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Abstract

In interphase, the human genome sequence folds in three dimensions into a rich variety of locus-

specific contact patterns. Cohesin and CTCF are key regulators; perturbing the levels of either 

greatly disrupts genome-wide folding as assayed by chromosome conformation capture methods. 

Still, how a given DNA sequence encodes a particular locus-specific folding pattern remains 

unknown. Here we present a convolutional neural network, Akita, that accurately predicts genome 

folding from DNA sequence alone. Representations learned by Akita underscore the importance of 

an orientation-specific grammar for CTCF binding sites. Akita learns predictive nucleotide-level 

features of genome folding, revealing impacts of nucleotides beyond the core CTCF motif. Once 

trained, Akita enables rapid in silico predictions. Leveraging this, we demonstrate how Akita can 

be used to perform in silico saturation mutagenesis, interpret eQTLs, make predictions for 

structural variants, and probe species-specific genome folding. Collectively, these results enable 

decoding genome function from sequence through structure.

Introduction

Recent research has advanced our understanding of the proteins driving and the sequences 

underpinning 3D genome folding in mammalian interphase, including the interplay between 

CTCF and cohesin1 and their roles in development and disease2. CTCF is an 11 zinc finger 

protein that binds specific DNA sequence motifs and impacts genome folding in an 

orientation-dependent fashion1, consistent with orientation-dependent halting of loop 
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extrusion by cohesin3. Still, predicting the consequences of perturbing any individual CTCF 

site, or other regulatory element, on local genome folding remains a challenge. While 

disruptions of single bases can alter genome folding, in other cases genome folding is 

surprisingly resilient to large-scale deletions and structural variants4,5.

Previous modeling approaches for 3D genome folding fall in two broad categories: machine 

learning and polymer-based (Supplemental Note 1). Some approaches draw on features of 

both. The machine learning approaches are closer in spirit to ours but differ in several key 

ways. Specifically, prior applications of machine learning to the 3D genome have either: (1) 

relied on epigenomic information as inputs 6-9, which does not readily allow for predicting 

effects of DNA variants, or (2) predicted derived features of genome folding (e.g. 

peaks10,11), which depend heavily on minor algorithmic differences12. Making quantitative 

predictions from sequence poses a substantial challenge: base pair information must be 

propagated to megabase scales where locus-specific patterns become salient in chromosome 

contact maps.

Convolutional neural networks (CNNs) have emerged as powerful tools for modelling 

genomic data as a function of DNA sequence, directly learning DNA sequence features from 

the data. CNNs now make state-of-the-art predictions for transcription factor binding, DNA 

accessibility, transcription, and RNA-binding13-16. DNA sequence features learned by CNNs 

can be subsequently post-processed into interpretable forms17. Recently, the Basenji CNN 

was used to process very long sequences (~131kb) and learn distal regulatory element 

influences18, suggesting that genome folding could be tractable with CNNs.

Here we present Akita, a CNN to transform input DNA sequence into predicted locus-

specific genome folding. Akita takes in ~1Mb (220 bp) of DNA sequence and predicts 

contact frequency maps for all pairs of ~2kb (2048bp) bins within this region. Crucially, this 

allows Akita to predict the effect of mutating single base pairs. Trained model and code are 

available at: https://github.com/calico/basenji/tree/master/manuscripts/akita.

Results

Akita: a convolutional neural network for predicting 3D genome folding

The Akita architecture consists of a ‘trunk’ based on the Basenji18,19 architecture to obtain 

1D representations of genomic sequence, followed by a ‘head’ to transform to 2D maps of 

genome folding (Fig. 1a, Methods). In the ‘head’, we first averaged the representations of 

genomic bins i and j. Averaging produced slightly better generalization accuracy relative to 

several alternatives, including concatenation (Extended Data Fig. 1, Supplemental Note 2). 

As genomic distance can impact regulatory element communication, we appended a 

positional encoding of the distance between bins. Drawing inspiration from CNNs used in 

image processing, we computed multiple layers of dilated residual 2D convolutions, re-

symmetrizing after each block. Finally, we compared the upper triangular regions of target 

and predicted maps. We reasoned that the trunk would enable Akita to learn DNA motifs 

and how they combine into a grammar for genome folding. In turn, the head would 

recognize relationships between these features and propagate this information across the 

map, while accounting for the dependencies between neighboring bins.
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We trained Akita with five of the highest-quality Hi-C and Micro-C datasets as targets 

(Methods, Table 1), first removing biases with genome-wide iterative correction (ICE20). We 

divided the genome into non-overlapping regions and used an 80/10/10 split to assign DNA 

sequences and their corresponding contact frequency map patches, megabase-by-megabase 

regions, to the training, validation, and test sets. As we aimed to predict locus-specific 

genome folding patterns, we normalized patches for distance-dependent decreases in contact 

frequency and took a log of their values to obtain the log(observed/expected) maps used as 

targets for Akita. We minimized the mean squared error (MSE) between predictions and 

targets, making a simultaneous prediction for each of the five datasets. We quantified model 

performance with MSE, as well as Pearson’s R and Spearman’s R of observed/expected 

maps on held-out ~1-Mb test set regions. The latter two correlation metrics are analogous to 

robust metrics for Hi-C map comparisons (e.g. HiCRep21).

Akita learned a predictive representation of genome folding from DNA sequence, as 

evaluated on the held-out test set (genome-wide 0.14 MSE, 0.61 Pearson R, and 0.56 

Spearman R). This performance approaches the limit set by noise between experimental 

replicates (Extended Data Fig. 2).On a region-by-region basis, Akita captured the variety of 

patterns seen experimentally (Fig. 1b,c). Individual maps with lower correlations often 

represented correct predictions for featureless experimental maps. Akita’s predictions 

reflected the strength of locus-specific folding seen experimentally (Extended Data Fig. 3a-

c), and aligned well with Hi-C peaks and boundaries called in experimental data (Extended 

Data Fig. 3d-f). By simultaneously training on all five datasets in a multi-task framework, 

Akita achieved greater overall accuracy than models trained on single datasets alone 

(Extended Data Fig. 1c). Still, Akita predicted limited cell-type-specific differences 

(Extended Data Fig. 4). We hypothesize that this was constrained by the number of loci with 

strong cell-type-specific differences ascertainable in current experiments.

Akita learns accurate representations of genome folding from DNA sequence

Akita predicted more prominent patterns in regions with greater CTCF binding and DNAse 

hypersensitivity (Extended Data Fig. 3a-c). Salient predicted patterns often also aligned with 

CTCF ChIP-seq peaks (Fig. 2a,b). However, CTCF motifs are too prevalent to connect DNA 

sequence to genome folding at the bin level (Extended Data Fig. 5d). Fortunately, Akita 

enabled us to directly quantify nucleotide influences via in silico mutagenesis; while training 

Akita was computationally intensive, effects of sequence changes could be predicted in 

seconds. Akita predicted greatly diminished locus-specific patterns after mutating all CTCF 

motifs (Fig. 2e). In this extreme scenario, Akita predicted some patterns would persist, and 

these often aligned with DNase hypersensitive sites that lacked evidence of strong CTCF 

binding. Inverting all CTCF motifs produced very different predictions, redistributing rather 

than abrogating contact patterns (Fig. 2d, Extended Data Fig. 6a-d). This indicated that 

Akita learned an orientation-specific grammar of the CTCF sites most crucial for genome 

folding.

To explore the role of CTCF for Akita’s predictions genome-wide, we mutagenized the 

CTCF motifs in each region of the test set. The majority of mutagenized regions showed 

weaker locus-specific patterns (Fig. 3a), reminiscent of changes seen experimentally 
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following acute CTCF degradation22,23. Performing a similar mutagenesis for each motif in 

the JASPAR transcription factor database24 revealed that CTCF had the strongest impact 

(Fig. 3b,c). The second largest effect was for CTCFL, which binds a very similar motif to 

CTCF but is typically inactive in somatic cells. For the remaining motifs, mutagenesis either 

imperceptibly disrupted genome folding or the predicted impact directly tracked the number 

of overlaps with CTCF motif positions (Extended Data Fig. 5g-j). Going beyond motifs, we 

also explored the effect of mutating sequences underlying cohesin ChIP-seq peaks. This 

analysis indicated that DNA sequences other than the core CTCF motif can also impact 

genome folding (Extended Data Fig. 6e-g).These results argue that no other transcription 

factor with a known motif plays as large of a role as CTCF for 3D genome folding, and that 

CTCF-independent aspects of genome folding emerge from a combinatorial interplay 

between different DNA-binding factors.

Akita learns predictive nucleotide-level features of genome folding

Given the substantial predicted impact of mutagenizing whole CTCF motifs on genome 

folding, we sought to quantify the predicted contact map disruptions for mutations to 

individual nucleotides. First, we performed in silico saturation mutagenesis of 500-bp 

regions centered at strong CTCF motifs (JASPAR p-value < 1e-6). Predicted disruptions 

were largest for nucleotides around the motif, but remained high relative to background in 

the flanking regions, slowly decaying with increasing distance (Fig. 4a-c). The magnitude of 

predicted disruption correlated with evolutionary conservation (phyloP25, Extended Data 

Fig. 7a-c) and predicted change in motif strength from FIMO26 (Extended Data Fig. 7d). We 

next generated 100,000 random single nucleotide mutations uniformly spaced across the 

241Mb test set to quantify the influence of nucleotides within and near CTCF motifs relative 

to other genomic features. Mutations that altered CTCF motifs and their flanking regions 

displayed many of the highest predicted disruption scores (Fig. 4d,e, Extended Data Fig. 7e-

f), which likely reflect influences on CTCF binding or function, either directly or via 

cofactors27,28. Nucleotides in promoters and enhancers also displayed elevated effects 

relative to genomic background. Still, a substantial fraction (19.9%) of high-impact 

mutations fell outside of annotation categories typically considered in connection with 3D 

genome folding. These analyses indicate that Akita extracts meaningful information at the 

base pair level, and that important DNA sequences for genome folding remain 

uncharacterized.

To consider how genome folding influences gene expression, we studied a set of fine-

mapped likely causal expression quantitative trait loci (eQTLs) from GTEx whole blood 

samples (Fig. 4f). Using Akita, we calculated the predicted disruption to local 3D folding 

(averaged across the five model outputs) for single nucleotide polymorphisms (SNPs) at 

varying causal posterior probability (PP) thresholds (1,906 PP>0.9, 29,112 total). We 

observed significantly larger predicted disruptions for SNPs with greater causal PP, both 

overlapping and outside of CTCF motifs (Fig. 4f). To characterize the sequence context 

around these high-scoring non-CTCF variants, we performed in silico saturation 

mutagenesis of the surrounding 200 bp. One intriguing example altered an uncharacterized 

motif 70 bp from a CTCF motif, which may serve to enhance its boundary strength (Fig. 

4g). These results show how Akita can be used to interpret human genetic variation.
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Akita predicts consequences of a genetically engineered deletion

We investigated Akita’s ability to predict how genetically engineered mutations alter 

genome folding. As Akita makes predictions for 1Mb sequences and is not influenced by 

information beyond this window, we sought an example where a <100kb variant had a 

dramatic effect on genome folding. At the Lmo2 locus in HEK293T cells29, two domains 

are separated by a boundary positioned at a cluster of three CTCF-bound sites (Fig. 5). In 

cells with a ~25kb deletion encompassing this boundary, the two domains merge. Making 

the same deletion in silico recapitulated this effect in the predicted Hi-C map. Leveraging 

Akita’s ability to rapidly assay sequence perturbations, we examined a combinatorial set of 

in silico deletions in the Lmo2 locus (Extended Data Fig. 8). Deleting any individual CTCF 

site minimally altered predictions. Our model thus predicts this boundary is formed by 

redundant CTCF sites, a phenomenon observed experimentally in other genomic 

locations4,5.

Akita enables cross-species analyses of genome folding

Given similar overall human and mouse genome folding30, we reasoned the mouse genome 

could provide evolutionarily perturbed sequences to further test Akita (Fig. 6a). Using 

mouse DNA sequences as input, we compared predictions from our human-trained model 

(hESC output) with mESC Hi-C data31. These cross-species predictions generally 

recapitulated mouse genome folding (Extended Data Fig. 9, median Spearman R: 0.50). 

Intriguingly, poorer predictions had more B2 SINE elements, which dramatically expanded 

in murid lineages and carry CTCF sites32. Mutagenizing B2 SINE elements to ablate their 

CTCF sites improved our predictions for mouse genome folding (median Spearman R 0.55 

vs 0.50). This suggests that the mouse genome specifically mitigates the influence of these 

elements, and Akita did not learn their true influence due to the lack of B2 SINEs in the 

human genome training data.

To test whether the influence of B2 SINEs on mouse genome folding could be learned de 

novo via our approach, we trained a new model on available mouse Hi-C data (Extended 

Data Fig. 10). This model was both more predictive on held-out test regions of the mouse 

genome for the same mESC Hi-C data (median Spearman R 0.63 vs. 0.50 for the human-

trained model), and was not improved by mutating B2 SINE elements (median Spearman R 

0.62 masked vs 0.63 unmasked), indicating that it correctly learned to mitigate the impact of 

CTCF sites inside of these elements. Our results are consistent with recent observations that 

the ChAHP complex hinders CTCF binding within murine B2 SINE elements33, and 

highlight opportunities for sequence-based modeling to uncover species-specific regulatory 

strategies.

To further test the generality of our approach, we considered the ability of our mouse-trained 

model to predict a genetically engineered inversion. At the Eph4A locus in limb buds, two 

domains are separated by a boundary with a prominent downstream flare34. Upon inversion 

of ~622kb encompassing this boundary and a downstream enhancer, the orientation of the 

flare flips, as ascertained by Capture-C at this locus34. Making the same inversion in silico, 

we found a similar change in the predicted contact maps (Fig. 6b). Note that as high-

resolution limb bud data was unavailable for model training, we used the mESC output from 
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our model. This result illustrates the generality of our approach, for both a new organismal 

context (mouse instead of human) and class of structural variant (inversion instead of 

deletion).

Discussion

In summary, we present Akita, a convolutional neural network model that predicts 3D 

genome folding using only DNA sequence as an input. We demonstrated how Akita enables 

rapid in silico mutagenesis at the motif and single nucleotide level, and how this allows for 

interpreting the features used in its predictions. We further show how Akita can be used to 

interpret eQTLs from GTEx and make predictions for multi-kilobase structural variants. 

Finally, we highlighted how our approach can uncover species-specific influences of 

sequence on genome folding.

While Akita advances predictive modelling of genome folding, our current implementation 

makes predictions for ~1Mb windows of the genome and, crucially, is not influenced by 

information beyond this window. Future work will be needed to extend predictions to more 

distal pairs of genomic loci and model features of genome folding visible between 

chromosomes, like A/B compartmentalization1. As Akita takes a data-driven approach, it 

must be trained using Hi-C or Micro-C data for any cell types where sequence perturbation 

predictions are desired. Future work, which can include new training strategies, network 

architecture modifications, and leveraging additional datasets, will also be necessary to 

sharpen cell-type specificity of predictions. The increasing availability of high-resolution Hi-

C and micro-C data promises an exciting path forward.

An appealing hypothesis for future work is that neural networks with layers that better 

reflect the molecular and physical mechanisms organizing genomes will make more accurate 

and generalizable predictions. For the initial layers, convolutions naturally extend13-15 

position weight matrix approaches for capturing the biophysics of protein-DNA interactions. 

The architectures and layers that might best reflect the process of loop extrusion, believed to 

organize mammalian interphase chromosomes3, or other mechanisms of genome 

organization remain open questions. The near future promises exciting progress: recently, a 

similar CNN model, deepC, was posted to bioRxiv35. While deepC has a similar ‘trunk’ to 

Akita, it differs greatly in the architecture of the ‘head’, data pre-processing, and training 

schemes (Supplemental Note 3). Future work will benefit from comparing these approaches, 

continuing to explore the space of alternatives, and incorporating high quality data as it 

becomes available.

In the future, we envision that end-to-end sequence-to-genome-folding approaches will 

advance our ability to design functional screens, model enhancer-promoter interactions, 

prioritize causal variants in association studies, and predict the impacts of rare and de novo 
variants.
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Online Methods

Training Data

To obtain Hi-C data conducive for convolutional neural network learning, we reprocessed 

five of the highest-quality publicly available human Hi-C and Micro-C datasets to 2048bp 

(211 bp) bins using distiller (https://github.com/mirnylab/distiller-nf)44 to map to hg38 and 

cooler (https://github.com/mirnylab/cooler)45 to perform genome-wide iterative correction 

(ICE) 20.

To focus on locus-specific patterns and mitigate the impact of sparse sampling present in 

even the currently highest-resolution Hi-C maps, we adaptively coarse-grain, normalize for 

the distance-dependent decrease in contact frequency, take a natural log, clip to (−2,2), 

linearly interpolate missing bins, and convolve with a small 2D gaussian filter (sigma=1, 

width=5). The first through third steps use cooltools functions (https://github.com/mirnylab/

cooltools). Interpolation of low-coverage bins filtered out in typical Hi-C pipelines was 

crucial for learning with log(observed/expected) Hi-C targets, greatly outperforming 

replacing these bins with zeros.

To prepare input DNA sequences with paired Hi-C data for training, we divided the human 

genome into non-overlapping virtual contigs and assigned them randomly to training, 

validation, and test sets with an 80/10/10 split. To generate the set of virtual contigs, we split 

chromosomes at assembly gaps, large unmappable regions, and consecutive stretches of ≥10 

filtered-out Hi-C bins (in any target dataset). The resulting segments were split into 10 Mb 

virtual contigs. From the contigs we extracted 220 bp (~1Mb) sequences, striding by 218 bp 

(~262kb) for the training set and 219 bp (~524kb) for the validation and test sets. This 

procedure resulted in 7,008 training, 419 validation, and 413 test sequences.

Model architecture

We created a neural network architecture to predict 2D Hi-C maps from 1D DNA sequences 

that consists of two major components. First, we process the 1D DNA sequence using a 

‘trunk’ that applies a series of convolutions, following previous work on convolutional 

neural networks for DNA sequence analysis. Second, we applied a ‘head’ that transforms the 

1D representations to 2D for Hi-C prediction. Importantly, we make a prediction for each 

dataset the model is trained on for a given input DNA sequence. Intriguingly, similar 

sequence-to-map architectures have recently been successful for protein contact map 

prediction48. We implemented the model using the Basenji software18,19, which is written in 

Tensorflow49 and Keras50.

More specifically, the ‘trunk’ includes:

1. Convolution with 96 filters of size 11-by-4 to transform the 1-hot encoded DNA 

sequence followed by batch normalization, ReLU, and width 2 max pooling.

2. Convolution tower that iteratively performs convolution with 96 filters of width 

5, batch normalization, ReLU, and width 2 max pooling to arrive at 512 vector 

representations of the sequence in 2048bp windows.
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3. Dilated residual convolution tower that iteratively performs dilated convolution 

with geometrically increasing dilation rate, adding the new representation back 

into the old. This block spreads information about relevant sequence elements 

and global context across the sequence18. As previously18, dilated convolutions 

use zero padding. Dropout is applied before adding the new representation back 

to the old at each iteration.

4. Bottleneck width 1 convolution with 64 filters.

The ‘head’ includes:

1. Conversion of 1D profiles to 2D maps. We averaged the representations for every 

pair of genomic bins i and j. This operation transforms a tensor with dimensions 

[512 length, 64 filters] to a tensor with dimensions [512 length, 512 length, 64 

filters]. We also concatenated a positional encoding of the distance between bins, 

abs∣i-j∣, as an additional filter, producing a [512 length, 512 length, 65 filters] 

tensor. We then applied a (1,1) convolution block to finalize the transition to 2D.

2. 2D dilated residual convolution tower that iteratively performs dilated 

convolution, treating this map as a 2D image as adding the new representation 

back to the old at each iteration. As above, we use geometrically increasing 

dilation rate, and dropout. We additionally re-symmetrize at each iteration with 

the custom Keras layer Symmetrize2D, which sums the output of a layer with its 

transpose and divides by two.

3. Linear transformation, without any activation, to make simultaneous predictions 

for the 5 datasets.

Collectively the model has 746,149 trainable parameters. For the full Keras print of the 

model architecture see: [https://github.com/calico/basenji/blob/master/manuscripts/akita/

keras_print.txt].

Training Approach

We computed a mean squared error loss from the targets and predictions, considering only 

the upper triangular portion of the matrixes. We fit the model parameters using stochastic 

gradient descent with momentum for ~60 epochs, taking steps in batches of 2 sequences.

Data augmentation was critical to avoid overfitting and maximize generalization accuracy to 

unseen sequences. Each time that we processed a sequence, we stochastically shifted input 

sequences by up to +/− 11 bp and reverse complemented the DNA and flipped the Hi-C 

map.

We stopped training when validation loss had not improved for 12 epochs, and we took the 

model parameters that had achieved that minimum validation loss forward as the final 

model. We performed a search over learning rate, momentum, gradient norm clipping, 

dropout probability, and convolution filters using the Dragonfly Bayesian optimization 

toolkit [https://github.com/dragonfly/dragonfly]51. Best performance was achieved with 

learning rate: 0.0065, momentum: 0.99575, gradient clipping: 10.7. Full specification of 
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model parameters can be found at: [https://github.com/calico/basenji/blob/master/

manuscripts/akita/params.json].

Comparison with 1D features

For comparison to 1D features of the epigenome, we downloaded processed bigWigs for the 

relevant cell types from the ENCODE data portal 37 and binned them into 2048bp profiles.

In silico motif mutagenesis

To perform in silico motif mutagenesis, we intersected our test set regions with motif 

positions using bedtools 52. We then generated multiple randomized sequences, where we 

replaced the DNA sequence at the motif positions with randomly generated nucleotides of 

the same length. We then calculated the average disruption as mean( (pred - predΔmotif)2 ), 

and the change in signal as mean(pred2 ) - mean(pred2
Δmotif). Motif names were plotted with 

adjustText [https://github.com/Phlya/adjustText]53. The maps in Fig. 2 represent averages 

over 10 randomized sequences, while the JASPAR-wide analyses in Fig. 3 averaged over 3 

randomized sequences.

In silico CTCF motif inversions

We performed in silico motif inversions similarly to motif mutagenesis for determining 

intersections. We then merged overlapping motifs and replaced sequences in these intervals 

with their reverse complements.

In silico nucleotide-level mutagenesis.

We studied the impact of CTCF with two nucleotide-level mutagenesis strategies. First, we 

performed saturation mutagenesis of 500 bp regions around 500 randomly selected strong 

CTCF motifs, annotated by JASPAR with p-value < 1e-6. Second, to quantify the impact of 

nucleotides within and near CTCF motifs relative to other genomic features, we formed a set 

of unbiased mutations across the genome. We selected 100,000 uniformly spaced positions 

(each 256 bp apart) within the test set genomic regions and then selected a random 

alternative nucleotide for each one. For each of these mutagenesis strategies, we computed 

the disruption score as the L2 norm of the predicted difference between contact maps for the 

reference and alternative allele, averaging across outputs.

In silico GTEx mutagenesis.

We studied fine mapped GTEx v8 eQTLs54 from whole blood using SuSiE55, including 

1,906 SNPs with causal posterior probability (PP) >0.9, 1,844 SNPs with PP from 0.5 to 0.9, 

and 16,064 SNPs with PP from 0.1 to 0.5. We further selected 9,298 random SNPs with 

significant genome-wide marginal association with gene expression. We computed 

disruption scores with Akita by predicting contact maps for the reference and alternate 

alleles, subtracted the maps and computing the L2 norm as for in silico nucleotide-level 

mutagenesis
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Human-trained predictions for mouse DNA sequences

To test the accuracy of Akita’s predictions for mouse DNA sequences, we obtained mESC 

Hi-C data from Bonev et al., 2017 31, mapped reads to mm10, and otherwise processed the 

data as for human datasets. Positions of B2 SINE elements were downloaded from UCSC 

(from RepeatMasker42). B2 SINE mutagenesis was performed as described for motifs.

Mouse model training

We trained a mouse (mm10) model using Hi-C data from Bonev et al.31 (mESC, CN, 

ncx_CN, NPC, ncx_NPC) and Micro-C from Hsieh et al.43 (mESC) with the same multi-

task framework used to train our hg38 model.

5C and Capture-C data processing

To test Akita’s ability to predict an experimentally induced deletion, we obtained processed 

5C data for the Lmo2 locus from Hnisz et al., 201629, re-binned fragments to 2048bp bins, 

and otherwise performed the same processing into log(observed/expected) maps as for Hi-C 

target data above.

To test the ability of our mouse-trained model to predict an experimentally induced 

inversion, we obtained processed Capture-C data for the Eph4A locus from Kraft et al., 

201934. Mapped experimental data was re-binned to 2048bp with cooler45, iteratively 

corrected in cis with a minimum of 100 reads, and then processed into log(observed/

expected) maps as described for Hi-C target data above.

In silico deletions and inversions

As Akita makes predictions for fixed input size, to make a deletion in silico we must both 

remove the DNA sequence we hope to delete and supply the model with an equal amount of 

additional DNA sequence. Here we centered on the position of the deletion and 

symmetrically extended the start and end to maintain the size of the input. For inversions in 

the window, as considered here, we simply replaced sequence in this region with its reverse 

complement.

Statistics and software

The statistical tests in comparisons are indicated in the main text and figure legends. Pearson 

R, Spearman R, one-sided Mann-Whitney U tests calculated using scipy56 v1.4.1. Analyses 

also used numpy57, pandas58, ipython59, matplotlib60 and seaborn61. Additional information 

available in the Life Sciences Reporting Summary.

Data availability

Datasets analysed in this study are publicly-available from: GEO 

(www.ncbi.nlm.nih.gov/geo/, Hi-C: GSE63525, GSE104334, GSE96107, 5C: GSE77142, 

Capture-C: GSE116794), 4D Nucleome Data Portal (https://data.4dnucleome.org/, Micro-C: 

4DNESWST3UBH, 4DNES14CNC1I), UCSC (http://hgdownload.cse.ucsc.edu/goldenpath/

hg38/database/), ENCODE data portal (www.encodeproject.org/), JASPAR (http://
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expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2018/hg38/tsv/), GENCODE 

(https://www.gencodegenes.org/human/), FANTOM5 (https://fantom.gsc.riken.jp/data/).

Code availability

Trained model, additional documentation, and code for training and predicting with Akita 

available at: https://github.com/calico/basenji/tree/master/manuscripts/akita.

Extended Data

Extended Data Fig. 1. Akita transforms from 1D to 2D representations and benefits from multi-
task training.
a. Illustration of transformation from 1D profiles to 2D maps. To convert 1D profiles to 

2D maps, we averaged the values at pairs of genomic bins i and j for each filter. This 

operation transforms a tensor with dimensions [512 length, 64 filters] to a tensor with 

dimensions [512 length, 512 length, 64 filters]. We also concatenated a positional encoding 

of the distance between bins, abs∣i-j∣, as an additional filter, producing a [512 length, 512 

length, 65 filters] tensor.

b. Evaluation of transformation from 1D to 2D. We considered the following operations 

to transform 1D vector representations derived from the DNA sequence to 2D for Hi-C 
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prediction, holding all other hyper-parameters constant. For every pair of vectors oi and oj 

for 1D sequence positions i and j, we computed vector t(i,j), with filters indexed by k, via:

1. “dot”: Element-wise multiplication between each vector position, t(i,j,k) = 

oi(k)oj(k).

2. “geo”: Addition of one to all vector values, element-wise multiplication between 

each position, square root of each position, subtraction of one from all vector 

values,

t(i, j, k) = (oi(k) + 1)(oj(k) + 1) − 1 .

3. “max”: Element-wise max between each vector position, t(i,j,k) = 

max(oi(k),oj(k)).

4. “concat”: Concatenate the two vectors, t(i,j) = [oi,oj].

5. “avg”: Element-wise mean between each vector position, t(i,j,k) = (oi(k)+oj(k))/2

c. Multi-task training improves accuracy relative to single dataset training.

We trained Akita models for each of the five datasets alone and compared overall Pearson’s 

R on the test set to the jointly trained multi-task model. Multi-task training benefitted all 

datasets except for the highest-performing H1hESC dataset. We note that our multi-task 

framework thus offers a powerful approach to train on many datasets simultaneously and 

efficiently.
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Extended Data Fig. 2. Correlation of Akita’s predictions with experimental data reach those 
between replicates
a. MSE vs. Spearman R for each target, where each dot shows values for these metrics for 

an individual region of the test set. Light grey shows values for predictions versus the full 

experimental dataset, as in Fig. 1C. Purple shows these quantities if reads for each full 

dataset are randomly split into two datasets. The same normalization and smoothing steps 

used to generate training data from the full dataset were used to transform each map prior to 

calculating MSE or Spearman R. Predictions generally show lower MSE and higher 

correlations than split datasets. This indicates that our model has extracted the majority of 

the signal in these data, and that current performance is limited at least in part by sequencing 

depth of even the currently best available datasets.

b. MSE vs. Spearman R for the HFF dataset. Light grey and purple as in (a). To obtain 

contact maps for biological replicates, as defined in Krietenstein et al., 2020, reads were re-

processed and aggregated across technical replicates for the same biological replicate 

(bioRep). Biological replicates represent independently cultured and processed cells, 

whereas technical replicates represent independent sample preparations from the same cell 

culture. Green shows results for two biological replicates, and dark grey shows results for 

predictions versus the first biological replicate. Normalization and smoothing applied as in 

(a). Since splitting leads to slightly lower MSEs and higher correlations than those between 

biological replicates, this indicates that splitting reads in half computationally leads to a 
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similar, albeit more stringent, barometer of model performance than the comparison between 

biological replicates.

c. Maps for predictions (top row), bioRep1 (middle) and bioRep2 (bottom) for the same 

three regions displayed in Fig. 2.

Extended Data Fig. 3. Akita predictions relate to the aggregate CTCF and accessibility signals as 
well as binarized features of experimental maps.
a-c. Correlations between the strength of Akita’s predictions, strength of experimental 

patterns, CTCF, and DNAse.
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a. Map signal strength, measured by mean of squared map values, for predictions versus 

targets. In regions with more complex features, Akita tends to make more complex 

predictions. Correlation printed above each plot indicates Spearman’s R across all regions of 

the test set (n=413, p<1e-6 in all cases).

b. Signal strength for predictions versus signal strength for CTCF ChIP-seq, measured by 

mean squared profile values. Akita predicts more prominent locus-specific patterns in 

regions with greater CTCF binding.

c. Signal strength for predictions versus DNAse-seq.

d-f. Akita predictions recapitulate positions of boundaries and dots called from experimental 

data.

d. Experimental HFF Micro-C data for the same regions in Fig. 2. TAD boundaries are 

overlaid as green lines, for boundary strength >1 and insulation score < −0.5 (15,273 

genome-wide). Dots (also termed ‘loops’ or ‘peaks’) are overlaid as purple circles, for 

strength >2 (36,671 dots genome-wide). Both calculated as in Krietenstein et al., 202036.

e. Predictions overlaid with the same features.

f. A/B compartment profiles for the indicated regions calculated at 32,768bp (215) 

resolution, calculated using cooltools (https://github.com/mirnylab/cooltools) from 

chromosome-wide experimental maps. Note that these 1 Mb regions all largely fall in the A-

compartment (values >0), and that B-compartment regions often display the more uniform 

maps seen in Fig. 1b. Also note that called TAD boundaries and peaks likely have both false 

positives and false negatives, as derived features extracted by related algorithms from the 

same Hi-C data can show surprisingly low overlap12, and are dependent on the exact 

thresholds used. Indeed, binarized features alone appear to have minimal predictive value for 

functional enhancer interactions in CRISPRi tiling screens39. The limitations of binarized 

features underscores a key goal for Akita, which is to enable post-TAD analyses of genome 

folding data.
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Extended Data Fig. 4. Akita displays limited cell-type specificity in predictions.
a. Predicted versus experimental log(observed/expected) values for each bin pair in every 

region of the test set, separately for each target. This shows predictions are correlated with 

experimental data across cell types. Color shows log10 number of bin pairs for each set of 

predicted versus experimental values. Corr shows Spearman R.

b. Considering every region in the test set across cell types, we find: Left: models make 

highly correlated predictions for different cell types (Spearman R(pred(i,j,k1),pred(i,j,k2)), 
where k1 and k2 index cell types and the correlation is taken across all genomic regions i, 
and pixels j). Middle: genome folding assayed experimentally is correlated, but less so 

(Spearman R(data(i,j,k1),data(i,j,k2)). Right: predicted differences across cell types from our 
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models correlate, albeit weakly, with observed differences (Spearman R((pred(i,j,k1) - 
pred(i,j,k2), data(i,j,k1) - data(i,j,k2)). Note different scales for Spearman R.

c. Example of a region showing largely consistent folding across cell types 

(chr20:50759680-51808256) for targets and predictions. Tracks show binned CTCF ChIP-

seq fold-change over control and DNAse-seq density.

d. Example of a region showing gains and losses of specific features across cell types 

(chr5:5179392-6227968) at bin ~300.

While the predicted differences across cell types from models correlates with observed 

differences (b, right), our predictions are not particularly visually distinct for different cell 

types (c,d). At present, our models appear to primarily tune the dynamic range for the entire 

prediction, rather than predicting gains and losses of a subset of features (d). Also note in 

(d) that CTCF is still bound in HCT116 in this region as determined by ChIP-seq, despite 

the loss of a strong boundary around bin 300. In the future, we hypothesize that pairing 

improved model architectures and training procedures with a greater number of high-

resolution genome folding datasets will enable our models to learn more cell type-specific 

representations of genome folding, as is currently possible for TF binding, chromatin state, 

and gene expression18.
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Extended Data Fig. 5. In silico mutagenesis enables rapid screening of transcription factor 
influence on genome folding.
a. Experimental HFF Micro-C target data for three regions in our held-out test dataset.

b. Predictions for these regions.

c. Predictions for these regions after randomly mutagenizing all CTCF motifs in these 

regions, averaged over 10 random samples.

d. Number of CTCF motifs per 2048bp bin. CTCF motif matches obtained from JASPAR24, 

and profiles computed separately for the number of motifs on the positive strand (>0) and 

negative strand (<0).
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e. Predictions for these regions after mutagenizing all NR3C2 motifs in these regions, 

averaged over 10 random samples. NR3C2 motifs cover a similar number of base pairs per 

region as CTCF, but their perturbation has little impact on Akita’s predictions.

f. Positions of positively oriented (>0) and negatively (<0) oriented NR3C2 motifs per bin.

g. Average disruption, mean( (pred-predmut)2), versus the average number of kb perturbed 

per region. Note that YY1, suggested to be involved in genome folding40,41, is predicted to 

have little aggregate genome-wide impact following motif mutagenesis. This suggests YY1 

may operate at a subset of loci in certain developmental contexts40 or its influence depends 

on the presence of nearby CTCF motifs or other complex factors and evaded our model.

h. Change in signal, mean((pred)2) - mean((predmut)2), versus the average number of kb 

perturbed per region. This reveals a trend toward negative scores for motifs with many 

occurrences.

i. Average disruption versus the total number of overlaps with CTCF motifs. The strong 

trend argues that many high scoring motifs likely have large predicted impacts due to 

frequent overlaps with CTCF motifs, rather than independent effects.

j. Change in signal versus the total number of overlaps with CTCF motifs.
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Extended Data Fig. 6. Akita learns an orientation-specific role for CTCF and enables 
mutagenesis of regions defined by ChIP-seq
a-d. Akita learns an orientation-specific role for CTCF

a. Predicted map signal strength before versus after in silico perturbations, either for 

mutagenizing all CTCF motifs (black) or inverting all CTCF motifs (blue). Points show each 

region in the test set (n=413). Signal strength quantified by mean squared map values. 

Inversions tend to show smaller perturbations to overall signal strength (blue points deviate 

less from the x=y line than black points).

b. Average disruption for mutagenizing all CTCF motifs or inverting all CTCF motifs. 

Inversion disrupts maps to a similar extent as mutagenesis (points fall both above and below 

Fudenberg et al. Page 20

Nat Methods. Author manuscript; available in PMC 2021 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the x=y line to a similar extent). Jointly with (a), Akita thus predicts changing motif 

orientation largely alters the positioning of contact patterns, rather than their overall salience 

across the genome.

c. Change in signal strength versus disruption for inverting all CTCF motifs, mean((pred)2) - 

mean((predinv-CTCF)2). Points show each region of the test set. This indicates that while 

motif inversions greatly change predicted contact patterns, they can both increase (-) and 

decrease (+) the signal strength, or salience, of contact patterns.

d. Change in signal strength versus disruption for mutagenizing all CTCF motifs in each 

region of the test set, mean((pred)2) - mean((predmut-CTCF)2). The positive change in signal 

strength upon mutagenesis shows these perturbations largely decrease features strength in 

predicted maps.

e-g. Akita enables studying the impact of sequences underlying ChIP-seq regions without 

defined motifs.

e. Predicted change in signal versus average disruption for in silico mutagenesis of DNA 

sequences underlying cohesin peaks. Each point represents one of the 10,268 H1hESC 

Rad21 cohesin peaks overlapping regions in our test set. Mutagenesis is performed either 

randomly for all nucleotides under the peak (blue) or only for nucleotides that do not overlap 

a Jaspar CTCF motif (orange).

f. Boxplots for predicted average disruption, stratified by the number of CTCF motifs 

overlapping the cohesin ChIP peak. Boxplots generated with seaborn defaults for the same 

n=10,268 peaks (boxes show quartiles, whiskers extend 1.5 times IQR beyond low and high 

quartiles, points outside this range shown individually). We found that mutagenesis of 

Rad21 ChIP-seq peaks without CTCF motifs was less disruptive than mutagenesis of peaks 

with CTCF motifs. Interestingly, we observed no clear trend of increased average disruption 

for increased numbers of CTCF motifs beyond the first.

g. Boxplots as for (f) but with masking the positions of CTCF motifs in these peaks and 

repeated mutagenesis. On average this led to weaker disruptions of predicted maps (also see 

the spread of orange versus blue in (e)). However, the trend where mutagenesis of Rad21 

ChIP-seq peaks without CTCF motifs was less disruptive than mutagenesis of peaks with 

CTCF motifs still held. This argues that Akita relies on additional sequence context beyond 

the immediate 19bp motif in JASPAR to correctly predict its impact on Hi-C maps, similar 

to how additional sequence context was found to be relevant for CTCF binding assayed by 

ChIP-exo27.
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Extended Data Fig. 7. Impacts of predicted disruptions relate to evolutionary conservation and 
functional annotation categories
a-c. Predicted nucleotide-level impacts correlate with evolutionary conservation in and 
around CTCF motifs. Results from saturation mutagenesis of 500 bp regions around 500 

randomly selected strong CTCF motifs, annotated by JASPAR with p-value < 1e-6, as for 

Fig. 3D. For each mutation, we computed the disruption score as the L2 norm of the 

predicted contact difference maps between the reference and alternative alleles. We 

aggregated scores across the model outputs by taking the mean. For visualization, these 

figures include a 0.001 pseudocount before taking the natural logarithm. We constructed a 

single score for each position by taking the maximum across alternative alleles.
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a. The mean log disruption across regions is greatest within CTCF motifs, but is also high in 

the flanking regions.

b. The mean PhyloP score across regions is greatest within CTCF motifs, with peaks in 

similar places to nucleotide-level disruption scores. PhyloP values were extracted from the 

mammalian 30-way alignment for the same regions as in (a).

c. Scatter plots for disruption versus PhyloP scores for n=5,220 sites within CTCF motifs 

(top), n=7,830 sites in the flanking 15bp (middle), and n=73,341 sites beyond 100bp 

(bottom). We observed significant Pearson correlations within the CTCF motifs (top) and in 

the directly flanking regions (center), which drops off farther away (bottom).

d. Scatter plot for log disruption versus motif strength, computed as the absolute change of 

the FIMO score, for n=1,817 mutations that showed some evidence of influencing the CTCF 

motif. The wide range in Akita scores for a given change in FIMO score argues that Akita 

integrates nucleotide influences on genome folding beyond those described by a position 

weight matrix approach.

e-f. Large-scale mutagenesis reveals impactful annotation categories for single 
nucleotide variants. To quantify the impact of nucleotides within and near CTCF motifs 

relative to other genomic features we formed a set of unbiased mutations across the genome. 

We randomly selected 100,000 positions striding by 256 bp within the test set genomic 

regions and then selecting a random alternative nucleotide. For each mutation, we computed 

the disruption score as the L2 norm of the predicted contact difference maps between the 

reference and alternative allele, averaging across outputs.

e. Distributions of nucleotide disruption scores split by annotation category, compared to 

nucleotides outside of these annotation categories. We observed elevated scores in CTCF 

motifs, their flanking regions (CTCF Flank 10, CTCF Flank 100), promoters (500bp from 

GENCODE-annotated transcription start site), and enhancers (FANTOM5-annotated). For 

visualization we added a 0.001 pseudocount before taking the natural logarithm.

f. Two example sites without an annotation category. For visualization we added a 1 

pseudocount before taking the natural logarithm (log1p). This suggests there are important 

DNA sequences for genome folding that remain uncharacterized.

g. Predicted maps for a high-scoring non-CTCF GTEx variant. Predicted maps 

underlying the score for chr7_5898574_G_T_b38 shown in Fig. 4g. Left: prediction for the 

reference allele. Middle: prediction for the alternative allele. Right: prediction for the 

(reference - alternate), where green indicates higher predicted contact frequency for the 

reference allele and pink indicates higher predicted contact frequency for the alternate allele. 

Top row: full prediction region. Bottom row: zoom into the boundary modified by the 

variant. Note the different color scales. Grey lines show the position of the variant, at the 

center of the prediction region. Akita predicts this variant modifies the strength of a nearby 

boundary. While difficult to see the influence of this single nucleotide change over the full 

prediction region, the difference becomes apparent upon subtraction of predicted maps. 

Specifically, this change indicates stronger predicted insulation at this boundary for the 

alternate allele (exp(0.02) ~= 2% decrease in contact frequency over this boundary).
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Extended Data Fig. 8. Model predicts a redundant boundary at Lmo2.
Left: Predicted genome folding for unperturbed Lmo2 locus above the CTCF ChIP-seq 

profile for the region. Predictions in this figure used hg19 sequence as input and Akita’s 

output for HFF Micro-C.

Right: Numbers above maps indicate the (start,end) position of bins that were deleted, 

highlighted by purple shading on the zoomed-in CTCF ChIP-seq profile below the predicted 

WT map.

Akita predicts that deleting bins encompassing individual CTCF peaks (top row) would only 

mildly alter genome folding, and deletion of all three (bottom right) would be more 

impactful than either pair (bottom left and middle).
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Extended Data Fig. 9. Cross-species predictions reveal impact of B2 SINE elements on genome 
folding in mouse embryonic stem cells
a. MSE versus Spearman R for mouse regions that overlap regions syntenic to the human 

test set (mm10-syn-test, n=156 regions). MSE and Spearman R are both calculated per 

region for every (target, prediction) pair. Target Hi-C data was acquired from mouse 

embryonic stem cells31, mapped to mm10 and processed similarly to the previous human 

datasets. Predictions in this figure were made using mm10 sequence as input and Akita’s 

output for the H1hESC Micro-C dataset.

b. (left) Signal strength of predictions versus targets, for mm10-syn-test, calculated as the 

mean squared values in each map (same 156 regions shown as above). The model trained on 
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human data shows an overall shift towards overly salient predictions in mouse relative to its 

predictions for human data (see Extended Data Fig. 3a for comparison). Black line shows 

x=y for reference here and below. (right) Squared error between targets and predictions 

correlates with the number of B2 SINE elements in the region (from RepeatMasker42).

c. Masking B2 SINE elements in input DNA sequences improved MSE for 93/156 

predictions (~60%, left), and Spearman R for 106/156 predictions (~67%, right). This 

suggests that the mouse genome has evolved ways to mitigate the impact of its numerous B2 

SINE elements on genome folding, which is supported by recent studies33.

d, e. Examples of improved predictions for two regions from the mm10-syn-test set after 

masking B2 SINEs, with the total number of B2 SINE elements per bin in the region 

displayed below each map. Initial predictions indicated in (a) with orange and green dots.

d. chr5:106334208-107382784 (deltaCorr:0.26, corrMutB2:0.72). Rectangle highlights a 

feature that is incorrectly predicted to be absent prior to masking B2 SINEs, and is correctly 

predicted following masking B2 SINEs.

e. chr14:61751296-62799872 (deltaCorr:0.18, corrMutB2:0.69). Rectangle highlights a 

feature that is incorrectly predicted to be present prior to masking B2 SINEs, and is correctly 

predicted following masking B2 SINEs.
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Extended Data Fig. 10. A model trained with mouse genomic data correctly learns the minimal 
influence of B2 SINE sequences on genome folding.
a. MSE vs. Spearman R for a mm10-trained model on mm10 data (blue, n=384 regions 

shown), and the hg38-trained model on mm10 data (orange, n=156 regions shown). Each 

point represents a region from their respective test sets. The mm10 model was trained using 

Hi-C data from Bonev et al.31 (mESC, CN, ncx_CN, NPC, ncx_NPC) and Micro-C from 

Hsieh et al.43 (mESC) with the same multi-task framework used to train our hg38 model.

b,c. For the mm10-trained model, masking B2 SINE elements worsened MSE for 243/384 

(63%) and Spearman R for 254/384 (66%) regions. MSE and Spearman R are both 
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calculated per region for every (target, prediction) pair, overall pixels in the upper triangular 

region of predicted maps (n=99681 pixels).

Together (a-c) indicate the mm10-trained model correctly learns that B2 SINE elements 

have little impact on local genome folding and mutagenizing these elements leads to slightly 

worse predictive performance, in contrast with the hg38-trained model (see Extended Data 

Fig. 9).

d. Predictions for the regions from Extended Data Fig. 9 using the mm10-trained model. 

Note that the region from chr5 overlaps the training set for the mm10-trained model and the 

region from chr14 overlaps the test set.
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Figure 1: Akita, a convolutional neural network model for predicting 3D genome folding from 
DNA sequence.
a. Akita consists of a ‘trunk,’ based on the Basenji architecture18, followed by a ‘head’ to 

transform to 2D maps of genome folding. The trunk involves: (i) input 1Mb of 1-hot 

encoded DNA; (ii) 1D convolution blocks, where each block performs a max pool operation 

between adjacent positions to iteratively reduce to a bin size of 2048 bp; (iii) dilated residual 

1D convolutions to propagate local information across the sequence. The ‘head’ involves: (i) 

forming 2D maps from the 1D vectors by averaging each pair of vectors at positions (i, j); 
(ii) symmetric dilated residual 2D convolutions; (iii) dense layer with linear activation to 

predict log(observed/expected) chromosome contact maps, with one separate output per 

dataset. We considered 2048bp binned maps, as high-quality Hi-C and Micro-C datasets 

ascertain genome folding at this resolution with tractable technical variance. We compared 

upper triangular regions of maps cropped by 32 bins on each side, making symmetric 

predictions for 448x448 bin (~917kb) maps. We trained our model on regions of the genome 

obtained by striding along Hi-C maps, using an 80/10/10 training/validation/test split.

b. Predicted and experimental log(observed/expected) contact frequency for two 

representative regions in the test set for Human Foreskin Fibroblast (HFF) Micro-C36. See 

Supplemental File 1 for images of predictions across the test set.

c. Quantification for the held-out test set: mean-squared error (MSE), which we optimize in 

model training, versus Spearman R, both calculated per region for each pair of targets and 

predictions for HFF Micro-C. Green and purple circles show regions from (b). Note 

correlations display a bimodal shape: regions with few locus-specific features have low MSE 

and low Spearman R.
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Figure 2: Akita predictions relate to CTCF binding and genome accessibility.
a. Log(observed/expected) target HFF maps for three different genomic regions in the test 

set, binned to 2048bp.

b. Binned profiles at 2048bp for CTCF ChIP-seq fold-change over control and DNAse 

density, downloaded from the ENCODE data portal37.

c. Predictions for the same three regions.

d. Predictions for inverting all CTCF motifs in each region. Note that patterns are perturbed 

relative to (c), and have greater saliency as compared with (e).

e. Predictions for random mutagenesis of all CTCF motifs within each region, averaged over 

ten instances. Grey shading shows regions with CTCF binding (from b) that are disrupted in 

these maps, and yellow shading shows regions with high DNAse but low levels of CTCF 

binding that are boundaries of residual structures after CTCF motif mutagenesis.
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Figure 3: Akita reveals large impacts of CTCF motif disruptions on genome folding.
a. Predicted map signal strength before versus after mutagenizing all CTCF motifs, for each 

region in the test set for the HFF model output. Map signal strength is measured as 

mean((pred)2). Motifs are mutagenized by replacing the DNA sequence at each position in 

each motif with randomly generated nucleotides. Akita predicts that mutagenizing CTCF 

motifs leads to more uniform maps, shown by the lower dynamic range after mutagenesis, 

mean((predΔCTCF)2), confirming the visual trend seen in Fig. 2e across the test set.

b. Change in map signal strength, measured by the difference of the mean squared values 

before versus after mutagenizing each motif in JASPAR24, mean((pred)2) - 

mean((predΔmotif)2). Positive values indicate lower signal after mutagenesis, as for CTCF.

c. Average disruption, measured by the mean-squared differences between predictions 

before versus after mutagenizing each motif in JASPAR, mean((pred- predΔmotif)2). By this 

metric, CTCF mutagenesis is more than three times as impactful as mutagenesis of any other 

motif besides CTCFL. Note high scores for other motifs are likely driven at least in part by 

frequent overlaps with CTCF motifs (Extended Data Fig. 5).
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Figure 4: Akita extracts informative nucleotide-level features of genome folding
a-c. Saturation mutagenesis around CTCF motifs. a. Mean disruption scores calculated 

from saturation nucleotide-level mutagenesis of 500bp regions around 500 randomly 

selected high-quality CTCF motifs (JASPAR p-value < 1e-6) in the test set sequences. 

Before averaging across the 500 sequences, we constructed a single score for each position 

by taking the maximum across alternative alleles, added a 0.001 pseudocount to stabilize 

values for visualization, and computed the logarithm. The motif position is indicated in grey.

b,c. Example sites with high disruption scores in flanking regions. Visualizations include a 1 

pseudocount preceding the logarithm (log1p) to make all scores positive. Heatmaps show 

scores for each possible nucleotide substitution. Nucleotide letter heights are drawn 

proportional to the max across three possible substitutions per position.

d,e. Unbiased genome-wide mutagenesis. d. Distributions of disruption scores for 100,000 

unbiased mutations across the test set, split by annotation category. Pseudocount and log 

scale as in (a). Vertical dashed line indicates threshold for mutations considered in (e).

e. High disruption mutations (top 356 from (d)) split by annotation category, excluding 

previous categories in the hierarchy. Categories are considered hierarchically counter 

clockwise, starting from those that influence CTCF motifs (CTCF, Flank10, Flank100, 

Promoter, Enhancer, Other). Flank10 and Flank100 represent nucleotides falling within 10 

or 100bp of a CTCF motif (see Extended Data Fig. 7 for additional detail). This conservative 

categorization provides strong evidence for the contribution of nucleotides beyond canonical 

CTCF motifs for genome folding.

f,g. GTEx eQTL mutagenesis.

f. Distribution of disruption scores for GTEx eQTL variants falling inside (left) and outside 

(right) JASPAR CTCF motifs, stratified by casual posterior probability. Boxes represent 

interquartile ranges, with median marked. Random indicates the distribution for a set of 

control SNPs with significant genome-wide marginal association with gene expression. 

Within CTCF, the bar plots represent 57 SNPs with causal posterior probability (PP) >0.5, 

138 SNPs with PP from 0.1 to 0.5, and 58 random SNPs with significant genome-wide 

marginal association with gene expression. Outside CTCF bar plots represent 1,873 SNPs 

with PP>0.9, 1,820 SNPs with PP from 0.5 to 0.9, 15,926 SNPs with PP from 0.1 to 0.5, and 

8,885 random genome-wide significant SNPs. We compared SNP scores with one-sided 

Mann-Whitney U tests to produce the p-values displayed.

g. Saturation mutagenesis around a high-scoring non-CTCF variant: 

chr7_5898574_G_T_b38, which acts as an eQTL of CCZ1 with high probability. The SNP 
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affects an AGCCCTCTCCTGTA motif that is unrecognizable by the TomTom motif search 

tool38, but lies 70 bp away from a CTCF motif, and may serve to influence its boundary 

capabilities. Heatmap and letter heights as in (b).
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Figure 5: Predicting a genetically engineered deletion with Akita.
a. Experimental29 log(observed/expected) 5C data in HEK293T cells for WT (left) and a 

CRISPR/Cas9-mediated deletion of a ~25kb boundary region (right) at the Lmo2 locus for a 

219 bp region centered at the deleted boundary (chr11:33752474-34276762). In wild-type 

cells (left), this region displays a peak at the boundary (circle) between two ~130kb domains 

that are relatively insulated from each other (rectangle), separated by a boundary that 

overlaps a cluster of three CTCF-bound sites. In cells where this boundary has been deleted 

(right), the two domains merge and display a flare of enriched contact frequency (thin 

rectangle).

b. CTCF profiles for HEK293T29.

c. Computational predictions for WT (left) and deletion (right) of the boundary, using the 

HFF output from our human-trained model, showing similar changes. Views centered at the 

middle of the full predicted window to highlight the region with changes.
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Figure 6: Akita learns species-specific relationships between DNA sequence and genome folding
a. Predicting mouse genome folding with a human-trained model. Left: computational 

prediction for mouse genome folding, using the hESC output from our human-trained model 

after mutagenizing B2 SINE elements. Right: experimental mESC Hi-C data31 for the same 

region.See Extended Data Fig. 9 for quantification across the mouse genome.

b. Predicting a genetically engineered inversion with a mouse-trained model.

Left: Akita predictions from WT DNA sequence (top) and DNA sequence with the inversion 

(bottom) at the Eph4A locus. Right: Experimental capture-C data for WT (top) and a 

~622kb inversion (bottom, Inv1) at the Eph4A locus34. Predictions were generated using a 

mouse-trained model and the mESC output, and show similar changes to those observed 
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experimentally. See Extended Data Fig. 10 for comparison between mouse-trained and 

human-trained models.
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Table 1:

Datasets used for training the human (hg38) model.

Target Reference

HFF Micro-C Krietenstein et al., 201936

H1hESC Micro-C Krietenstein et al., 201936

GM12878 Rao et al., 201446

IMR90 Rao et al., 201446

HCT116 Rao et al., 201747
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