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Objectives: Coronavirus disease 2019 (COVID-19) is sweeping the globe and has
resulted in infections in millions of people. Patients with COVID-19 face a high fatality risk
once symptoms worsen; therefore, early identification of severely ill patients can enable
early intervention, prevent disease progression, and help reduce mortality. This study
aims to develop an artificial intelligence-assisted tool using computed tomography (CT)
imaging to predict disease severity and further estimate the risk of developing severe
disease in patients suffering from COVID-19.

Materials and Methods: Initial CT images of 408 confirmed COVID-19 patients were
retrospectively collected between January 1, 2020 and March 18, 2020 from hospitals
in Honghu and Nanchang. The data of 303 patients in the People’s Hospital of Honghu
were assigned as the training data, and those of 105 patients in The First Affiliated
Hospital of Nanchang University were assigned as the test dataset. A deep learning
based-model using multiple instance learning and residual convolutional neural network
(ResNet34) was developed and validated. The discrimination ability and prediction
accuracy of the model were evaluated using the receiver operating characteristic curve
and confusion matrix, respectively.

Results: The deep learning-based model had an area under the curve (AUC) of 0.987
(95% confidence interval [CI]: 0.968–1.00) and an accuracy of 97.4% in the training set,
whereas it had an AUC of 0.892 (0.828–0.955) and an accuracy of 81.9% in the test set.
In the subgroup analysis of patients who had non-severe COVID-19 on admission, the
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model achieved AUCs of 0.955 (0.884–1.00) and 0.923 (0.864–0.983) and accuracies
of 97.0 and 81.6% in the Honghu and Nanchang subgroups, respectively.

Conclusion: Our deep learning-based model can accurately predict disease severity
as well as disease progression in COVID-19 patients using CT imaging, offering promise
for guiding clinical treatment.

Keywords: COVID-19, computed tomography, deep learning, disease severity, multiple instance learning

INTRODUCTION

The coronavirus disease (COVID-19) is rapidly spreading
worldwide, leading to a global crisis. The first outbreak was
reported in Wuhan, China, in December 2019 (Zhu et al., 2020),
and the World Health Organization declared it a pandemic
on March 11, 2020 (Sohrabi et al., 2020). Its pathogen is the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). As of April 10, 2020, there have been 1,521,252 confirmed
cases and 92,798 reported deaths (World Health Organization,
2020). The clinical presentation of COVID-19 varies in severity
from asymptomatic infection to mild illness to severe or fatal
illness. According to recent literature, the mortality rate for severe
COVID-19 patients is approximately 20 times higher than that
for non-severe COVID-19 patients (Chen N. et al., 2020; Gong
et al., 2020; Yang et al., 2020). Thus far, no antiviral drugs
with definite efficacy for COVID-19 have been found, and the
treatment is mainly supportive. Once the disease progresses to
severe type, the patients, particularly the elderly, face a high risk
of death. Therefore, early identification and triage of patients
with a high risk of future development of severe COVID-19,
thereby implementing closer monitoring and timely intervention
to prevent the occurrence of severe status, are effective strategies
for saving lives, alleviating the burden on the healthcare system,
and reducing mortality.

In the field of artificial intelligence and medical big data
analysis, using machine learning-based classification algorithms
to automatically diagnose and judge the severity of disease
and aid clinical decisions has always been important. Notably,
deep learning, a complex machine learning approach that has
emerged in recent years, performs much better on language and
image recognition than previous related technologies (Gupta
et al., 2015; Schmidhuber, 2015). It has been used to detect
various imaging features of chest computed tomography (CT)
(Depeursinge et al., 2015; Anthimopoulos et al., 2016) and
has recently been widely applied to facilitate the diagnosis
of COVID-19 (Santosh, 2020). Recently, Li et al. (2020a)
reported that artificial intelligence could be used to distinguish
COVID-19 from community-acquired pneumonia on a chest
CT. Song et al. (2020) noted that deep learning enables
accurate diagnosis of COVID-19 with CT images. Many
similar investigations combining artificial intelligence and
accurate diagnosis of COVID-19 have also flourished (Chen
J. et al., 2020; Fu et al., 2020; Zheng et al., 2020). Thus,
artificial intelligence could provide immense help in the
diagnosis of COVID-19. However, its role in predicting

COVID-19 severity and disease progression has been far from
established but of profound clinical significance in the COVID-19
epidemic situation.

Currently, lesion annotation is necessary for most deep
learning-based methods of disease diagnosis, particularly for
disease detection in CT volumes. Considering the rapidly
growing epidemic, significant effort is needed in terms of
annotation by radiologists. Unfortunately, the current shortage
of radiologists due to the urgent COVID-19 setting implies that
annotation dependent algorithms may be insufficient for the
present medical need. Thus, performing COVID-19 detection
in an “unsupervised” manner while simultaneously maintaining
good predictive accuracies is of huge importance. In this study,
we established and verified a multiple instance deep learning
model using CT imaging to predict disease severity and the risk of
future development of severe COVID-19. This model is expected
to assist doctors in performing clinical diagnosis and treatment.

MATERIALS AND METHODS

Patient Cohort
The Medical Ethics committee of Nanfang Hospital of Southern
Medical University approved this retrospective analysis. Written
informed consent from all study participants was obtained. This
study included patients from the People’s Hospital of Honghu and
The First Affiliated Hospital of Nanchang University, who met
the following selection criteria: (1) confirmed case of COVID-19
with positive tests for 2019-nCoV nucleic acid and compliance
with the guideline of Diagnosis and Treatment Protocol for
Novel Coronavirus Pneumonia (Trial Version 7)(National Health
Commission, 2020) developed by the Chinese National Health
Commission and the State Administration of Traditional Chinese
Medicine; (2) availability of initial lung CT imaging on admission.
The exclusion criteria included the following: (1) incomplete
clinical data; (2) coinfection with other respiratory viruses; (3)
discharge within 24 h after admission. A total of 408 patients,
consisting of 303 patients in the Honghu cohort and 105 in the
Nanchang cohort, were included in the final analysis. Clinical
electronic medical records, nursing records, and radiological
reports for all included patients were reviewed and collected. Two
researchers reviewed the electronic medical records manually and
independently. They recorded the disease severity at admission,
the daily assessment of the disease severity after admission,
and the progression from non-severe type to severe type
of COVID-19.
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Definition
The disease severity spectrum of COVID-19 covers states
from mild to critical, according to the guidelines for novel
coronavirus pneumonia (National Health Commission, 2020). In
this study, all patients were diagnosed and classified based on the
following definitions. Patients with mild clinical manifestation
as well as no indication of pneumonia in imaging reports
were considered to have a mild disease. Patients with fever,
respiratory symptoms, and confirmed pneumonia on imaging
were considered to have moderate disease. Patients who met
any of the following criteria were considered to have a severe
disease: oxygen saturation ≤ 93% at rest; respiratory distress
(≥30 breaths/min); obvious lesion progression in chest imaging
within 24–48 h > 50%; arterial partial pressure of oxygen
(PaO2)/fraction of inspired oxygen (FiO2)≤ 300 mmHg. Patients
with organ failure and respiratory failure were considered to have
a critical disease.

Patients who maintained mild or moderate symptoms were
assigned to the non-severe group. Those with critical or severe
disease conditions on admission and those who had moderate or
mild disease on admission but developed severe COVID-19 after
admission were assigned to the severe group.

The event of severe illness-free survival was defined as
disease progression and the censored subject was defined as no
occurrence of endpoint event by the time of discharge. Severe
illness-free survival was defined as the time from the diagnosis
of COVID-19 to the occurrence of disease progression.

CT Data Cohort Construction Criteria
All CT images were downloaded via a picture archiving
and communication system. Considering that each patient
had received several CT examinations during hospitalization,
there were multiple slices for each series. The patterns
of rows/columns, pixel spacing, slice count, and thickness
distributions for the data from The People’s Hospital of Honghu
and The First Affiliated Hospital of Nanchang University are
shown in Supplementary Figures S1, S2, respectively. We built
CT series selection criteria for patients based on the following:
(1) the CT series of the first examination after admission; (2)
the pixel spacing and slice thickness being greater than 0.1 cm;
(3) the number of slices being > 30; (4) a minimum lung and
mediastinum window.

Overall Preprocessing of Raw CT Data
The overall preprocessing procedure for raw CT data was as
follows. The window width and level were narrowed to 1600 and
600, respectively; a pixel value with <5 percentile was set to the
value of 5 percentile; that with <95 percentile was set to the 95
percentile. All DICOM CT series were resampled to the target
pixel ([z: 5.0, y: 0.77, x: 0.77], mm), yielding median values in all
CT series. In the resampled CT volume, the patch was cropped
to as large as 3 × 224 × 224 (z × y × x); then, each CT value
for the patch was scaled to the section between [0, 1], and each
patch CT value was normalized to a mean of 0.5 and a variance of
1 (Supplementary Figure S3).

Multiple Instance Learning of the
Residual Neural Network
The residual neural network (ResNet34) is a representation
of deep convolutional neural networks integrated with images,
auto-encoding, and classification. In a prostate cancer pathology
dataset using more than 10,000 slides, ResNet34 was found to
perform better than other architectures as a backbone model
for multiple instance learning (MIL) (Campanella et al., 2019).
The architecture of ResNet34 is displayed in Supplementary
Figure S4. The MIL framework was constructed based on the
approach proposed by Campanella et al. (2019). In summary,
the MIL training procedure was initiated by loading the patch
dataset with a size as large as 3 × 224 × 224 (z × y × x) into the
ResNet34 initialized with ImageNet pretrained weights, which
were downloaded from https://download.pytorch.org/models/
resnet34-333f7ec4.pth. The next steps included performing a full
inference pass through the patch dataset, ranking the patches
according to their probability of being positive or negative, and
training the ResNet34 on the top four ranking patches from
every three adjacent resampled CT slides. These three steps were
repeated for 100 iterations, and a patient-level CT classification
was generated via max-pooling of all the patches belonging to the
same one (Figure 1 and Supplementary Figure S3).

Training, Validation, and Testing
Five-fold cross-validation was performed with 17,336 CT images
from the resampled CT data of 303 patients who had been treated
at the People’s Hospital of Honghu, and 6,476 CT images from the
resampled CT data of 105 patients at The First Affiliated Hospital
of Nanchang University were used as the test dataset.

Multiple Instance Learning Comparison
Within Different Backbone Networks
There are several varieties of the network architecture for the
ResNet series, including ResNet34 (Xie et al., 2017), AlexNet
(Krizhevsky et al., 2012), VGGNet (Simonyan and Zisserman,
2014), and DenseNet (Huang et al., 2017). We conducted a set
of comparison experiments with these networks using the CT
images from Honghu and Nanchang. At least ten training runs
were completed for each deep neural network. The performance
metrics for different backbone networks are presented in
Supplementary Table S1. We found that ResNet34 achieved the
largest area under the curve (AUC) in both the Honghu and
Nanchang cohorts compared with other networks, indicating the
superiority of ResNet34 over other network architectures. For
data imbalance, a class-weighted loss was performed to obtain
better performance, and we adopted weights of 0.8 for severely
ill patients and 0.2 for non-severe patients on admission.

Classification Metrics
Seven general classification metrics, including sensitivity,
specificity, positive prediction value (PPV), negative prediction
value (NPV), false positive rate (FPV), false negative rate
(FNR), accuracy, and AUC, were used to estimate the
classifiers’ performance of all deep neural network models
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FIGURE 1 | Overview of the multiple instance learning framework presented in this study. The patches cropped from resampled CT data were constructed for
training, and patient-level prediction was performed via max-pooling of all patches belonging to the same one.

used for the training. Their methods of calculation are given in
Equations (1) – (7).

Sensitivity = TP / (TP+ FN) (1)

Specificity = TN / (TN+ FP) (2)

PPV = TP / (TP+ FP) (3)

NPV = TN / (TN+ FN) (4)

FPR = FP / (TP+ FN) (5)

FNR = FN / (TN+ FP) (6)

Accuracy = (TP+ TN) / (TP+ TN+ FP+ FN). (7)

Here, TP is the true positive, TN is the true negative, FP is the
false positive, and FN is the false negative; the AUC value was
obtained using R statistical software.

Implementation Details
Our implementation was based on the PyTorch (version 1.0)
pretrained model for the ResNet34 network. Our training
experiments were conducted in a Linux environment on a
machine for data loading, building models, and training (CPU:
Intel Xeon Processor Silver 4114 at 2.20 GHz; GPU: NVIDIA P
Tesla V100; RAM: 128 GB).

Code Availability
The source code and our best weights of the trained ResNet34 for
this work can be downloaded from: https://github.com/dchealth/
covid-mil.git.

Statistical Analysis
Continuous variable data are presented as medians (interquartile
ranges, IQR). Classified variable data are presented as n (%).
Statistical analyses were performed using R statistical software
version 3.5.0 (R Core Team, 2020). The receiver operating
characteristic (ROC) curves were plotted with the pROC package
(Robin et al., 2011). A confidence interval (CI) of 95% for AUC
was calculated with the pROC package (Robin et al., 2011) using
bootstrapping with non-parametric unstratified resampling, as
described by Carpenter and Bithell (2000). The confusion
matrices were plotted using Python 3.6 in two different cohorts
to calculate the accuracy of the model prediction.

RESULTS

Clinical Characteristics of Participant
Patients
A total of 408 patients with confirmed COVID-19 were included
in this study, with 303 patients in the Honghu cohort and 105 in
the Nanchang cohort as the training set and test set, respectively.
The demographics and baseline characteristics of the Honghu
and Nanchang cohorts are listed in Table 1. The median ages were
49.0 (IQR 36.0–60.0), 45.0 (IQR 35.5–54.5), and 48.0 (IQR 36.0–
58.0), and the numbers of males were 162 (53.5%), 43 (41.0%),
and 205 (50.2%) in the Honghu cohort, Nanchang cohort, and
all patients, respectively. Additionally, 48 (15.8%), 40 (38.1%),
and 88 (21.6%) patients were assigned to the severe group in this
study, respectively, among whom 12 (4.0%), 11 (10.5%), and 23
(5.6%) exhibited mild symptoms on admission but deteriorated
to severe disease later.

Training and Validation of the Multiple
Instance Learning Model in Disease
Severity Prediction
Using CT imaging and ResNet34, a disease severity prediction
model based on MIL was developed in the training cohort.
The cross-entropy loss was close to 0.03 (Figure 2A) and
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TABLE 1 | Demographics and baseline characteristics of Honghu and Nanchang cohorts.

Characteristic Honghu cohort (n = 303) Nanchang cohort (n = 105) All patients (n = 408)

Age, years 49.0 (36.0− 60.0) 45.0 (35.5− 54.5) 48.0 (36.0− 58.0)

Male 162 (53.5) 43 (41.0) 205 (50.2)

Smoking history

Current smokers 4 (1.3) 7 (6.7) 11 (2.7)

Ex-smokers 1 (0.3) 1 (1.0) 2 (0.5)

Comorbidity

Any 61 (20.1) 26 (24.8) 87 (21.3)

Hypertension 42 (13.9) 13 (12.0) 55 (13.5)

Diabetes mellitus 14 (4.6) 11 (10.5) 25 (6.1)

Cardiovascular disease 8 (2.6) 0 (0.0) 8 (2.0)

Cerebrovascular disease 3 (1.0) 0 (0.0) 3 (0.7)

Chronic liver disease 2 (0.7) 9 (8.6) 11 (2.7)

COPD 2 (0.7) 0 (0.0) 2 (0.5)

Asthma 1 (0.3) 0 (0.0) 1 (0.2)

Renal disease 1 (0.3) 2 (1.9) 3 (0.7)

Cancer 2 (0.7) 0 (0.0) 2 (0.5)

Signs and symptoms

Fever 175 (57.8) 82 (78.1) 257 (63.0)

Temperature on admission (◦C) 36.7 (36.5− 37.0) 37.0 (36.5− 37.7) 36.8 (36.5− 37.1)

Highest temperature (◦C) 37.0 (36.5− 38.0) 38.0 (37.5− 38.5) 37.3 (36.6− 38.0)

Cough 170 (56.1) 59 (56.2) 229 (56.1)

Sputum production 41 (13.5) 29 (27.6) 70 (17.2)

Nasal congestion 1 (0.3) 6 (5.7) 7 (1.7)

Fatigue 68 (22.4) 29 (27.6) 97 (23.8)

Headache 10 (3.3) 9 (8.6) 19 (4.7)

Sore throat 18 (5.9) 22 (21.0) 40 (9.8)

Shortness of breath 31 (10.2) 10 (19.5) 41(10.0)

Dyspnea 18 (5.9) 5 (4.8) 23 (5.6)

Anorexia 11 (3.6) 26 (24.8) 37 (9.1)

Diarrhea 13 (4.3) 5 (4.8) 18 (4.4)

Nausea 12 (4.0) 4 (3.8) 16 (3.9)

Myalgia or arthralgia 1 (0.3) 2 (1.9) 3 (0.7)

Combination of bacterial infection 206 (68.0) 64 (61.0) 270 (66.2)

Laboratory findings

White blood cell count, × 109/L 5.8 (4.7− 7.2) 5.0 (3.6− 6.7) 5.6 (4.3− 7.0)

Lymphocyte count × 109/L 1.5 (1.1− 1.8) 1.0 (0.7− 1.4) 1.4 (1.0− 1.8)

Neutrophil count, ×109/L 3.5 (2.6− 5.0) 3.5 (2.1− 5.1) 3.5 (2.5− 5.0)

Albumin, g/L 40.5 (36.5− 43.8) 43.6 (40.0− 46.4) 41.3 (37.2− 44.6)

Total bilirubin, µmol/L 10.7 (7.8− 13.7) 9.0 (5.4− 12.3) 10.0 (7.4− 13.5)

Direct bilirubin, µmol/L 2.9 (2.3− 4.1) 2.6 (2.0− 3.9) 2.9 (2.2− 4.1)

Alanine aminotransferase, U/L 22.0 (15.0− 37.0) 17.0 (12.0− 34.0) 21.0 (14.0− 36.0)

Gamma-glutamyl transferase, U/L 26.0 (18.0− 44.0) 23.0 (14.0− 45.0) 24.5 (17.0− 43.8)

Prothrombin time, s 12.7 (12.0− 13.2) 12.3 (11.9− 12.9) 12.6 (12.0− 13.2)

Creatinine, µmol/L 62.8 (51.3− 74.9) 64.8 (51.4− 79.3) 63.7 (51.4− 75.5)

Urea nitrogen, mmol/L 4.1 (3.3− 5.2) 4.1 (3.4− 5.3) 4.1 (3.3− 5.3)

Lactate dehydrogenase, U/L 205.5 (169.0− 252.0) 228.0 (190.5− 309.5) 209.0 (175.0− 260.0)

Creatinine kinase, U/L 65.0 (43.0− 96.0) 87.0 (59.5− 125.0) 68.0 (46.0− 110.0)

C-reactive protein, mg/L 2.3 (0.5− 16.1) 12.3 (3.1− 35.4) 3.3 (0.5− 21.9)

Abnormalities on chest CT

Ground-glass opacity 164 (54.1) 48 (45.7) 212 (52.0)

Local patchy shadowing 47 (15.5) 13 (12.4) 60 (14.7)

Bilateral patchy shadowing 167 (55.1) 78 (74.3) 245 (60.0)

(Continued)
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TABLE 1 | Continued

Characteristic Honghu cohort (n = 303) Nanchang cohort (n = 105) All patients (n = 408)

Interstitial abnormalities 14 (4.6) 0 (0.0) 14 (3.4)

Multi-lobular infiltration 201 (66.3) 89 (84.8) 290 (71.1)

Treatment

Antiviral therapy 291 (96.0) 105 (100.0) 396 (97.1)

Antibiotic therapy 195 (64.4) 105 (100.0) 300 (73.5)

Use of corticosteroid 118 (38.9) 64 (61.0) 182 (44.6)

Oxygen support 98 (32.3) 105 (100.0) 203 (49.8)

Clinical outcomes

Discharge from hospital 298 (98.3) 105 (100.0) 403 (98.8)

Length of hospital stay 15.0 (10.0− 22.0) 16.00 (12.0− 21.0) 15.5 (10.0− 21.0)

Death 5 (1.7) 0 (0.00) 5 (1.2)

Severe type 48 (15.8) 40 (38.1) 88 (21.6)

Mild to severe type 12 (4.0) 11 (10.5) 23 (5.6)

Continuous variable data are presented as median (interquartile ranges, IQR). Classified variable data are presented as n (%).

the final accuracy was 87% for the 100 training iterations
(Figure 2B). In the training set, the MIL model achieved an
AUC of 0.987 (0.969–1.000) (Figure 3A). This model was also
subjected to validation, revealing that the MIL model maintained
its outstanding performance with an AUC of 0.892 (0.828–
0.955) in the test set (Figure 3B). These results indicated the
excellent discrimination capability of this model for disease
severity prediction.

To “uncover” the black box and make our model more
intuitive, we displayed slices associated with severe and non-
severe COVID-19 cases from six randomly selected patients
(three severe and three non-severe). It can be observed that
disease severity is positively correlated with the area and density
of lesions in lungs. For the severe cases (Supplementary Figures
S5A–C), multiple large consolidations and ground glass density
shadows were seen in both lungs. An air bronchial sign could
be seen in the consolidation shadow. The lesions were extensive,
mostly under the peripheral pleura, and a small amount of
effusion could be seen in both sides of the chest. For the non-
severe cases (Supplementary Figures S5D–F), small flakes and
wedge-shaped ground glass density shadows could be observed
under the pleura of the left lower lobe, with a clear boundary.
Thickened small blood vessels could be seen in the left lung,
with a normal shape. The maximum positive probability of all
patches extracted from the CT series is assigned to the positive
probability for the represented slices. If the positive probability
for the represented slices is larger than 0.5, the corresponding
case is predicted as severe; if it is smaller than 0.5, the case
is predicted as non-severe. The predicted probability was in
accordance with disease severity, highlighting the accuracy of our
model in predicting disease severity.

Next, the predictive accuracy of the model was evaluated via
a confusion matrix. In the training dataset, the model correctly
discriminated against 97.7% of patients in the non-severe group
and 95.8% of patients in the severe group (Figure 3C), with
an accuracy of 97.4% and an error rate of 2.6%. In the test
set, 78.5% of patients in the non-severe group and 87.5% of
patients in the severe group were correctly identified by this

model (Figure 3D). The accuracy and error rates were 81.9 and
18.1%, respectively. Other performance metrics were used, and
the results are summarized in Supplementary Table S1. Besides,
decision curve analysis (DCA) showed that our model achieved
an outstanding overall net benefit in the training cohort and
validation cohort (Supplementary Figure S6), indicating the
clinical utility of our model in predicting COVID-19 severity.

Clinical Significance of the Multiple
Instance Learning Model in Predicting
the Future Risk of Development of
Severe COVID-19
The clinical significance of the predictive model lies in its ability
to identify patients in the early stages of the disease who were
mildly ill on admission but progressed to severe disease later.
To further estimate the practical significance of the MIL model,
we performed a clinically important subgroup analysis. Patients
with severe symptoms on admission were excluded from both the
Honghu and the Nanchang cohorts, whereas those who presented
non-severe symptoms on admission were retained.

This model achieved AUCs as high as 0.955 (0.884–1.000)
(Figure 4A) and 0.923 (0.864–0.983) (Figure 4B) in the Honghu
and Nanchang subgroups, respectively. Further, this model
correctly predicted 97.6 and 78.5% of patients in the non-severe
group and 83.3 and 100.0% patients in the severe group in the
Honghu (Figure 4C) and Nanchang subgroups (Figure 4D),
respectively. The accuracies were 97.0 and 81.6%, and the error
rates were 3.0 and 18.4%, respectively. These results highlight the
accuracy of our model in predicting disease progression.

To further demonstrate the clinical significance of our
model, we performed DCA and clinical prognosis analysis.
DCA revealed that our model achieved an excellent overall net
benefit in the Honghu and Nanchang subgroups (Supplementary
Figure S7), which is of significant clinical implication for
predicting the risk of future development of severe COVID-
19. The result suggests that our model would be a good choice
for clinical use. Moreover, Kaplan–Meier curves were generated
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FIGURE 2 | Training and validation processes of the deep learning model based on CT images for the task of disease severity prediction. (A) Cross-entropy loss and
(B) accuracy were plotted against 100 training iterations. The cross-entropy loss was close to 0.03, and the final validation accuracy was 87%.

based on the prediction results and severe illness-free survival was
taken into account. Patients were stratified into a high-risk group
when the probability of disease progression was higher than 0.5
and assigned to a low-risk group when the probability was less
than or equal to 0.5. Compared with the low-risk group, the
high-risk group had a significantly lower survival probability in
both the Honghu and Nanchang subgroups (Honghu: P < 0.001;
Nanchang: P < 0.001, log-rank test) (Supplementary Figure S8).
These results indicate that our model can be employed as a
useful tool for prognosis prediction, representing an important
advancement in AI-assisted clinical management. In general, the
results presented above confirmed the potential practicability of
our model in clinical practice.

DISCUSSION

In this retrospective study, we developed and validated
a MIL-based predictive model using CT imaging of 408
patients to enable accurate identification of patients with
severe COVID-19. Subgroup analyses in patients with
non-severe COVID-19 on admission revealed that this
model could accurately predict disease deterioration in
the early stages. To our knowledge, this is the first study
to demonstrate a novel application of MIL to establish
a disease severity predictive model for COVID-19. This
model has the potential to contribute to computer-aided
diagnosis and guide clinical treatment by preemptively
identifying patients who have a high risk of experiencing
more severe symptoms.

Many models have been developed to facilitate early
identification of patients with a high risk of progression. The
parameters used in these models are mainly clinical indicators
and imaging findings, which are known for their role in the
diagnosis and prognosis of COVID-19 as specified by the Chinese
guideline for COVID-19 (National Health Commission, 2020).

Predictive models mainly based on clinical indicators are easy
to use and popular among physicians. For instance (Liang et al.,
2020), screened epidemiological, clinical, laboratory, and imaging
variables obtained from hospital admission and constructed
a predictive risk score (COVID-GRAM), which provided
physicians with an important tool for improving the clinical care
of patients with the worst disease outcomes, including admission
to ICU and death. Compared with clinical indicators, CT imaging
has important advantages of intuitiveness and non-invasiveness
while being fast and yielding relatively stable results. A CT
scanning procedure needs a shorter turnaround time than a
molecular diagnostic test. The latter is performed in a standard
laboratory and has a relatively long workflow. Additionally, CT
imaging can provide radiologists with more detailed information
associated with the pathology and natural course of COVID-19
(Wang et al., 2020; Zheng, 2020) and is favorable for quantitative
assessment of the lesion size, lesion type, and the severity or
extent of lung involvement, with crucial prognostic implications.
From the clinical application perspective, predictive tools based
on CT imaging as well as on chest X-rays to enable accurate
diagnosis of COVID-19 have flourished. Mukherjee et al. (2020)
established a convolutional neural network combined with chest
X-rays for COVID-19 outbreak screening. Rajinikanth et al.
(2020) proposed a Harmony Search and Otsu-based system to
detect COVID-19 using CT scan images. However, the use of CT
imaging for predicting disease progression is not as developed as
its use for disease diagnosis. Therefore, based on the advantages
of previous theories and technologies, extending the diagnostic
role of CT imaging to predicting the future development of severe
COVID-19 holds a great promise.

At present, there are two main methods for predicting the
risk of progression using chest CT. In one method, radiologists
manually assign a score for each image to identify patients
with potential severe disease, represented by the “CT severity
score,” whereas the other method utilizes artificial intelligence to
automatically calculate the risk of progression.
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FIGURE 3 | Receiver operating characteristic (ROC) curve and confusion matrix for predicting disease severity in the training and test sets. The prediction result of
severity is shown via the ROC curve. (A) In the training set, the multiple instance learning model had an area under the curve (AUC) of 0.987 (CI: 0.967–1.00); (B) in
the test set, the model had an AUC of 0.892 (CI: 0.828–0.955). Confusion matrix indicating the prediction quality of the multiple instance learning model classification
for the (C) training and (D) test datasets.

The CT severity score in the first method (Chang et al.,
2005) is a semiquantitative index for estimating the involvement
of the lung, which is related to the number of involved lobes
and the extent of the lesions: the larger the score, the higher
the risk of future development of severe COVID-19. The
effectiveness of the CT severity score in the early prediction
of COVID-19 progression was validated by some COVID-19
studies (Feng et al., 2020; Li et al., 2020b; Xu et al., 2020;
Zheng, 2020). In addition, the CT severity score has also
been proposed for prognosis and mortality prediction in
acute Middle East respiratory syndrome (Das et al., 2015).
However, the final score varies under different radiologists,
as it is dependent on expertise and experience, resulting
in the volatility of the prediction. More importantly, this
time-consuming task would aggravate the overall workload
of radiologists in an epidemic situation when an increasing

number of patients are waiting for risk screening for
severe COVID-19, constraining the wide application of the
CT severity score.

Conventional supervised learning in the artificial intelligence-
assisted method requires labeling information and lesion
annotation for each object to guide learning of the algorithm.
On the one hand, labeling is slow and laborious, and radiologists
working in a COVID-19 setting do not have sufficient time
to label every slice of a CT image. On the other hand,
it is difficult for radiologists to mark the lesion area very
accurately; thus, both the normal and pathological tissues
could inevitably exist in the marked area, resulting in a large
amount of noise in the training set that consequently affects
the accuracy of learning. However, the MIL method adopted
in this study differs from a supervised machine learning
technique. It requires only patient-level labels to inform the
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FIGURE 4 | Receiver operating characteristic (ROC) curve and confusion matrix for predicting disease progression in the Honghu and Nanchang subgroups. The
prediction result of disease progression is shown via the ROC curve. Patients who presented non-severe symptoms on admission in the Honghu and Nanchang
cohorts were assigned to the Honghu and Nanchang subgroups, respectively. (A) In the Honghu subgroup, the multiple instance learning model had an area under
the curve (AUC) of 0.955 (CI: 0.884–1.00); (B) in the Nanchang subgroup, the model had an AUC of 0.923 (CI: 0.864–0.983). Confusion matrix indicating the
prediction quality of the multiple instance learning model classification for the (C) training and (D) test datasets.

algorithm whether the patient would progress to a severe
symptom. Labels on each chest CT image and annotation of
the lesion area are not needed in this method, thereby saving
radiologists precious time and improving the accuracy of the
algorithm to some extent.

In this section, the overall advantage of our model in clinical
practice is highlighted. Our model exploited the superiority of
CT imaging, making the prediction procedure fast, intuitive,
and non-invasive. Compared with the CT severity score, our
model enabled a relatively objective and accurate diagnosis of
severe COVID-19, which increased reliability and improved
quality control. Our model can maintain the same diagnostic
criteria anywhere and ensure that the AUCs are as high as 0.987

and 0.892, with accuracies of 97.4 and 81.9% in the training
and test sets, respectively. Compared with other supervised AI-
assisted predictive models, our AI system eliminates the huge
workload of annotating the lesion, allowing radiologists to save
time and increasing their capacity to handle emergencies quickly
and effectively, while maintaining high accuracy. Easing the
workload of radiologists in terms of lesion annotations as well
as quick and accurate prediction of the procedure will facilitate
risk predictions in daily practice, which is extremely important
for COVID-19 management owing to the severe limitations that
occur with regard to healthcare resources.

There are several limitations to this study. First, our sample
size was relatively small, which would inevitably result in some
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bias. Additional patient data is required to validate our model.
Moreover, a disadvantage of all deep learning methods is the lack
of transparency and interpretability. More efforts to determine
the correlation between clinical processes and the prediction
results of our model should be made in the future.

CONCLUSION

We employed MIL, a deep learning method, using quantitative
CT data to accurately predict the disease severity of COVID-19.
By utilizing an inexpensive and widely available test, our model
can be used to identify patients at high risk of disease progression
in the early phase of the disease, which has important practical
implications for conducting early intervention, preventing
disease progression, and reducing mortality. We recommend that
confirmed COVID-19 patients should undergo CT screening as
soon as they are admitted to the hospital, so that physicians can
use our model to determine the risk of severe disease. If the result
indicates a potential worsening of the condition of the patient,
closer monitoring and early intervention should be considered
before the disease severity increases. We hope that this model
would be of some help to clinicians to better manage patients and
contribute to combatting COVID-19.
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FIGURE S1 | Distributions of features for raw CT data from the People’s Hospital
of Honghu. Row/columns, pixel spacing, slice count, and thickness distributions
for CT data from the People’s Hospital of Honghu.

FIGURE S2 | Distributions of features for raw CT data from the First Affiliated
Hospital of Nanchang University. Row/columns, pixel spacing, slice count, and
thickness distributions for CT data from the First Affiliated Hospital of
Nanchang University.

FIGURE S3 | CT data preprocessing, training, and inference workflow.

FIGURE S4 | Architecture of ResNet34 used for multiple instance learning.

FIGURE S5 | Performance of our model in predicting disease severity in six cases.
Slices from six randomly selected patients in the validation cohort [three severe
(A–C) and three non-severe (D–F)] are shown. The maximum positive probability
of all patches extracted from the CT series is assigned to the positive probability
for the represented slices. If the positive probability for the represented slices is
larger than 0.5, the corresponding case is predicted as severe; if it is smaller than
0.5, the case is predicted as non-severe.

FIGURE S6 | Decision curve for the multiple instance learning (MIL) model for
predicting disease severity in patients with confirmed COVID-19. Dotted line: the
MIL model. Gray line: assumed all patients have severe COVID-19. Solid black
line: assumed no patient has severe COVID-19. The decision curve provided the
expected net benefit of three scenarios in predicting disease severity in the (A)
Honghu training cohort and (B) Nanchang validation cohort.

FIGURE S7 | Decision curve for the multiple instance learning (MIL) model for
predicting disease progression in COVID-19 patients with non-severe symptoms
on admission. Dotted line: the MIL model. Gray line: assumed all patients have
severe COVID-19. Solid black line: assumed no patient has severe COVID-19. The
decision curve provided the expected net benefit of three scenarios in predicting
disease severity in the (A) Honghu subgroup and (B) Nanchang subgroup.

FIGURE S8 | Severe illness-free survival curves for the high and low severe risk
groups. Patients with the non-severe disease on admission were included in this
analysis. Patients were stratified into a high-risk group when the probability of
disease progression was higher than or equal to 0.5 and assigned to a low-risk
group when the probability was less than 0.5. Kaplan–Meier curves exhibited a
distinct difference in the survival probability in the (A) Honghu subgroup and (B)
Nanchang subgroup. The P-value was calculated using the log-rank test.
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