSON, 
JavaScript object notation; OWL, OWL in RDF/XML [67] syntax; RRF, UMLS Rich Release Format [68]; SQL, structured query 
language (SQL) dump; TSV, tab-separated value; XML, extensible markup language. Other abbreviations: NCBI, National 
Center for Biotechnology Information; EMBL, European Molecular Biology Laboratory

Name # Description Format Method

Biolink [49, 50] 1 Biolink model (semantic layer) TTL RBM

ChEMBL [14, 69] 1 EMBL chemogenomic database SQL D2J

DGIdb [70] 1 Drug gene interaction database TSV D2J

DisGeNET [71] 1 Disease-gene associations TSV D2J

DrugBank [13] 1 Pharmaceutical knowledge base XML D2J

DrugCentral [72] 1 Online drug compendium SQL D2J

Ensembl Gene [73] 1 Ensembl human gene annotations JSON D2J

EFO [74] 1 Experimental Factor ontology OWL RBM

GO [75, 76] 1 Gene ontology annotations TSV D2J

HMDB [77–80] 1 Human metabolite database XML D2J

IntAct [81, 82] 1 IntAct molecular interaction database TSV D2J

Jensen Lab Diseases [83] 1 Gene to diseases dataset TSV D2J

KEGG [11, 84, 85] 1 Kyoto encyclopedia of genes and genomes API D2J

miRBase [86–90] 1 MicroRNAs dataset DAT D2J

NCBI Gene [91] 1 NCBI human gene annotations TSV D2J

OBO Foundry 21 OBO foundry ontologies (Additional file 1: Table S1) OWL RBM

Orphanet [92] 1 Orphanet rare disease ontology OWL RBM

PathBank [93–95] 1 Wishart lab pathway databases XML D2J

Reactome [96] 1 Pathway database SQL D2J

SemMedDB [26] 1 Semantic MEDLINE database SQL D2J

SMPDB [16, 17] 1 Small molecule pathway database CSV D2J

UMLS [97] 26 Unified medical language system (Table 7) TTL RBM

UniChem [98] 1 EBI small molecule cross-refs TSV D2J

UniProtKB [15] 1 UniProt knowledge base DAT D2J

Total 70
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rdfs:subClassOf relationships) and generates a single JSON file. The hybrid design 
of RTX-KG2 balances the benefits of modularity (where it is feasible in the direct-to-
JSON method) with the need for a monolithic ingestion module for ontologies where 
inter-ontology axioms are needed for determining semantic types at the ETL stage [101].

Building RTX‑KG2c, the canonicalized version of RTX‑KG2

Because the various ontologies that RTX-KG2pre ingests often represent the same con-
cept using multiple different identifiers, some of the nodes in RTX-KG2pre represent 
equivalent concepts. For example, Parkinson’s disease is represented by several nodes 
in RTX-KG2pre, such as the nodes with identifiers MONDO:0005180, DOID:14330, 
EFO:0002508, and MESH:D010300, many of which are connected in RTX-KG2pre 
with relationships of type biolink:same_as or non-transitive generalizations of 
that relationship type. In our work on RTX-KG2pre, we found that coalescing nodes 
for semantically equivalent concepts into single nodes facilitates reasoning by reducing 
the complexity of graph paths that represent answers for common translational ques-
tions. Thus, to enhance the utility of RTX-KG2 for translational reasoning, we created 
a version of RTX-KG2 called RTX-KG2canonicalized (abbreviated in this work as RTX-
KG2c) in which semantically equivalent nodes are coalesced to a single concept node. In 
brief, building RTX-KG2c from RTX-KG2pre is carried out in five steps: 

1.	 RTX-KG2pre nodes and edges are loaded from the RTX-KG2pre TSV files;
2.	 the set of nodes is partitioned into disjoint subsets of equivalent nodes;
3.	 from each group of equivalent nodes, a canonical node identifier is chosen, added to 

RTX-KG2c, and annotated with the identifiers of its synonymous nodes (along with 
other information merged from the synonymous nodes);

4.	 edges from RTX-KG2pre are remapped to refer only to the canonical node identi-
fiers; and

5.	 edges with the same subject, object, and Biolink predicate are merged.

For Steps  2–3, the RTX-KG2 build system uses the ARAX  [65] system’s Node Syn-
onymizer service (see in "ARAX Node Synonymizer" section for details). The RTX-
KG2c graph is serialized in JSON format (see the "RTX-KG2 schema and RTX-KG2pre 
Biolink compliance" section), archived in a GitHub large file storage (LFS) repository 
(see Availability of data and materials), and imported into a custom-built, open-source, 
in-memory graph database, PloverDB (github:​RTXte​am/​Plove​rDB). The build process 
for RTX-KG2c is Python-based and has comparable hardware requirements to the RTX-
KG2pre build process (see the "Requirements" section). Formally, the approach used in 
building RTX-KG2c is concept-oriented as opposed to the realist methodology underly-
ing OBO Foundry ontologies [102].

RTX‑KG2 schema and RTX‑KG2pre Biolink compliance

The RTX-KG2.7.3 knowledge graph follows the Biolink model (version  2.1.0) for its 
semantic layer and (in RTX-KG2pre) its schema. RTX-KG2 uses Biolink’s category hier-
archy for its concept (node) types (Fig. 2) and Biolink’s predicate hierarchy for its rela-
tionship (edge) types (Fig. 3). When mapping terms from their original sources to the 

https://github.com/RTXteam/PloverDB
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Biolink terminology, the RTX-KG2 build system consults the Biolink model’s internal 
mappings in order to detect any inconsistencies between the two. Because relationship 
terms that are highly specific are often mapped to more generalized terminology, the 
original source’s phrasing is preserved in the relation property2. In addition to map-
ping upstream source relations to Biolink predicates, the RTX-KG2 build process coa-
lesces edges that have the same end nodes and the same predicate (it does, however, 
preserve the provenance information from both of the coalesced edges).

The schema of the JSON serialization of RTX-KG2pre is documented in detail in the 
RTX-KG2 project area github:​RTXte​am/​RTX-​KG2 and summarized in  the "Detailed 
schema for RTX-KG2" section. In brief, RTX-KG2 is serialized as a JSON object with 
keys nodes and edges, with the nodes object containing a list of serialized objects for 
the concept nodes in the graph, and with edges containing a list of serialized objects 
for the subject-object-relationship triples in the graph.

Quality control and reproducibility

The RTX-KG2 build process incorporates multiple layers of quality control, including 
both automated and manual procedures (see the "Building RTX-KG2pre from upstream 
sources" section for details). As the first step in the build process, scripts validate the 
consistency of the RTX-KG2 semantic layer with the Biolink model. During knowledge 
integration, relationships whose subject or object nodes are not present in the knowl-
edge graph are logged for offline investigation. A report of statistics on the RTX-KG2 
knowledge graph is generated—including (i) node counts by knowledge source and by 
semantic type and (ii) edge counts by source and by relationship type—both before and 
after redundant edges are joined in the merge process. The procedure for RTX-KG2 
builds includes a script-facilitated comparison of that report for the new build with the 
equivalent report for the previous build, in order to enable the build supervisor to rec-
ognize anomalously large (e.g., more than three-fold) changes in node or edge counts 
conditioned on source, category, or predicate. Once a new RTX-KG2c build is installed 

Fig. 2  Node concept types in RTX-KG2.7.3 are based on the Biolink model version 2.1.0 [49, 50]

2  This will be transitioning to the original_predicate property in the next release of RTX-KG2, for compatibility 
with recent changes in the Biolink standard.

https://github.com/RTXteam/RTX-KG2/blob/master/README.mdschema-of-the-json-kg2
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Fig. 3  Edge predicate types in RTX-KG2.7.3 are based on the Biolink model version 2.1.0
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into the RTX-KG2 query API, functional correctness of the live API is verified using a 
Python-based test suite. Reproducibility of the RTX-KG2 build is enhanced by the inten-
tional choice of using an ETL approach based on flat-file exports knowledge-source 
databases. To aid with versioning, most sources have their version stored in the name 
attribute in the node in RTX-KG2 that represents the source database.

RTX‑KG2 content and statistics

The latest released version of RTX-KG2pre as of this writing, RTX-KG2.7.3, contains 
10.2  million nodes and 54.0  million edges. Each edge is labeled with one of 77 dis-
tinct predicates (Biolink relationship types) and each node with one of 56 distinct 

Fig. 4  Number of nodes in RTX-KG2.7.3pre, by category
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categories (Biolink concept semantic types). In terms of frequency distribution, there 
is over six decades of variation across node categories (Fig.  4) and edge predicates 
(Fig.  5), with the dominant category being OrganismTaxon (reflecting the sig-
nificant size of the NCBI organism classification ontology  [103]) and the dominant 
predicate being has_participant (reflecting the significant size of the PathBank 
database [93]).

Fig. 5  Number of edges in RTX-KG2.7.3pre, by predicate
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Fig.  5 shows a breakdown of edges in KG2.7.3 by their Biolink predicate.
KG2.7.3c contains 6.4 million nodes and 39.3 million edges, which is approximately 

62% of the nodes and 73% of the edges of KG2.7.3pre, reflecting an expected reduc-
tion in node count due to canonicalization as well as due to post-canonicalization 
edge merging.

Fig. 6  Node degree (in+out) distribution of RTX-KG2.7.3c

Fig. 7  Node neighbor counts by category for the top 20 most common categories in RTX-KG2.7.3c. Each cell 
captures the number of distinct pairs of neighbors with the specified subject and object categories
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By number of edges, the largest contributing knowledge source for RTX-KG2.7.3pre 
is SemMedDB, which has 19.3M edges (comprising about a third of the edges in the 
graph), followed by PathWhiz (13.7M edges), NCBI Taxonomy (3.6M edges), and Drug-
Bank (2.8M edges).

In terms of their total (i.e., in+out) vertex degree distributions, both KG2pre and KG2c 
appear to be approximately scale-free (Fig. 6) with a power law exponent of 2.43, mean-
ing that the frequency of concepts with connectivity k decreases as ∼k−2.43.

Figure 7 highlights the frequencies of various combinations of subject node category 
and object node category appearing together in edges in KG2c, indicating (1) high lev-
els of cross-category axioms among “molecular entity”, “small molecule”, and “chemical 
entity” and (2)  high levels of connections between “pathway” and “molecular entity”, 
“small molecule”, “molecular activity”, “organism taxon”, “anatomical entity”, and “tran-
script”. Note that the category-category frequency heatmap is not expected to be sym-
metric for a knowledge graph (such as RTX-KG2) with a high proportion of relationship 
types that have non-reflexive subject-object semantics.

RTX‑KG2 access channels

The complete software code for building RTX-KG2 and for hosting an indexed RTX-
KG2 graph database in Neo4j is publicly available in an open-source repository (see 
Availability of data and materials). In addition, the content of the latest RTX-KG2 
graphs (version KG2.7.3) that we have built can be easily accessed via three different 
channels (see Availability of data and materials), depending on the use-case: (i)  seri-
alized flat-file download (as described below); (ii)  REpresentational State Transfer 
(REST)  [104] API (i.e., a web API); or (iii)  web browser user interface, through the 
ARAX system. Tab-separated value (TSV) serializations of RTX-KG2pre and JSON 
serializations of RTX-KG2c are available in a public GitHub repository via the git-
lfs file hosting mechanism, and their schemas are documented as described in  the 
"RTX-KG2 schema and RTX-KG2pre Biolink compliance" section and in the RTX-KG2 
documentation sections that are linked therein. RTX-KG2c can be queried via a REST 
API that implements the open-standard Translator Reasoner API (TRAPI) specification 
(github:​NCATS​Trans​lator/​Reaso​nerAPI) and that is registered via the SmartAPI  [64] 
framework and therefore discoverable using SmartAPI-associated tooling such as 
BioThings Explorer  [46]. The RTX-KG2 API enables one-hop querying of the knowl-
edge graph; queries are internally serviced by the PloverDB in-memory graph data-
base (see  the "Building RTX-KG2c, the canonicalized version of RTX-KG2" section). 
The ARAX API (arax.​rtx.​ai/​api/​arax/​v1.2/​opena​pi.​json), which itself queries the RTX-
KG2 API, can be used to achieve multi-hop RTX-KG2 queries. Further, RTX-KG2c is 
archived in Biolink Knowledge Graph eXchange  [49] TSV format (KGX TSV format, 
documented at github:​bioli​nk/​kgx) through the Translator Knowledge Graph Exchange 
(KGE; see Fig.  1) archive and registry system (github:​NCATS​Trans​lator/​Knowl​edge_​
Graph_​Excha​nge_​Regis​try) (currently in testing phase).

https://github.com/NCATSTranslator/ReasonerAPI
https://arax.rtx.ai/api/arax/v1.2/openapi.json
https://github.com/biolink/kgx
https://github.com/NCATSTranslator/Knowledge_Graph_Exchange_Registry
https://github.com/NCATSTranslator/Knowledge_Graph_Exchange_Registry
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Utility and discussion
Uptake and adoption

Due to its comprehensiveness and/or its speed, RTX-KG2 is already being used as a core 
knowledge provider (see github:​NCATS​Trans​lator/​Trans​lator-​All/​wiki/​KG2) or knowl-
edge graph by five diverse reasoning agents within the Translator system: ARAX [65], 
which our team developed and which provides sophisticated workflow capabilities and 
overlay of virtual edges for associations based on literature co-occurrence or network 
structural equivalence; mediKanren, which provides sophisticated network motif-find-
ing and path-finding using the miniKanren logic programming language; BioThings 
Explorer, the engine for autonomous querying of distributed biomedical knowledge, 
described in  the "Background" section; ARAGORN (github:​ranki​ng-​agent/​arago​rn), a 
reasoning agent that has unique capabilities for coalescing and ranking knowledge sub-
graphs; and the Explanatory Agent (github:​NCATS​Trans​lator/​Expla​natory-​Agent), a 
reasoning agent that uses natural language-understanding models in order to explain 
and rank results.

Use of the RTX-KG2 API appears to be increasing over time, with an average of 1,084 
queries per day over the 9 months prior to this writing (September 2021 - June 2022) vs. 
an average of 1,417 queries per day over the last 3 months (April - June 2022), a 1.3-fold 
increase. Programs that query RTX-KG2 may optionally identify themselves; of the 51% 
of queries from the last 9 months in which the submitter was identified, approximately 
63% were by the Explanatory Agent, 23% by ARAX, 7% by BioThings Explorer, and 7% 
by ARAGORN. Rather than using the RTX-KG2 API, the mediKanren reasoning agent 
uses a bulk download of RTX-KG2pre in conjunction with their own canonicalization 
algorithm.

In addition to its primary intended use-case for on-demand knowledge exploration 
and concept-specific reasoning, the RTX-KG2 knowledge graph can be used as a struc-
ture prior for data-driven network inference, for example, causal network learning. We 
have recently described a computational method, Kg2Causal [105], for using a general-
purpose biomedical knowledge graph to extract a network structure prior distribution 
for data-driven causal network inference from multivariate observations. Using the pre-
decessor graph, RTX-KG1 [59], we found that using a general knowledge graph as a prior 
significantly improved the accuracy of data-driven causal network inference compared 
to using any of several uninformative network structure priors [105]. To the extent that 
it incorporates multiple graph structural variations, RTX-KG2 can also be used as a test-
bed for evaluating the performance of structurally generalizable graph analysis methods 
such as a subset of us have done for the case of a structurally generalizable node-node 
similarity measure [106].

Another application of RTX-KG2 is as training data for drug repurposing models; pre-
vious work by our team utilized RTX-KG2’s predecessor, RTX-KG1, to train a random 
forest model that predicts novel drug treatments for diseases [107]. More recent exten-
sions to this work have utilized the canonicalized version of RTX-KG2 as training data.

https://github.com/NCATSTranslator/Translator-All/wiki/KG2
https://github.com/ranking-agent/aragorn
https://github.com/NCATSTranslator/Explanatory-Agent
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Comparison to other knowledge graphs/providers

To objectively evaluate the size and semantic richness of RTX-KG2 in comparison to 
other biomedical knowledge graphs, we compared it to four other knowledge graphs 
that are in active use for translational applications: Hetionet [36], SPOKE [37, 38], the 
SRI Reference Knowledge Graph [108], and ROBOKOP [44, 45]. For the counts of meta-
triples (i.e., counts of edges with a given pattern of subject category, object category, 
and predicate, which provide quantitative information about the richness of the knowl-
edge graph for providing relationships of particular types), we accessed the ROBOKOP 
and SPOKE graphs via their SmartAPI-registered Translator API (“TRAPI”) endpoints 
on March  15, 2022. For Hetionet and ROBOKOP, we used published node and edge 
counts [36, 45]. For the SRI Reference Knowledge Graph, we downloaded the graph in 
KGX TSV format from the Biomedical Data Translator Knowledge Graph Exchange 
(KGE) and analyzed the graph locally.

Node and edge counts for various knowledge graphs are shown in Table 2. The large 
number of edges in the ROBOKOP knowledge graph versus RTX-KG2 reflects the lat-
ter’s practice of joining edges that have identical subject node, object node, and predi-
cate type. The large number of nodes in the SRI Reference Knowledge Graph  [108] 
versus RTX-KG2pre is largely due to more InformationContentEntity nodes 
(3.7  million vs. 144,396) and SequenceVariant nodes (2.4  million vs. 0) in the 
former.

Notably, RTX-KG2 contains a richer set of meta-triples (distinct combinations of 
subject node category, edge predicate, and object node category) versus the other 
knowledge graphs (Table  3); RTX-KG2c contains 4.6-fold more meta-triples than the 

Table 2  Node and edge counts for various knowledge graphs

Nodes Edges

HETIONET, v1 [36] 47,031 2.3 million

SPOKE ver. 20190707 [38] 2.15 million 6.16 million

SRI Reference KG, ver. 2.0 20.2 million 41.6 million

ROBOKOP [45] 6 million 140 million

RTX-KG2.7.3pre 10.2 million 54.0 million

RTX-KG2.7.3c 6.4 million 39.3 million

Table 3  Numbers of unique node categories, edge predicates, and meta-triples for various 
knowledge graphs

Categories Predicates Meta-triples

SPOKE, TRAPI v1.2.0 API 14 24 44

SRI Reference KG, ver. 2.0  62 59 2047

ROBOKOP, TRAPI v1.2.0 API 20 185 2234

RTX-KG2.7.3pre 56 77 10,269

RTX-KG2.7.3c 56 77 41,225



Page 16 of 33Wood et al. BMC Bioinformatics          (2022) 23:400 

second-ranked knowledge graph and 18.5-fold more meta-triples than the third-ranked 
knowledge graph, by meta-triple count. In general we would expect a graph with a 
greater number of meta-triples to be able to provide answers to a wider variety of que-
ries, which is somewhat corroborated by the findings in the following paragraph. The 
finding that canonicalization increases the number of meta-triples can be understood 
as follows: since each node in RTX-KG2c has multiple categories, the number of meta-
triples increases by the product of the count of subject node categories and the count 
of object node categories, for all subject-object node pairs joined by edges in the graph. 
The approximately 2.4-fold increase in the number of predicates in ROBOKOP versus 
in RTX-KG2 partially reflects the design choice in RTX-KG2 to standardize predicate 
directions and to orient triples so that for any inverted pair of predicates (e.g., “has part” 
and “part of”), only one of the predicates is used in the graph.

Here, we have opted to compare RTX-KG2 to biomedical knowledge graphs that 
are canonicalized and still being updated (which excludes the pre-canonicalized 
Bio2RDF [41], which has not been updated since 2014).

To estimate the novelty of knowledge that RTX-KG2 provides over other knowledge 
providers, we ran a diverse set of one-hop queries3 through the ARAX reasoning agent 
and measured how many results were returned when ARAX was allowed vs. was not 
allowed to use RTX-KG2 as one of its knowledge providers. Omitting RTX-KG2 and 
relying on its 12 other Translator knowledge providers resulted in an average of 46% of 
the results compared to when RTX-KG2 was included. Figure 8 details the results for 
each query tested.

Fig. 8  The proportion of results ARAX obtains for various one-hop queries when it is not allowed to use 
RTX-KG2 as one of its knowledge providers vs. when it is allowed to use RTX-KG2. A result of 100% means that 
RTX-KG2 provided no additional answers over ARAX’s other 12 Translator knowledge providers for that query; 
0% means that all of ARAX’s results for that query came from RTX-KG2

3  github:​NCATS​Trans​lator/​testi​ng/​ars-​reque​sts/​not-​none/1.2, accessed on June 23, 2022.

https://github.com/NCATSTranslator/testing/tree/main/ars-requests/not-none/1.2
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Example use‑cases

To help illustrate how to use RTX-KG2, an example RTX-KG2 API query is provided 
below. This query (which is written in TRAPI format) asks RTX-KG2 for genes related to 
Adams-Oliver syndrome:

The response that RTX-KG2 returns to this query is also in TRAPI format and con-
tains a ranked list of results and a knowledge_graph, per the TRAPI specifica-
tion. The structure of each result object matches that of the query_graph, while 
the knowledge_graph contains all of the nodes and edges used in the results, dec-
orated with evidence, provenance, and other information. As of June 30, 2022, this 
query returns 41 results, the top 10 of which are the genes DOCK6, DLL4, NOTCH1, 
EOGT, RBPJ, ARHGAP31, CDC42, OGT, LFNG, and PAMR1.

As stated in  the "RTX-KG2 access channels" section, our ARAX reasoning sys-
tem [65] provides a web browser interface (which is publicly available as described in 
Availability of data and materials) that can be used to both construct queries of RTX-
KG2 and browse ranked results from those queries. The browser interface provides 
various capabilities including node synonymization; graphical layout and exploration 
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of annotated result-graphs; and a graphical, point-and-click query builder. RTX-
KG2pre serves as the data foundation for the ARAX Node Synonymizer (described in 
"ARAX Node Synonymizer" section), which is accessible via the ARAX UI (example: 
arax.​rtx.​ai/?​term=​napro​xen) or programmatically via the ARAX API:

BioThings Explorer also provides a web browser-based user interface (bioth​ings.​io/​
explo​rer/​query) including a query graph builder that can be used to query RTX-KG2 
among other reasoning agents and knowledge providers. Figure 9 shows the example 
Adams-Oliver query in the BioThings Explorer query graph builder; click the “Query 
ARS” button to run the query and then the “Open ARS” button to go to a different 
user interface (provided by ARAX), in which users can select and explore result sets 
for different reasoning agents, some of which use RTX-KG2 as a knowledge provider 
(ARAX, BTE, ARAGORN, Explanatory Agent, and Unsecret Agent (which is based 
on mediKanren)).

Discussion

In designing RTX-KG2, we chose five design principles that guided our selection of 
knowledge sources to incorporate as well as the architecture of the RTX-KG2 build 
system: 

1.	 Source is publicly available in a flat-file (e.g., TSV, XML, JSON, DAT, or SQL dump) 
that can be downloaded via a script

2.	 Source is being maintained and updated periodically
3.	 Source provides knowledge triples that complement (i.e., not duplicate) what is 

already in RTX-KG2

Fig. 9  The BioThings Explorer query graph builder, which can be used to query RTX-KG2 among other 
Translator reasoning agents and knowledge providers

https://arax.rtx.ai/?term=naproxen
https://biothings.io/explorer/query
https://biothings.io/explorer/query
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4.	 Source connects concept identifier types that are already in RTX-KG2
5.	 Ideally, source provides knowledge based on human curation

Principle  1, and the deliberate choice of using an ETL approach, theoretically would 
allow RTX-KG2 to be reconstructed consistently and independently of the state of exter-
nal APIs4. This is useful for reproducibility, since each knowledge source is stored in its 
original downloaded form as a build artifact. Using flat files instead of API interfaces also 
increases the probability that a future build can be completed successfully at any time, 
since it does not rely on multiple web services to be up for an extended period of time. 
Additionally, it is in many (though by no means all) cases computationally faster to ETL a 
file than to dynamically query an API over the Internet. With the ETL approach, for inter-
ontology axioms, full interoperability is required and thus, generally full resource import 
(versus partial import as proposed previously [109]) is used. Development of RTX-KG2 
is ongoing and our team welcomes recommendations of new sources to include, via issue 
reports on the RTX-KG2 GitHub project page (see Availability of data and materials).

In selecting the 70 sources for RTX-KG2, we generally adhered to the aforementioned 
principles but made a few exceptions based on specific trade-offs. For Principle 1, for 
one source (as described in the  "Construction and Content" section), we used an API 
rather than a file download, and for the “via a script” part of Principle  1, we manu-
ally downloaded source dump files for DrugBank, UMLS, and SemMedDB (due to the 
download page requiring a login using a web browser) and RepoDB (due to its informa-
tion on drug approval status). Some large databases such as SNOMED CT and MedDRA 
were not included in the UMLS ETL because they have additional restrictions under the 
UMLS Metathesaurus License (Appendix 2 and Sect. 12.3, respectively). For Principle 2, 
an exception was miRbase, due to the lack of a clear alternative source. For Principle 3, 
partial exceptions were made for the various pathway databases such as Reactome, Path-
Whiz/SMPDB, and KEGG, which have many overlapping pathways but which also had 
systems of pathway identifiers that needed to be included in RTX-KG2. Further, each of 
the pathway databases has different strengths: PathWhiz/SMPDB offer useful links to 
HMDB and DrugBank; Reactome is popular, trusted, and is well connected with sources 
like GO and CHEBI; and KEGG CURIEs are popular with users and link to CHEMBL, 
CHEBI, and GO. The primary exception to Principle 5 is SemMedDB which is based on 
natural-language processing of biomedical research article abstracts to extract knowl-
edge triples. SemMedDB is particularly useful for downstream reasoning because of 
its breadth across biomedical literature and because it includes source article refer-
ences for each triple. However, in the NLP arena, new methods such as REACH  [21] 
and EIDOS [22] have been proposed that promise improved accuracy for determining 
event polarity (REACH) and detecting causal mechanisms (EIDOS); the potential of 
these methods to be applied to the full biomedical literature corpus remains to be fully 
explored.

It is a challenge to balance the importance of manually curated knowledge resources 
with those that provide numerical data and provenance (such as supporting publica-
tions) of their assertions. While these two are not mutually exclusive per  se, relatively 

4  Note however, that one API is used in constructing RTX-KG2; see the "Sources and their file formats" section.
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few knowledge sources seem to provide both. Increasingly, reasoning agents in the 
Translator system will use structured provenance and confidence information/annota-
tions for edges in knowledge graphs such as RTX-KG2; the issue of knowledge sources 
that are important connectors in translational reasoning but do not provide structured 
provenance information is an ongoing problem  [110]. A second notable challenge for 
computational biomedical reasoning is that of conflicting information between sources, 
which can occur due to data entry error at upstream sources, updating of concept iden-
tifiers or identifier prefixes, or changes in the semantic layer. In our experience, careful 
scrutiny of the build report (described in the "Quality control and reproducibility" sec-
tion) is essential to catch systemic problems so that they can be addressed before the 
build is put into production. On the other hand, for ameliorating the effects of localized/
incidental issues due to random errors in curated upstream sources (or incorrect triples 
called by the NLP algorithm used in SemMedDB), we have found that in computational 
reasoning, overlaying of multiple sources of quantitative evidence of association (such 
as co-occurrence in the literature or graph structural similarity) to be beneficial within 
the ARAX system [65]. Another source of potential errors is due to the absence of con-
textual information for a triple, for example, an interaction that applies only in a specific 
anatomic context; work is ongoing to extend the Biolink model and RTX-KG2 with qual-
ifier semantics for annotating core triples with such contextual information, as described 
below.

Use of Biolink for the semantic layer for RTX-KG2 provides advantages both within 
and outside the Translator ecosystem. Normalization of the more than 1,228 source rela-
tionship types to a smaller set of predicates is necessary in order to produce a knowl-
edge graph that is amenable to rule-based reasoning. The choice of 77 predicate types in 
Biolink is a trade-off, balancing simplicity of reasoning with semantic precision. Work 
on the Biolink model is ongoing to eliminate this trade-off by allowing for annotation 
of triples with statement qualifiers, subject qualifiers, object qualifiers, and typed asso-
ciations. Further, substantial tooling within the Biolink project [51] has been developed 
to (i) provide ports of the Biolink model to six different open-standards representations 
(e.g., OWL, TTL, ShEx, JSON-schema, and GraphQL), (ii)  provide a turn-key soft-
ware package (KGX  [111]) for import, export, and validation of Biolink-based knowl-
edge graphs in various formats (e.g., TSV and JSON), (iii) provide a turn-key software 
library for programmatic manipulation of the Biolink model as Python or Java classes, 
and (iv)  provide comprehensive cross-ontology mappings between Biolink and other 
high-level ontologies, for both entity types and predicates. Collectively, these efforts are 
expected to enable computational biomedical reasoning efforts that are outside Trans-
lator to interoperate at the semantic layer in order to integrate or query structured 
knowledge from RTX-KG2. The design of RTX-KG2 further prioritizes reproducibility 
by release-tagging, documenting versions of upstream sources (and the Biolink model 
version) with the RTX-KG2 release, including Biolink schema validation as a part of the 
release process, and having the build system environment setup automated and under 
source code control.

Our observation that RTX-KG2c has a scale-free degree distribution is consistent 
with previous reports from empirical studies of text-based semantic networks [112] and 
ontologies  [113]. Further, the subgraph of RTX-KG2 that arises from the SemMedDB 
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NLP analysis of PubMed/MEDLINE [114] and from the Gene Ontology [115] would be 
expected to follow a scale-free degree distribution, in accordance with Zipf ’s Law. Quan-
titatively understanding the degree distribution of the knowledge graph (whether condi-
tioned on the knowledge source, the relationship type, or the participating entity types) 
is relevant to quantitatively modeling the epistemic value of an edge in the graph (con-
sider, for example, the downweighting by neighboring vertex out-degree in the PageRank 
algorithm [116]).

As described in the  "Background" section, the Neo4j graph database management 
system is used by many biomedical knowledge graphs including Hetionet, Monarch, 
SPOKE, EpiGraphDB, and ROBOKOP. Using Neo4j to host RTX-KG2 has both benefits 
(specifically, the flexibility of the Cypher query language  [117]) and drawbacks (in our 
testing, slow JSON loading performance and slow response times in comparison to an 
in-memory database). It was due to its drawbacks that we ultimately switched to host-
ing RTX-KG2c using a dedicated in-memory graph database engine, PloverDB (in  the 
"Building RTX-KG2c, the canonicalized version of RTX-KG2" section), that we devel-
oped. On the other hand, our standard procedure of hosting a Neo4j database server for 
RTX-KG2pre has been invaluable as a debugging aid and for developing graph queries 
and analysis workflows.

The performance of the RTX-KG2 build process has been parallelized where fea-
sible. Although ETL-focused, open-source workflow tools such as Pentaho Kettle and 
Apache Hop are available, we selected Snakemake because of its seamless integration 
with Python and its parallelization support. Since RTX-KG2 was intended to be a large 
knowledge graph, the build process was designed to limit the amount of time it would 
take to build, especially by using the ETL process described above and by utilizing a 
parallel build system. With parallelization, the RTX-KG2pre build takes about 47 hours 
versus ∼ 74 hours without parallelization. The system has the capability to carry out a 
partial rebuild (skipping the most time-consuming updates of UMLS and SemMedDB) 
which can reduce rebuild time by ∼60%. In addition, Snakemake functionality along with 
the ETL-based approach allows for unchanged source databases to be ignored until the 
Merge step (see Fig. 10), which reduces build time. While building RTX-KG2 requires 
short-term access to a system with at least 256 GiB of physical memory, once RTX-KG2 
is built, it can be hosted on a commodity server system (e.g., 64 GiB of memory; see the 
"Requirements" section). New versions of RTX-KG2 are released at a rate of approxi-
mately once per month, with the median percentage increase in the number of edges per 
release being 0.8%, a relatively steady rate of growth consistent with the monthly rate of 
growth of abstracts in PubMed (0.6%).

Conclusions
Despite the advances in the field outlined  in  the "Background" section, no open-
source software toolkit was available that could integrate UMLS sources, SemMedDB, 
ChEMBL, DrugBank, SMPDB, Reactome, and 23 OBO Foundry ontologies (70 sources 
in all) into a single canonicalized knowledge graph based on the open-standard Biolink 
model as the semantic layer. To fill this gap and to provide a comprehensive knowl-
edge-base to serve as as an efficient and accessible knowledge-substrate for a biomedi-
cal reasoning engine, we constructed RTX-KG2, comprising a set of ETL modules, an 



Page 22 of 33Wood et al. BMC Bioinformatics          (2022) 23:400 

integration module, a REST API, and a parallel-capable build system that produces and 
hosts both pre-canonicalized (RTX-KG2pre) and canonicalized (RTX-KG2c) knowl-
edge graphs for download and for querying. Quantitative usage information shows that 
RTX-KG2 is currently extensively used by multiple reasoning agents in the NCATS Bio-
medical Data Translator project, validating the ETL-focused, monolithic-graph, stand-
ards-based design philosophy that guided RTX-KG2’s development.

Appendix
Technical details of database construction

Building RTX‑KG2pre from upstream sources

The process by which the RTX-KG2 system builds its knowledge graph from its 
70 sources—the first stage of which is diagrammed in Fig. 10)—begins by executing vali-
dation Python scripts (the “validationTests” task in Fig. 10) that ensure that the 
identifiers used in the RTX-KG2 semantic layer are syntactically and semantically cor-
rect within the Biolink model. Next, the build process executes in parallel the 21 direct-
to-JSON and RDF-based ETL scripts (see second and third rows in Fig. 10 and in  the 
"Sources and their file formats" section) to produce a total of 21 JSON files (20 via the 
direct-to-JSON method and one via the RDF-based method) in the RTX-KG2 knowl-
edge graph schema (described in the  "RTX-KG2 schema and RTX-KG2pre Biolink 
compliance" section). Next, those JSON files are loaded and their object models are 
merged (via the “Merge” task) into a single self-contained graph that is then saved in an 
RTX-KG2-schema JSON file in which relationships consist of triples (subject, relation, 
object) where the relation is from any number of source-specific relationship vocabular-
ies (totalling 1,228 source-specific relationship types in all). The RTX-KG2 object model 
is then simplified (via the “Simplify” task) by consolidating redundant relationships; 
a redundant relationship is where two or more sources assert the same triple (ibu-
profen, treats, headache), in which case, the multiple relationships with identi-
cal triples are merged into a single relationship, with the multiple sources noted in the 
list-type provided-by relationship attribute (see the "RTX-KG2 schema and RTX-
KG2pre Biolink compliance" section). Also in the Simplify task, relationship types 
are simplified by mapping each of them to one of 77 standardized relationship types 
(called “predicates”) in the Biolink model. This mapping process is controlled by a locally 
maintained, rule-based system encoded in Yet Another Markup Language (YAML) that 
is cross-checked by a validation script against the Biolink model at build time. In that 
ruleset, some semantic loss of precision is allowed, such as mapping DGIdb:partial_
antagonist to biolink:decreases_activity_of, as a practical choice since 
the number of Biolink predicates (77) is much smaller than the number of total num-
ber of source relationship types. The Simplify task also maps source identifiers to 
Biolink “Information Resource” identifiers. In general, the Simplify task standardizes 
the graph with the Biolink model standards [49, 50]. We call the resulting graph RTX-
KG2pre in order to emphasize that it is the precursor graph to the canonicalized RTX-
KG2 graph (described below).
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In the final step of the build process, the nodes and edges of RTX-KG2pre are imported 
into a Neo4j graph database (for details, see the "RTX-KG2 uses Snakemake for building 
RTX-KG2pre" section). During the RTX-KG2pre build, nodes (concepts) are assigned 
Biolink categories based on a rule-based system encoded in Yet Another Markup Lan-
guage (YAML); at the start of each build, the YAML file is cross-checked by a validation 
script against known concept-to-category mappings in the Biolink model, to ensure cor-
rectness. The rule-based system allows for recursive assignment of a category to a class 
and all its subclasses, as well as to all concepts that have a specific CURIE prefix.

ARAX node synonymizer  As described in the "Building RTX-KG2c, the canonicalized 
version of RTX-KG2" section, in order to cluster concept identifiers into synonym groups 
(i.e., “canonicalize” the graph), the RTX-KG2 build system uses the ARAX  [65] Node 
Synonymizer service, which takes into account four sources of evidence in the following 
order: (i)  concept equivalence information obtained dynamically by querying a Trans-
lator web service API called the Standards and Reference Implementations (SRI) Node 
Normalizer (github:​Trans​lator​SRI/​NodeN​ormal​izati​on); (ii) biolink:same_as edges 
in RTX-KG2pre between RTX-KG2pre nodes; (iii) human-recognizable node (concept) 
name equivalence; and (iv)  node semantic type compatibility. For dividing nodes into 
disjoint sets of equivalent nodes (i.e., Step 2 in the "Building RTX-KG2c, the canonical-
ized version of RTX-KG2" section), the Node Synonymizer goes through three passes of 
merging concepts in order to ensure that the partitioning of nodes is independent of the 
order in which the nodes are loaded into the Node Synonymizer. For choosing a canonical 
node for each concept cluster (i.e., Step 3 in the "Building RTX-KG2c, the canonicalized 
version of RTX-KG2" section), the Node Synonymizer uses a score-based system that 
flexibly enables incorporation of new heuristics. For the relatively small local table store 
for the ARAX Node Synonymizer, SQLite was chosen due to its combination of simplicity 
of deployment due to being serverless, its simplicity of use, and its faster response times 
vs. a network-based relational database management system solution. Performance of 
the Node Synonymizer is primarily tracked during the build process via a problems.
tsv file, in which concept clusters that contain clashing categories (e.g., Drug and Dis-
ease) are recorded. The number of such “problem” clusters is monitored and any notable 
increases are manually debugged and corrected. While helpful, this performance metric 
relies on hard-coded definitions of which categories are considered clashing, does not 
catch potential merge errors that involve nodes of the same or compatible categories, and 
does not provide any insight into merge misses. In the future we plan to develop methods 
for more accurate performance assessment that do not have these limitations.

Detailed schema for RTX‑KG2

RTX-KG2pre and RTX-KG2c are serialized as JSON with the former’s schema being 
largely a superset of the latter’s. The JSON-serialized RTX-KG2pre has top-level keys 
build, nodes, and edges, with the nodes object containing a list of serialized 
objects for the concept nodes in the graph, and with edges containing a list of serial-
ized objects for the subject-object-relationship triples in the graph. Under the build 
key, a JSON object stores information about the version of RTX-KG2pre and timestamp 

https://github.com/TranslatorSRI/NodeNormalization
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of the build. Under the nodes key is a list containing a JSON object for each node. Each 
node object contains 16 keys corresponding to the node property types in RTX-KG2pre, 
detailed in Table  4. The id node property contains a compact representation of the 
canonical uniform resource identifier, i.e., a CURIE [118]. The category property of a 
node describes the node’s semantic type, such as biolink:Gene. Similarly, the edges 
key is a list containing a JSON object for each edge, with the edge JSON object contain-
ing the keys indicated in Table 5.

Table 4  Node properties in RTX-KG2pre and RTX-KG2c

KG2pre KG2c

all_categories �

all_names �

category � �

category_label �

creation_date �

deprecated �

description � �

equivalent_curies �

full_name �

has_biological_sequence �

id � �

iri � �

knowledge_source �

name � �

provided_by �

publications � �

replaced_by �

synonym �

update_date �

Table 5  Edge properties in RTX-KG2pre and RTX-KG2c

KG2pre KG2c

id � �

kg2_ids �

knowledge_source � �

negated �

object � �

predicate � �

predicate_label �

provided_by �

publications � �

publications_info � �

relation �

relation_label �

subject � �

update_date �
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The predicate edge property contains the relationship type from the Biolink rela-
tionship hierarchy (which is called a “predicate” in the Biolink model), and the rela-
tion edge property contains the source relationship, such as semmeddb:treats.

The schema of the JSON serialization of RTX-KG2c is very close to that of RTX-
KG2pre except that the former does not contain the top-level build key/object and, 
for each node object, RTX-KG2c contains some additional keys such as equivalent_
curies, which enumerates the CURIEs of the nodes representing concepts that were 
semantically identified in the canonicalization step; all_names, which contains the 
name properties of the KG2pre nodes that were canonicalized together for the given 
KG2c node; and all_categories, which contains the category properties of the 
nodes that were canonicalized together for the given KG2c node. In addition, the ids 
of the corresponding KG2pre edges that each KG2c edge was created from are docu-
mented in the kg2_ids property.

RTX‑KG2 build system and software

In this section we describe the Snakemake-based build system for RTX-KG2 and the 
build system infrastructure requirements for building the RTX-KG2pre and RTX-KG2c 
graphs.

Requirements  The software for building RTX-KG2pre is designed to run in the Ubuntu 
Linux version  18.04 operating system on a dedicated system with at least 256  GiB of 
memory, 1 TiB of disk space in the root file system, ≥ 1 Gb/s networking, and at least 
20 cores (we use an Amazon Web Services (AWS) Elastic Compute Cloud (EC2) instance 
of type r5a.8xlarge). The software for building RTX-KG2 makes use of AWS Sim-
ple Storage Service (S3) for network storage of both build artifacts and input knowledge 
source distribution files that cannot be retrieved by a scripted HTTP GET from their 
respective providers (see Table 6). These build files must be pre-staged in an AWS S3 
bucket before the build process for RTX-KG2pre is started. For hosting RTX-KG2 in a 
Neo4j server, the system requirements are 64 GiB of system memory, 8 virtual CPUs, and 
∼200 GiB of root filesystem storage (we use a r5a.2xlarge instance).

RTX‑KG2 uses Snakemake for building RTX‑KG2pre  RTX-KG2pre is built by a series of 
Python modules and bash scripts that extract, transform and load (ETL) 45 data down-
loads (corresponding to the rows of Table 1, with the “OBO Foundry” row counting for 
21 separate downloads) from 24 source websites (see the "Sources and their file formats" 
section) into a standardized property knowledge graph format integrated with the Biolink 
model as the semantic layer. To maximize the reproducibility of RTX-KG2 builds, the 

Table 6  Upstream source files that must be staged in S3 in order to build RTX-KG2

DrugBank XML download Requires browser to download

RepoDB TSV download Requires browser to download

SemMedDB MySQL download Requires browser to download

SMPDB PubMed IDs CSV download Obtained courtesy of Wishart Lab

UMLS metathesaurus ZIP download Requires browser to download
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build system is fully automated, including scripts for (i) setting up and configuring the 
build system to run, (ii) downloading and transforming data, and (iii) exporting the final 
graph to the graph database Neo4j. RTX-KG2 utilizes the Snakemake [63] workflow man-
agement tool to schedule multicore execution of the RTX-KG2pre build process. In addi-
tion to reducing the computational costs of the build and the amount of time it takes 
to run, Snakemake increases modularity by enabling individual components (and their 
upstream dependencies) to be executed, when necessary. This is particularly useful for 
allowing failed builds to resume at the point of failure (via a so-called “partial” build), 
once the root cause (which could be a parsing error from an upstream ontology, for exam-
ple) has been fixed.

The build process starts with parallel source extractions, in which all of the source 
databases are downloaded and prepared for the format that their respective conver-
sion script uses. Then, each upstream source’s dataset is processed by a Python con-
version module. This converts each source’s data into the RTX-KG2pre JSON format 
(see the "RTX-KG2 schema and RTX-KG2pre Biolink compliance" section). Once all of 
the upstream data sources are converted into their RTX-KG2pre JSON file, a module 
merges all of them into a cohesive graph, such that no two nodes have the same CURIE 
ID. One of the challenges in this step is when different upstream sources provide differ-
ent names for the same concept CURIE; the RTX-KG2pre build system addresses such 

Table 7  UMLS sources that are integrated into RTX-KG2.

See the "Discussion" section regarding UMLS sources that could not be included due to licensing

UMLS semantic network

Anatomical therapeutic chemical classification system ATC​

DrugBank database DRUGBANK

Foundational model of anatomy FMA

Gene ontology GO

Healthcare common procedure coding system HCPCS

Human gene nomenclature committee HGNC

Health level seven version 3.0 HL7V3.0

Human phenotype ontology HPO

ICD-10 procedure coding system ICD10PCS

ICD-9, clinical modification ICD9CM

Logical observation identif. Names & Codes LNC

Medication reference terminology MED-RT

MEDLINE plus MEDLINEPLUS

Medical subject headings (MeSH) [2] MSH

Metathesaurus MTH

NCBI taxon NCBI

National cancer institute thesaurus NCI

National drug data file NDDF

National drug data file-reference terminology NDFRT

Online Mendelian inheritance in man [120] OMIM

Physician data query PDQ

Psychological index terms PSY

RxNorm (normalized drug names) RXNORM

National drug file VANDF
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name conflicts by having a defined order of precedence of upstream sources. After the 
merge step, edge source relation types (as described in the "Building RTX-KG2pre from 
upstream sources" section) are each mapped to one of 77 predicate types in the Biolink 
predicate hierarchy (see the "Building RTX-KG2pre from upstream sources" section), 
and redundant edges (same combination of subject node ID, object node ID, and Biolink 
predicate) are coalesced, with source relation information and source provenance infor-
mation added to lists in the coalesced edge. The graph is then serialized as JSON (see the 
"RTX-KG2 schema and RTX-KG2pre Biolink compliance" section) and to TSV format. 
The build artifacts, including the unprocessed and processed JSON files and the TSV 
files, are uploaded into an AWS S3 bucket. RTX-KG2pre is then hosted in Neo4j on a 
smaller AWS instance (see the "Requirements" section); the Neo4j endpoint is mainly 
used for debugging.

umls2rdf and  owltools  In the RTX-KG2pre build process, the 26  UMLS sources are 
ingested as TTL files that are generated in the extraction stage of the build process from 
the Rich Release Format (RRF  [68]) UMLS distribution using two software programs, 
Metamorphosys [119] (to load the RRF files into the relational database system, MySQL) 
and umls2rdf [29] (to extract TTL files; see the "umls2rdf and owltools" section). Thus, a 
local MySQL database is used as an intermediate data source in the build process, from 
which TTL files are generated via umls2rdf.

The build system uses the owltools software program (github:​owlco​llab/​owlto​ols) 
to convert biomedical ontologies (see Table 1 and Additional file 1: Table S1) in OWL 
format and the UMLS TTL files into OBO (Open Biological and Biomedical Ontol-
ogy) JSON format for processing. The ontologies in OBO-JSON format are then loaded 
using the Python package ontobio (which, in turn, is based on the NetworkX graph 
library [121]) and processed/merged together, enabling use of cross-ontology axioms in 
determining concept semantic types.
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