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Abstract

Metagenomic analyses have advanced our understanding of ecological microbial diversity, but to what extent can
metagenomic data be used to predict the metabolic capacity of difficult-to-study organisms and their abiotic environmental
interactions? We tackle this question, using a comparative genomic approach, by considering the molecular basis of
aerobiosis within archaea. Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multienzyme
complexes (OADHCs), is essential for metabolism in aerobic bacteria and eukarya. Lipoylation is catalysed either by lipoate
protein ligase (LplA), which in archaea is typically encoded by two genes (LplA-N and LplA-C), or by a lipoyl(octanoyl)
transferase (LipB or LipM) plus a lipoic acid synthetase (LipA). Does the genomic presence of lipoylation and OADHC genes
across archaea from diverse habitats correlate with aerobiosis? First, analyses of 11,826 biotin protein ligase (BPL)-LplA-LipB
transferase family members and 147 archaeal genomes identified 85 species with lipoylation capabilities and provided
support for multiple ancestral acquisitions of lipoylation pathways during archaeal evolution. Second, with the exception of
the Sulfolobales order, the majority of species possessing lipoylation systems exclusively retain LplA, or either LipB or LipM,
consistent with archaeal genome streamlining. Third, obligate anaerobic archaea display widespread loss of lipoylation and
OADHC genes. Conversely, a high level of correspondence is observed between aerobiosis and the presence of LplA/LipB/
LipM, LipA and OADHC E2, consistent with the role of lipoylation in aerobic metabolism. This correspondence between
OADHC lipoylation capacity and aerobiosis indicates that genomic pathway profiling in archaea is informative and that well
characterized pathways may be predictive in relation to abiotic conditions in difficult-to-study extremophiles. Given the
highly variable retention of gene repertoires across the archaea, the extension of comparative genomic pathway profiling to
broader metabolic and homeostasis networks should be useful in revealing characteristics from metagenomic datasets
related to adaptations to diverse environments.
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Introduction

Culture-independent, metagenomic analyses have been partic-

ularly successful in advancing our knowledge of microbial

abundance across diverse ecological niches (reviewed by [1]).

Nonetheless, few studies have leveraged the wealth of genomic

data across diverse archaeal taxa to explore adaptation to extreme

archaeal environments although this must have a functional basis

in genomic diversification [2,3,4,5]. Recent experimental studies

have begun to utilize metagenomic data to decipher evolutionary

processes [6] but substantial obstacles remain in applying such

approaches to the complex biotic and abiotic interactions of

natural populations (reviewed by [7]). To what extent can

comparative genomic approaches inform our understanding of

the evolution and functional capacity of organisms that cannot be

cultured or studied in the laboratory? Further, can abiotic

characteristics of extremophile habitats be inferred directly from

the analysis of metagenomic data?

Archaeal evolution has been dominated by reductions in

genome complexity and the retention of highly variable genetic

architectures across lineages ( [8] and reviewed by [9]). Recent

analyses reveal two distinct phases of archaeal genome evolution.

The first, the innovation phase, is associated with an increase in

genome complexity and an associated increase in gene families to

an average of approximately 2500 gene families. The second, the

reductive phase, is characterized by genome streamlining and the

retention of a more minimal, and potentially heterogeneous, gene

repertoire (1400–1800 gene families) [10]. This persistent genomic

streamlining has radically altered the repertoires of even the most

highly conserved gene classes, including those involved in

translation, replication, cell division and DNA repair, and is thus

central to functional diversity across the domain [11]. In addition

to the diversifying impact of differential gene loss across taxa,

archaeal genome analyses have revealed notable exceptions where

horizontal gene transfer (HGT) has been a prevalent force. For

example, gene flow from eubacteria to Halobacteriales has
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contributed to the absence of reductive genome evolution in this

archaeal order [10]. We therefore propose that gene repertoire

heterogeneity, particularly associated with metabolism and

homeostasis, may reflect archaeal adaptation to, and exploitation

of, a remarkable diversity of environments. We assess this

possibility by considering aerobiosis within archaea because (i)

archaea display tremendous diversity in their utilization and

tolerance of aerobic environments and (ii) aerobiosis pathways

have been well characterized biochemically. Lipoylation, the

covalent attachment of lipoic acid to the dihydrolipoyl acyltrans-

ferase (E2) subunit of 2-oxoacid dehydrogenase multienzyme

complexes (OADHCs), is essential for metabolism in aerobic

bacteria and eukarya (reviewed by [12,13]). Specifically, OADHC

lipoylation is required for channeling substrates between the active

sites of the three protein subunits of OADHCs: 2-oxoacid

decarboxylase (E1), E2 and dihydrolipoamide dehydrogenase

(E3). The lipoyl domain of E2 (E2lipD) is the post-translational

modification target. The mechanisms of lipoylation have been

studied to varying extents in all domains of life [14,15,16,17]. In

Escherichia coli, lipoylation is catalyzed by two routes: lipoic acid

synthetase (LipA) and lipoyl(octanoyl) transferase (LipB), or lipoate

protein ligase (LplA) [18]. LipB and LipA work in tandem: LipB

catalyzes the covalent attachment of octanoic acid to the E2 lipoyl

domain, and then LipA introduces sulphur atoms at the C6 and

C8 positions. Alternatively, LplA can catalyse both conversion of

lipoic acid to lipoyl-AMP and subsequent covalent attachment of

the lipoyl moiety to E2lipD [19,20]. It is noteworthy that greater

diversity in lipoyl biosynthesis has been observed in other

eubacteria, including an alternative octanoyl transferease, LipM,

and a lipoyl-scavenging protein, LipL, in Firmicutes [17,21,22]. In

eukaryotes and most bacteria, LplA is encoded by a single gene,

whereas studies in the archaeon Thermoplasma acidophilum revealed

distinct genes, LplA-N and LplA-C, encoding proteins that

correspond to the N- and C-terminal domains of E. coli LplA

and that are both required for E2 lipoylation [23,24,25]. The

distribution and genomic characteristics of lipoylation systems

have yet to be studied across archaea.

Based on their well characterized biochemical interaction, we

propose that genomic retention of the components of the OADHC

lipoylation pathway, including lipoylation enzymes and E2, may

serve as a diagnostic marker for aerobic metabolism. We have

therefore examined their evolutionary retention across available

archaeal genomes in the context of the following predictions. First,

co-retention of LplA, LipB or LipM is unexpected given the

widespread genomic streamlining observed in archaea. Second,

the octanoyl transferases, LipB and LipM, would appear to be

unlikely to be the pervasive archaeal lipoylation system given their

enzymatic preference for octanoic acid, a product of fatty acid (FA)

biosynthesis. FA biosynthesis was believed to be completely absent

from archaea [26], although archaeal FA synthase pathways have

recently been identified [27]. Although the prevalence of archaea

FA biosynthesis has yet to be carefully examined, we suggest that

the genomic presence of octanoyl transferases may be a reliable

indicator of this biochemical capacity. Third, evolutionary loss of

lipoylation, including lipoylation enzymes and their E2 substrates,

may be widespread in anaerobic archaea, particularly those that

are obligate anaerobes or display poor oxygen tolerance.

Targeting this well characterized metabolic pathway also provides

a general assessment of the robustness of genomic inferences about

the metabolic regimes of difficult-to-study microbes whose

genomes are highly represented in environmental metagenomic

studies [28,29,30].

Materials and Methods

Lipoylation System Classification
Lipoylation systems across the three domains of life were

surveyed to assess the presence of each lipoylation system amongst

archaea. To do so we characterized the genomic composition of

lipoylation systems and OADHC lipoic acid acceptor protein (E2)

in 147 archaeal species, including 43 Crenarchaeota, 96 Eur-

yarchaeota, 5 Thaumarchaeota, 1 Korarchaeum, 1 Nanoarch-

aeum and 1 Aigarchaeum of which 20 are genome sequences from

metagenomic environmental samples. First, an analysis of all

11,826 protein domains within the Pfam BPL_LplA_LipB cofactor

transferase family protein domain (PF03099) [31] was conducted.

Domain protein sequences were aligned using the MAFFT

iterative refinement method [32], and a neighbor-joining phylo-

genetic tree was constructed with the NINJA algorithm, using the

default parameters [33]. The resultant phylogeny resolved clades

that corresponded to LplA, LipM, LipL and LipB based on

existing biochemical characterization for proteins within each

clade [16,17,19,34,35,36] This Pfam analysis thus provided a

preliminary catalogue of archaeal lipoylation.

Comparative Genomic Analysis
To address the possible incomplete annotation of archaeal

lipoylation proteins in the Pfam PF03099 database, homology-

based approaches were used to confirm and expand the

identification of LplA, LipM and LipB in the 147 archaeal

genomes (Table S1). T. acidophilum LplA-N (Q9HKT1), F.

acidarmanus LipB (S0AQU0) and M. arvoryzae LipM (Q0W155)

protein sequences were obtained from UniProt and searched

against annotated archaeal protein databases (NCBI Microbial

Genomes) using BLASTp (E-threshold = 1E-10) to identify a

representative sequence with the highest homology in each of the

thirteen taxonomical groups analyzed. These ‘‘best-hit’’ represen-

tative sequences were then searched against available genome

sequences using tBLASTn within their respective taxonomical

group to determine the presence and copy number of each gene.

In species where no homologous genes were identified, PSI-

BLAST (E-threshold = 0.001; 2 iterations maximum) was also used

to confirm the absence of any related sequence. Both BLASTp

and tBLASTn results were manually assessed to ensure identifi-

cation of lipoylation proteins and exclusion of biotinylation

proteins, based on the Pfam phylogenetic classification.

A similar approach was used to assess the presence of the lipoic

acid adenylation domain LplA-C (using T. acidophilum Q9HKT2),

the octanoyl synthase LipA (using F. picrophilus S0AQU0), the

eubacterial octanoyl transferase LipL (using B. subtilis P54511), and

lipoylation substrates, including the dihidrolipoyl transferase (E2)

subunit of the OADHC (using T. acidophilum Q9HIA5). The B.

subtilis LipL sequence was used because no annotated archaeal

LipL exists. BLASTp and tBLASTn were conducted on these

sequences as described above. Again, manual curation was

employed to exclude proteins with the LplA-C domain that exist

as part of lipoylation and biotinylation proteins, non-LipA radical

SAM proteins, and biotinylation targets. In order to identify

lipoylation targets exhaustively, the lipoyl domain of T. acidophilum

E2 was used as a PSI-BLAST query. Using an E-value cutoff of

0.001, PSI-BLAST was iterated until convergence (four iterations).

Due to the abundance of biotinyl domains in the results,

maximum likelihood phylogenetic analyses were employed to

differentiate between the two targets (see below). The lipoyl

domains were also differentiated from biotinyl domains based on

protein domain architecture and sequence annotation. The

resultant lipoyl domain-containing proteins were classified based

Genomic Analysis of OAHDC Lipoylation in Archaea
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on their domain architectures, revealing three distinct classes: true

dihydrolipoyl transferase proteins (based on the presence of the

acyltransferase catalytic domain, PF00198), glycine cleavage

protein H (GcvH) (based on annotation and high homology with

biochemically characterized bacterial GcvH), and single domain

proteins (containing only the lipoyl domain). Confirming our Pfam

results, no archaeal LipL proteins were identified in either

BLASTp or tBLASTn analyses.

Additionally, sequence motif analysis was conducted as a

validation step. To confirm LplA-N identification we examined

conservation amongst two essential motifs to confirm LplA-N

sequences (Fig. S1). The first is RRXTGGG(G/A/S/T)(A/I/

V)(I/F/Y)HD with the second R and first two Gs forming the

core. In the T. acidophilum LplA-N:LplA-C complex structure [25],

this motif lies at the functional interface of LplA-N with LplA-C

and includes the lipoate binding loop. The second conserved motif

is G(R/K)K(I/L/V)SGX(A/G)Q, with occasional substitution of

the first G, the S and Q. This motif, corresponding to residues

143–151 of T. acidophilum LplA-N, forms part of b9 in T.

acidophilum LplA-N:LplA-C. b9 is located adjacent to the lipoate

binding loop [25] and in lipoyl-AMP-bound structures the

conserved K and G at the third and sixth positions respectively

of the motif are involved in interactions with the adenine and

lipoyl parts of lipoyl-AMP [37].

Maximum Likelihood Phylogenetic Analysis
The phylogenetic relationships between LplA, LipM and LipB

in archaea, eubacteria and eukaryotes, as well as all archaeal

proteins containing biotinyl and lipoyl domains were analyzed

using a maximum likelihood phylogenetic approach. Protein

sequences were retrieved from UniProt for all archaea identified in

the previous analyses, major eukaryotic species (S.cerevisiae, D.

melanogaster, M. musculus and H. sapiens) and eubacteria representing

Actinobacteria (S. coelicolor), Bacteroidetes (B. thetaiotaomicron),

Firmicutes (B. subtilis and S. aureus) and Proteobacteria (E. coli

and B. pseudomallei). Multiple sequence alignment was conducted

using the L-INS-i algorithm of MAFFT [32]. Bootstrapped

maximum likelihood phylogenetic analyses were done with

empirical amino acid frequencies, sub-tree pruning and regrafting

topology search, and a parsimony starting tree using the PhyML

package [38].

Horizontal Gene Transfer (HGT) Analysis
The codon based approach of Davis and Olsen (2009) was used

to calculate modal codon usage for the 147 archaeal species

surveyed above and to detect significant codon usage outliers as

putative HGT events [39]. Protein coding sequences were

downloaded for all species and genes were deemed as recent

horizontal acquisition events if the codon usage was significantly

different from the whole genome modal frequency using a

threshold of p,0.10, as suggested by Davis and Olsen (2009),

and a more conservative threshold (p,0.05). Statistical compar-

ison of the frequency of HGT between gene sets was conducted

using a two-tailed Chi-square test with Yates correction.

Archaeal Metabolic Environments
The categorization of archaeal metabolic environments, partic-

ularly relating to aerobiosis and oxygen tolerance, was based on a

detailed curation of available literature and the Genomes Online

Database (GOLD v4.0; [40]). The availability of phenotypic and

habitat information is highly variable amongst archaea, particu-

larly given the expanded use of metagenomic environmental

sampling. In some archaeal orders, relevant data were limited to a

subset of the member species.

Results

Archael Lipoylation Pathway Heterogeneity
To broadly characterize the distribution of lipoylation pathways

across archaea we conducted a comprehensive analysis of proteins

within the biotin and lipoate B/A ligase and octanoyl carrier

domain family (Pfam03099). Neighbor-joining tree construction

for all domain sequences within this family (n = 11,826) resulted in

five broad clades, encompassing the biotin ligase, LplA, LipB,

LipL and LipM protein groups (Fig. 1). Archaeal representatives

were identified amongst all these clades with the exception of

LipL, which has been previously identified only in bacterial

Firmicutes [17]. In total, 126 archaeal lipoylation proteins were

identified and formed the basis of our subsequent assessment of the

prevalence of lipoylation proteins across 147 archaeal species.

These searches revealed 16 additional archaeal proteins in 14 taxa,

resulting in a total of 142 lipoylation proteins in 85 species (Table

S1).

Figure 1. Phylogenetic analysis of the biotin-lipoate A/B
protein ligase family. Neighbor-joining phylogenetic tree of the
cofactor transferase domain (Pfam03099) that includes 11,826 biotin
and lipoate-ligase proteins and octanoyl-carrier proteins from eukary-
otes, eubacteria and archaea. Annotation of the five broad protein
domain clades as LipM (red), LplA (orange), LipL (blue), LipB (green) and
biotin protein-ligase (black) clades was based upon the presence of
biochemically characterized proteins within each protein set. In total,
295 archaeal sequences were included in this analysis with 161 residing
in the biotin-ligase clade (54.5%) and the remainder residing in the
LipM, LplA or LipB clades.
doi:10.1371/journal.pone.0087063.g001
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The LipB lipoylation system was found to be the least prevalent

(11 genes within 9 species) and was straightforward to distinguish

given the substantial sequence divergence between LipB and

LipM/LplA proteins (Fig. 1). It is noteworthy that all species

possessing LipB also possess the lipoate synthase LipA and E2 and

thus have a complete E2 lipoylation pathway. Due to the higher

levels of homology, a full maximum likelihood phylogenetic

analysis was conducted to distinguish between LipM and LplA

sequences. Of the 131 protein sequences analyzed, 63 genes in 44

taxa were identified within two closely related monophyletic clades

that were associated with Actinobacterial and Firmicute LipM,

respectively (Fig. 2; Clade III and IV). The remaining 68

sequences in 50 taxa consist of putative LplA-N proteins. Amongst

these, the proteins found in Clade I are LplA based upon (i) their

phylogenetic relationship with the biochemically characterized T.

acidophilum LplA, (ii) manual inspection of diagnostic amino acid

residues within the catalytic domain (see Methods) and (iii) the

genomic presence of the other part of this bipartite system, LplA-

C. Despite the closer phylogenetic relationship of Clade II to

LipM, we propose that proteins in this clade are LplA-N, and not

octanoyl transferases, based on the correlated presence of LplA-C

and the absence of LipA in the genomes of these taxa (Table S1);

however this classification should be considered provisional in the

absence of additional biochemical data. Based on the fact that the

octanoic acid transferred to E2 by LipM requires LipA for

conversion to a lipoyl group, the genomic presence of LipA was

used to independently confirm LipM in Clades III and IV. As

expected, LipA was identified in 38 of the 44 genomes that possess

LipM, thus confirming the complete lipoylation pathway in those

taxa. Additionally, LipA was absent from all species with LplA as a

sole transferase system, with the exception of A. pernix. Thus, the

combination of complementary phylogenetic and genomic ap-

proaches provides a substantive basis for differentiating between

LipM and LplA.

Origins of Archaeal Lipoylation Pathways
Our phylogenetic analysis provides support for ancestral

monophyletic origins of lipoylation systems prior to the divergence

of species within archaeal orders. A pattern consistent with this is

observed in several clades, including LplA in Thermococcale,

LipM in Methanocellales, Halobacteriales and Sulfolobales (Fig. 2),

and LipB in Thermoproteales and the closely related Aigarchaeota

(represented by C. subterraneum) (Fig. S3). In several cases it is also

possible to infer the likely source of lipoylation system acquisition.

For example, the inclusion of Streptomyces within LipM Clade III,

which includes diverse Halobacteriales and Methanocella, is

consistent with acquisition from an ancestral Actinobacterial

species. Similarly the presence of Staphylococcus and Bacillus within

Clade IV is indicative of an independent ancestral gene transfer of

LipM from an ancestral Firmicute. Lastly, in Thermoproteales

and Aigarchaeota, LipB displays a monophyletic relationship with

E. coli and Burkholderia (Proteobacteria) LipB (Fig. S3). These

observations are most parsimoniously explained by ancestral

acquisition events although it is difficult to exclude the possible

effects of historical HGT amongst archaeal taxa on the

contemporary phylogenetic distribution of these systems. The

evolutionary origins of the LplA system in archaea are more

difficult to reconstruct as archaeal LplA sequences are very

distantly related to LplA in eubacteria and eukaryotes. However,

this observation in conjunction with the deep evolutionary

branches across numerous LplA clades is most consistent with

ancient origins of archaeal LplA systems and potential loss during

archaeal evolution.

To explicitly examine the prevalence of HGT in the evolution

of archaeal lipoylation systems, we performed codon usage bias

analysis of all 147 archaeal genomes in our dataset. The modal

codon usage method revealed that 14.1% (20 of 142; p,0.10) of

lipoylation genes show significantly different codon usage from the

genomic mode, consistent with horizontal gene transfer events

(Table S1). The frequency of significant HGT events involving

lipoylation genes is significantly lower than the observed genome

average (34.5% across 147 genomes; p,0.0001) and recently

published estimates [41]. Although putative HGT events were

distributed across many archaeal orders (Fig. 2), these putative

events were significantly concentrated amongst the 20 species

possessing multiple copies of lipoylation genes in their genomes

(x2 = 3.84. p = 0.025). Amongst the 20 putative HGT events, 13

also occur amongst closely related taxa as evidenced by their

phylogenetic proximity (Fig. 2). For example, three HGT events

involving LipB were found to be concentrated in Thermoproteales

(Pyrobaculum aerophilum str. IM2, Pyrobaculum calidifontis JCM 11548,

and Pyrobaculum oguniense TE7) and these genes are closely related

to all other Thermoproteales LipB genes (Fig. S3). A second

possible hallmark of HGT events between closely related taxa

would be the acquisition of a second copy of the same lipoylation

gene from a closely related sister taxon. This was observed in 9 out

of 10 events in species with multiple lipoylation genes (Table S2).

Taken together, HGT is not particularly prevalent amongst

lipoylation genes (in comparison to the genome average) and the

enrichment of recent HGT events in taxa with multiple genes is

more consistent with transient increases in copy number (and the

potential establishment of functional redundancy), which are

subsequently returned to a single-gene state by gene loss.

Lipoylation Pathway Retention in Archaea
Genomic streamlining in archaea has been well documented

[8,9] and may extend to ancestrally acquired lipoylation pathways

in archaea. Consistent with this prediction, the majority of archaea

capable of lipoylation (79%, 67 of 85 species) exclusively retain

only one transferase system: either LplA or LipM or LipB (Table

S2). Sulfolobale species, of which 8 out of 16 are isolates of S.

islandicus, are the primary exception, possessing multiple copies of

both LplA and LipM. As mentioned previously, only 9 species

(excluding Sulfolobales) retain multiple lipoyl transferase genes.

None of these cases includes the retention of multiple distinct

lipoylation transferase systems (for example, LipM and LplA or

LipM and LipB) and 6 of these display evidence of being the result

of a recent HGT event. These observations, in conjunction with

our phylogenetic analyses, are consistent with ancestral lipoylation

system acquisition events in archaea. Furthermore, the marginally

greater retention of LipM and LipB (53 species) relative to LplA (50

species) is also noteworthy as it was previously thought that FA

biosynthesis, the source of octanoic acid, was absent (or

taxonomically restricted) in archaea. Contrary to this view, the

widespread identification of octanoyl transferases provides strong

complementary support for FA biosynthesis across diverse archaea

[27].

Correspondence between Lipoylation Pathways and
OADHC Substrate E2

Addition of a lipoyl moiety to the E2 subunit of OADHCs is

essential for aerobic metabolism. We therefore catalogued the

presence of E2 across archaeal genomes and, as expected, our

results show a widespread correlation between the presence of E2

and lipoylation systems. Specifically, all species (9 out of 9)

possessing LipB have an intact lipoylation pathway, also possessing

lipoyl synthetase LipA and E2. Similarly, 82% of species (36 of 44)

Genomic Analysis of OAHDC Lipoylation in Archaea
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possessing LipM also possess LipA and E2. Exceptions to this

include 7 Sulfolobales (A. hospitalis W1, all three Metallosphaera

species, S. acidocaldarius DSM 639, S. islandicus REY15A, and S.

tokodaii str. 7) and C. haloredivivus sp. G17. In contrast, only 34% of

species (17 of 50) with LplA possess E2:10 Sulfolobales, A. pernix, 3

Thermococcus species, and both Thermoplasma species. The absence of

E2 in most Thermococcus species is perhaps explained by the

presence of an alternative lipoylation target, the glycine cleavage

system protein H (GcvH). A comprehensive bioinformatic search

for potential lipoyl domains in the genomes of the remaining 20

species without E2 or GcvH revealed a complete absence in 19 of

their genomes (the exception being S. acidocaldarius DSM 639). This

observation is likely explained by a transferase function involving

substrates with cryptic lipoylation domains, although it is possible

that these represent obsolete lipoylation systems that may be

subject to loss through genome reduction mechanisms. Overall,

the strong correspondence between E2 and lipoylation systems,

particularly in the case of LipM and LipB, suggests a conserved

aerobic metabolic functionality of lipoylation systems in these taxa.

Absence of Lipoylation Systems in Anaerobes
The absence of a lipoylation pathway in 62 of the 147 species

surveyed raised the possibility that loss of lipoylation pathways

might be concentrated amongst anaerobes. In support of this

assertion, correlated lipoylation pathway absence (including

transferase/ligase enzyme and its substrate) was observed in all

Thaumarchaeota, Nanoarchaeota, Methanopyrales, Methanobac-

teriales, Methanococcales, Archaeoglobales, Methanosarcinales,

and Methanomicrobiales, all of which are characterized as

obligate anaerobes (Fig. 3). Strikingly, amongst methanogens, all

sequenced Methanocellales retain LipM and LipA and have

demonstrated oxygen stress tolerance [42,43,44]. This raises the

possibility that this lipoylation pathway may not be solely

associated with energy metabolism per se, but rather may be part

of a pathway to survive periodic exposure to aerobic conditions. A

particularly compelling example that supports selective retention

of lipoylation is LipM Clade III where the presence and

phylogenetic proximity of LipM in Halobacteriales and Metha-

nocellales is consistent with acquisition of LipM prior to the

divergence between Methanogen Class II and Halobacteriales,

followed by loss in other obligately anaerobic Class II Methan-

ogens (Methanosarcinales and Methanomicrobiales). A similar

pattern is observed in LplA Clade I and Clade II (Fig. 2) where

LplA sequences from Desulfurococcales, Sulfolobales, and Ther-

mococcales (and Thermoplasma in the case of Clade I) cluster

monophyletically. This is most parsimoniously explained by

presence of LplA in the ancestor of Crenarchaeota and

Figure 2. Phylogenetic analysis of LipM and LplA. Maximum likelihood phylogenetic tree including 131 LipM and LplA sequences from
archaea, LplA sequences from major eukaryotic species (S. cerevisiae, D. melanogaster, M. musculus and H. sapiens) and LplA and LipM sequences from
eubacteria representing Actinobacteria (S. coelicolor), Bacteroidetes (B. thetaiotaomicron), Firmicutes (B. subtilis and S. aureus) and Proteobacteria (E.
coli and B. pseudomallei). Putative cases of horizontal gene transfer are indicated (asterisk) and major phylogenetic clades are highlighted: archaeal
LplA (Clade I - orange; Clade II - green), LipM (red), and eukaryotic and eubacterial LplA (blue). The full phylogenetic tree including species names and
bootstrap values is provided Figure S2.
doi:10.1371/journal.pone.0087063.g002
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Euryarchaeota with subsequent loss in lineages leading to the

Methanogens, Archaeoglobales and Halobacteriales (Fig. 3).

Lipoylation in Aerotolerant Archaea
Four archaeal orders displayed variable retention of lipoylation

systems and, amongst these, there was a strong correspondence

between retention of a lipoylation enzyme and its E2 substrate, as

would be predicted by their biochemical relationship. In

Thermoproteales, all six species retaining E2 also possess LipB

(Fig. 4a), with five of these from the Pyrobaculum genus. Pyrobaculum

species are metabolically versatile and grow under both aerobic

and anaerobic conditions [45,46], with the sole exception of P.

islandicum, a strict anaerobe in which the absence of lipoylation

capability is most parsimoniously explained by gene loss [47].

Halobacteriales can generally tolerate aerobic conditions, consis-

tent with the widespread retention of LipM and E2 among

Halobacteriales (Fig. 4b). A correlated loss of both LplM and E2

was observed in two Halobacteriales: Halorhabdus tiamatea, an

anaerobe that inhabits anoxic deep sea brine [48], and Haloqua-

dratum walsbyi, which inhabits essentially anoxic environments due

to their extremely high salinity [49].

Despite meta-level correspondence between anaerobic metab-

olism and E2 lipoylation loss, notable exceptions were identified.

As mentioned previously, LplA appears to have been retained in 9

of the 10 sequenced anaerobic Desulfurococcale species, despite

widespread E2 loss (Fig. S4). Strikingly, A. pernix, the only

sequenced strictly aerobic Desulfurococcale [50], retains LplA

and the OADHC operon. LplA has been retained in all sequenced

species of Thermococcales but only three possess E2, a finding

consistent with anaerobic conditions for most Thermococcales

(Table S1). Unlike the better studied Crenarchaeota and

Euryarchaeota, restricted genomic and environmental data exist

for the more recently identified Korarchaeota, Aigarchaeota and

Thaumarchaeota [51,52,53 and reviewed by 54]. Consistent with

a general correspondence between E2 lipoylation and aerobic

metabolism, analysis of the strictly anaerobic Korarchaeum cryptofilum

[51], the only Korarchaeota species with an available genome,

revealed an absence of lipoylation and OADHC genes. Caldiarch-

aeum subterraneum, the only representative of the proposed phylum

Aigarchaeota, has features distinguishing it from the Thaumarch-

aeota, such as a ubiquitin-like protein modifier system [52] and

genes encoding LipB and OADHC components. Previous analysis

of the Caldiarchaeum subterraneum genome suggested versatile energy

metabolism [52] including an almost complete Emden-Meyerhof

pathway and a complete citric acid cycle, and our identification of

an E2 lipoylation pathway is consistent with aerobic metabolism.

In contrast to these Korarchaeota and Aigarchaeota examples,

Thaumarchaeota species lack lipoylation and OADHC genes

despite the fact that they inhabit diverse environments, ranging

from aerated soils to oxygen-depleted marine sediment [54]. This

observation is explained by their ability to oxidize ammonia (and

potentially related substrates) and the adaptation of Thaumarch-

aeota ecotypes to diverse abiotic conditions, including low

ammonia and low oxygen environments [55,56]. As such, this

largely autotrophic basal archaeal clade has the unique biological

ability to oxidize reduced nitrogen species and presumably has no

evolutionary reliance on aerobic metabolic pathways associated

with OADHC complexes.

Genomic Heterogeneity of the LplA Lipoylation System
In contrast to widespread reductions of genome complexity in

archaea, including E2 lipoylation loss across diverse anaerobes,

Figure 3. Comparative genomic analysis of lipoylation pathways in archaea. The genomic presence of lipoylation enzymes LplA-N, LipM or
LipB and their substrate OADHC E2 is indicated. Archaeal orders lacking lipoylation pathways are highlighted (grey shading). The broad metabolic
environment of each archaeal order and the number of species analyzed are also indicated. Phylogenetic relationships are based on Brochier-
Armanet et al. [53]; branch lengths are not drawn to scale.
doi:10.1371/journal.pone.0087063.g003

Genomic Analysis of OAHDC Lipoylation in Archaea

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e87063



our analyses also revealed substantial LplA copy expansion and

heterogeneity across a restricted set of species possessing this gene.

As a likely result of gene duplication events, LplA and LipM copy

number varies across Sulfolobales and A. pernix. This variation may

ultimately prove to be an adaptive response relating to the

availability of exogenous lipoic acid and endogenous octanoic

acid. Our analysis also confirmed the previous identification of a

single Sulfolobale LplA copy encoding both N- and C-terminal

domains of LplA and identified similar genes in a Thermococcale

(gammatolerans EJ3), a Halobacteriale (two copies in turkmenica

DSM5511) and a Desulfurococcale (A. pernix). Previous phyloge-

netic analyses have supported the proposition that a bipartite gene

system, comprising LplA-N and LplA-C, predates the origin of the

LplA gene found in most bacteria and eukaryotes that encodes both

LplA domains [23]. The widespread presence of the bipartite

LplA-N/C system in archaea, and evidence presented supporting its

ancient evolutionary origins,are consistent with this scenario and

are further supported by our identification of numerous bacterial

species, such as Bordetella, Achromobacter and Rhodanobacter, which

also possess a bipartite LplA gene system (data not shown). It is

therefore possible that distinct genes encoding the N- and C-

terminal domains have formed chimeric proteins in several

archaeal lineages. Relevant to the possibility of chimeric fusions

is the observation that genomic rearrangements have resulted in

co-localization of LplA-N and LplA-C multiple times during

archaeal evolution. Transcriptional coupling of LplA-N to LplA-C

is present in T. acidophilum (supported by out-of-frame coding

sequence overlap (1 base pair), a readily identifiable TATA box

upstream of the LplA-C gene, and the absence of identifiable cis-

regulatory sequences proximal to the 59 end of LplA-N [24]) and

our analysis revealed an independent origination of transcriptional

coupling of LplA-N to LplA-C genes in five Desulfurococcales. The

monophyletic relationship amongst these species is consistent with

the co-localization of these genes in their common ancestor (Fig.

S4). Therefore, LplA and LipM gene duplications appear to occur

in a restricted set of taxa and targeted experiments will be

necessary to assess a possible association of this with differential

oxygen tolerance capacities amongst these species.

Discussion

Metagenomic sequencing of microbial communities has

progressed beyond the initial goals of assessing species composition

to the more penetrating proposition that biotic and abiotic

Figure 4. Genomic co-retention of LipB and LipM lipoylation genes with OADHC E2. (A) The presence of the LipB and OADHC E2 genes in
sequenced Thermoproteales genomes is indicated (species lacking both are highlighted in grey). Pyrobaculum sp 1860 and Pyrobaculum oguniense
have yet to be incorporated into the Pyrobaculum phylogeny and have been placed arbitrarily in the Pyrobaculum genus. (B) The presence of LipM
and OADHC E2 in sequenced Halobacteriales genomes is indicated (species lacking both are highlighted in grey). Phylogenetic relationships are
based on Brochier-Armanet et al. [53]; branch lengths are not drawn to scale.
doi:10.1371/journal.pone.0087063.g004
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interactions can be modelled based on metagenomic data. Given

the overwhelming complexity of such ecological and environmen-

tal interactions, the accuracy of such inferences needs to be

initially assessed using relatively straightforward interactions,

mediated by well studied pathways, in a set of organisms likely

to exhibit marked diversity in the relevant interactions. We have

therefore investigated aerobiosis capacity across a diverse set of

archaeal genomes using the well-characterized enzymes responsi-

ble for OADHC lipoylation. The potential of using metagenomic

data to establish links between metabolic capabilities and

environmental conditions is of particular importance to archaea,

which are often difficult to culture in the laboratory and therefore

remain refractory to direct analysis [57].

OADHC lipoylation is essential for metabolism in aerobic

bacteria and eukarya, making it a compelling candidate system to

assess the potential for more expansive metagenomic analyses

across the archaea. Our analysis revealed three broad trends,

which together suggest that metagenomic inferences have the

potential to be informative when well understood pathways are

interrogated in organisms possessing relevant environmental/

ecological diversity. First, the retention of a single lipoylation

pathway (LplA, LipB or LipM) in species capable of lipoylation is

consistent with genome streamlining during archaeal evolution. As

such, the presence of genes, pathways or networks within archaeal

genomes (and the concomitant absence of redundancy) can be

generally attributed to the selective retention of essential functions.

Second, the rather widespread presence of a LipM/LipB-LipA

system provides support for the presence of FA biosynthesis and

endogenous octanoic acid across a surprisingly diverse range of

archaea. Third, OADHC E2 lipoylation has been consistently lost

in obligate anaerobes and may therefore serve as a diagnostic

metagenomic marker for aerobiosis. Similarly, the presence of the

lipoylation/OADHC system in organisms previously thought to be

strict anaerobes may indicate the existence of mechanisms for

oxygen tolerance, but may also reflect previously unrecognized

aerobic respiration capabilities. In addition to our observation,

aerotolerance has been attributed to superoxide reductase in some

species of Methanosarcinales, indicating that distinct mechanisms

leading to oxygen stress adaptation may exist [58]. As metage-

nomic approaches often result in fragmented genome sequences,

inferring gene or pathway absence may be difficult, making

arguments based on gene presence (in this case indicating

aerobiosis or oxygen tolerance) more reliable. It should be noted

that our analysis relied largely upon complete genomes, although

uncertainty associated with the analysis of incomplete sequences

may still apply for species derived from ecological samples. In

conclusion, given highly variable retention of gene repertoires

across the archaea, extension of comparative genomic approaches

to broader metabolic and homeostasis networks should be useful in

revealing genome-wide characteristics related to archaeal adapta-

tion to diverse environments.

Our analysis demonstrates that the evolution of archaeal

lipoylation systems is generally in agreement with major trends

identified in recent reconstructions of archaeal genome evolution

[9]. An increase in genomic complexity (the innovation phase) is

evidenced by multiple lipoylation system acquisitions that have

involved all the primary lipoyl-octanoyl transferase systems (LplA,

LipM and LipB). It is noteworthy that, based on our phylogenetic

analyses, these systems are inferred to be largely eubacterial in

origin and appear to have been acquired from a diverse range of

bacterial phyla, including Firmicutes, Actinobacteria and Proteo-

bacteria. This period of increased complexity in lipoylation

genetics was then followed by a reductive phase where lipoylation

systems were lost across a diverse range of archaeal species, most

notably those that have become adapted to an obligately

anaerobic life history. Gene loss may therefore have played a

prominent role in the functional diversification of archaea during

their adaptation to, and exploitation of, diverse and often extreme

habitats.

Supporting Information

Figure S1 LplA-N protein alignment. LplA-N sequences

were included from one representative species for each of the six

archaeal orders in Fig. 1 that retain LplA (P. horikoshii, Pyrococcus

horikoshii, a Sulfolobale; M. arvoryzae, Methanocella arvoryzae, a

Methanocellale; H. butylicus, Hyperthermus butylicus, a Desulfurococ-

cale; S. solfataricus, Sulfolobus solfataricus, a Sulfolobale; T. acidophilum,

Thermoplasma acidophilum, a Thermoplasmatale; N. pharaonis,

Natronomonas pharaonis, a Halobacteriale). Conserved amino acid

residues are highlighted. Secondary structure elements (a-helices

a1 to a8, b-strands b1 to b10, and 310-helices g1 to g3) from T.

acidophilum LplA-N in the structure of the T. acidophilum LplA-

N:LplA-C complex (PDB code 3R07) are shown.

(EPS)

Figure S2 Maximum Likelihood Phylogeny of LplA and
LipM. Phylogenetic tree including 132 LipM and LplA sequences

from archaea, LplA sequences from major eukaryotic species

(S.cerevisiae, D. melanogaster, M. musculus and H. sapiens) and LplA and

LipM sequences from eubacteria representing actinobacteria (S.

coelicolor), bacteroidetes (B. thetaiotaomicron), firmicutes (B. subtilis and

S. aureus) and proteobacteria (E. coli and B. pseudomallei). Bootstrap

values are provided and species abbreviations can be found in

Supplemental Table S1.

(EPS)

Figure S3 Maximum Likelihood Phylogeny of LipB.
Phylogenetic tree including 13 LipB sequences from archaea and

LipB sequences from major eukaryotic species (S.cerevisiae, D.

melanogaster, M. musculus and H. sapiens) and eubacteria representing

actinobacteria (S. coelicolor), bacteroidetes (B. thetaiotaomicron) and

proteobacteria (E. coli and B. pseudomallei). Putative horizontal gene

transfer events are indicated (asterisks). Bootstrap values are

provided and species abbreviations can be found in Supplemental

Table S1.

(EPS)

Figure S4 Desulfurococcales retention of LplA and
OADHC operons. The ancestral lineage of the five monophy-

letic species (red cross) where LplA-N and LplA-C are inferred to

have become co-localized and transcriptionally coupled.

(EPS)

Table S1 Lipoylation systems and substrates in Ar-
chaea. A complete inventory of the species analyzed, the

lipoylation related proteins identified and evidence supporting

horizontal gene transfer.

(XLS)
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