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ABSTRACT: Asymmetric hydrogenation of conjugated enones is one of the most efficient and straightforward methods to prepare
optically active ketones. In this study, chiral bidentate Ir—N,P complexes were utilized to access these scaffolds for ketones bearing
the stereogenic center at both the a- and B-positions. Excellent enantiomeric excesses, of up to 99%, were obtained, accompanied
with good to high isolated yields. Challenging dialkyl substituted substrates, which are difficult to hydrogenate with satisfactory chiral
induction, were hydrogenated in a highly enantioselective fashion.

hiral ketones bearing a stereogenic center at the a- or f-

position are important compounds in organic synthesis.l
A few reported methods to access optically active ketones
include alkylation using auxiliaries,” catalytic asymmetric
alkylation,® enantioselective Michael addition to unsaturated
ketones,” or asymmetric conjugate reduction of enones.’
However, all of the routes listed above to synthesize a- and f-
chiral ketones face limitations, such as the challenge of
installing/removing auxiliaries, high catalyst loading, or the use
of sensitive reagents. In addition to these methods, catalytic
asymmetric hydrogenation using hydrogen gas is often the
method of choice, due to high enantioselectivity and atom
economy. Over the years, the asymmetric olefin hydrogenation
of a,f-unsaturated ketones has been reported using rhodium,’
palladium,” and iridium® catalysts (Scheme 1).

In 2008, Hou* and Bolm™" independently reported the
iridium-catalyzed olefin hydrogenation of enones. Since then,
several research groups have evaluated iridium catalysts using
various bidentate X,P-ligands (X = N, O, S) in the asymmetric
hydrogenation of a,f-unsaturated ketones resulting in
moderate to high enantiomeric excesses."® Despite the
maturing of methodology for the hydrogenation of aromatic
unsaturated enones, substrates having dialkyl olefin substitu-
ents are rarely reported and are hydrogenated with moderate
enantioselectivity. Therefore, catalytic methodology that can
hydrogenate challenging aliphatic substrates, both a- and f-
prochiral, in high ee remains to be found.

In this report, the iridium-catalyzed asymmetric olefin
hydrogenation of both a- and f-prochiral trisubstituted enones
with high levels of stereoinduction is described. Excellent
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enantiomeric excesses accompanied with high isolated yields
were obtained for all substrate classes (up to 96—99% ee),
including aliphatic substitution patterns, which is comple-
mentary to previous reported catalytic systems for the
asymmetric hydrogenation of enones.

Since limited examples on the hydrogenation of dialkyl-
substituted enones have been reported, a,f-dialkyl substituted
substrate 1a was first selected as the model substrate to test the
asymmetric hydrogenation of a-prochiral unsaturated ketones
(Table 1). Initially, structurally diverse catalysts A—D were
evaluated under 20 bar of hydrogen atmosphere in dichloro-
methane (DCM), resulting in poor to excellent ee (67%—99%;
Table 1, entries 1—4). Although perfect enantioselection was
obtained with catalyst B, it was accompanied with low
reactivity (19% conversion). To our delight, bicyclic thiazole
catalyst E faced higher reactivity and was very efficient, in
terms of stereocontrol, giving full consumption of starting
material with 99% ee of the hydrogenated product (Table 1,
entry S). The efficiency of catalyst A is also remarkably high,
compared to the previously reported Ir—N,P catalyzed
asymmetric hydrogenation of 1a, which gave 87% ee (Scheme
1).5* Next, the hydrogenation of challenging p,5-dialkyl
substituted enones was investigated. The use of catalysts B,
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Scheme 1. Selected Examples of Previously Reported
Iridium- and Rhodium-Catalyzed Asymmetric
Hydrogenation of Unsaturated Enones and This Work
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Table 1. Evaluation of Catalysts in the Hydrogenation of
Aliphatic Model Substrates

R, O R, O
\ Cat. (0.5 mol%), H, (20 bar)
Ry R DCM, rt, 16 h R R
Ry Rs
oTol, o-Tol —"BArF' Ph_ Ph “BAr Ph_ "BAr o-Tol, o-Tol 7" AR
@::mcom I \Ir(COD \Ir(COD) N \Ir(COD)
N N
S P:h \>—Ph N ( J——F‘h
A Cc
iPr, JPr "BAy  24-diMePh 2,4-diMePh | BAre o] o
N
Zs Ph 2N i
s i 1a 2
E F
entry substrate catalyst conversion (%) enantiomeric excess, ee (%)
1 la A full 94 (+)
2 la B 19 99 (-)
3 la C 78 98 (+)
4 la D full 67 (<)
S la E full 99 (+)
6 3a B full 71 (S)
7 3a D full 11 (S)
8 3a E full 77 (R)
9 3a F full 88 (R)

with the optimized catalysts for the hydrogenation of both
classes of aliphatic conjugated trisubstituted enones in hand,
the substrate scope was first further investigated for this type of
substitution pattern around the olefin starting with a-prochiral
substrates (Table 2)."" Substrate 1b, which was previously

Table 2. Asymmetric Hydrogenation of Dialkyl-Substituted
Enones and Application in the Synthesis of anti-HIV Agent
7%
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"Reaction conditions: 0.2 mmol of substrate, 0.5 mol % catalyst, 2 mL
of solvent, 20 bar of H,, 16 h, rt, unless stated otherwise. Absolute
stereochemistry assigned by comparing optical rotation with literature
values. If no reference is given then assignment is tentative. Yields
given are in their isolated forms. Enantiomeric excess was determined
by SFC or GC ana1y51s, using chiral stationary phases. “1.0 mol % of
catalyst. b1 bar of H,. 2 bar of H,.

D, and E on aliphatic substrate 3a resulted in a low ee values of
71%, 11%, and 77%, respectively (Table 1, entries 6—8).
Further catalyst optimization was required (see Table S2 in the
Supporting Information) and with optimal oxazoline-based
catalyst F in hand, 88% ee was obtained (Table 1, entry 9).
Modification of the phosphine substituents, the oxazoline
substituent, and a solvent screening did not further enhance
the enantioselectivity.

As already stated, the reported hydrogenation of dialkyl-
substituted enones are usually much less enantioselective,
when compared to aromatic substitution patterns. Therefore,
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reported as not reactive (Scheme 1),* was hydrogenated with
equally high enantioselectivity as la of 99% ee. The
introduction of an i-butyl substituent on the olefin or the
ketone scaffold gave a similar outcome of 99% ee (1c and 1d).
Hydrogenation of the cyclohexyl-substituted olefin 1le
proceeded with a slight decrease in ee (94%), whereas benzylic
substrate 1f and methyl-substituted enone 1g were both well-
tolerated, giving excellent selectivity of 99% ee.

Then, the substrate scope of the hydrogenation of
challenging f,p-dialkyl substituted enones class was broadened
using catalyst F. Compound 3b was hydrogenated with 95% ee
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and changing the ketone substituent to ethyl and phenyl
provided good ee values of 92% and 96%, respectively (3¢ and
3d). Compound 3d was previously hydrogenated by iridium
catalysts and rhodium catalysts (81% ee and 63% ee,
respectively) with significantly lower enantiocontrol. obs
Linear n-propyl olefin 3e showed good selectivity (95% ee),
whereas the sterically more demanding i-butyl olefin
substituent on substrate 3f resulted in 94% ee.

To demonstrate the synthetic utility, this developed catalytic
system for dialkyl-substituted enones was applied in the partial
synthesis of anti-HIV agent 7 (Table 2). Hydrogenation of a,f-
dialkyl substituted enone § yielded key intermediate a-chiral
ketone 6 in 98% ee (97% isolated yield), which has previously
been synthesized via a stereoselective alkylation, using an
auxiliary strategy.”

Then, aromatic enones were evaluated and our library of
ligands were shown to be well-tolerated in the hydrogenation
of model substrate 8a, in terms of selectivity, showing excellent
ee values of up to 99% (see Table S3 in the Supporting
Information). Catalyst B was chosen for further studies on the
class of a-prochiral aromatic enones (Table 3).'' The
introduction of various electron-donating or electron-with-
drawing substituents on the aromatic ring gave equal results
and substrates 8b—8g gave uniformly excellent ee values of
99%. Moreover, the scalability of the methodology was
demonstrated by the hydrogenation of 8b on a 1.3 mmol
scale (99% yield). Changing the substituent to 2-naphthalene
8h led to a slight decrease in enantioselectivity (97% ee).
Thereafter, substrates with a variety of substituents on the
ketone side chain were hydrogenated and n-butyl, i-propyl, and
phenyl ketones all yielded the desired product in perfect ee of
99% (8i—8k). An increase in the bulk of the a-substituent to
ethyl (81) gave a similar result. The ring size of cyclic enones
with an exocyclic olefin was shown to affect the enantiose-
lectivity. Whereas cyclopentanone derivative 8m was hydro-
genation in moderate ee of 76%, six-membered and seven-
membered cyclic enones were hydrogenated in excellent ee of
99% (8n—80). Furthermore, heterocyclic substrates 8p—8t
were also well-tolerated (99% ee, 93%—99% yield).

Finally, f-prochiral aromatic enone 10a was evaluated in the
hydrogenation to the corresponding saturated ketone.
Fortunately, catalyst D, which has successfully been applied
in the hydrogenation of f-prochiral unsaturated esters,"” gave
higher chiral induction of 94% ee in the hydrogenation of
substrate 10a (see Table S4 in the Supporting Information).
Changing the carbonyl side chain to a methyl and ethyl group
increased the enantioselectivity to 98% and 99% ee,
respectively (10b and 10c). The presence of an electron-
donating methyl group at the para position (10d) of the aryl
substituent on the olefin was hydrogenated in similar ee
(94%), compared to the unsubstituted equivalent 10a.
Increasing the length of the f-alkyl group to ethyl did not
affect either the conversion or the enantioselectivity and
compound (E)-10e was hydrogenated in 99% ee. The isomeric
purity of the olefin turned out to be important for the
enantioselection of the catalyst. Whereas the hydrogenation of
(E)-10e produces (S)-11e, an opposite enantiomeric outcome
was formed when (Z)-10e was hydrogenated (57% ee),
demonstrating that the reaction is enantiodivergent.

In conclusion, an efficient protocol for the synthesis of a-
and p-chiral ketones via asymmetric hydrogenation of
conjugated unsaturated enones by Ir—N,P catalysis is
described. Although dialkyl-substituted enones have previously
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Table 3. Asymmetric Hydrogenation of Aromatic-
Substituted Enones*
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Full conv, 57% ee (R)

"Reaction conditions: 0.2 mmol of substrate, 0.5 mol % catalyst, 2 mL
of solvent, 20 bar of H,, 16 h, rt, unless stated otherwise. Absolute
stereochemistry assigned by comparing optical rotation with literature
values. If no reference is given then assignment is tentative. Yields
given are in their isolated forms. Enantiomeric excess was determined
by SFC or GC analysis, using chiral stationary phases “1.3 mmol
scale. ©0.75 mol % of catalyst. 1.0 mol % of catalyst. “S bar of H,. “2
bar of H,.

been hydrogenated with moderate enantioinduction, efficient
hydrogenation of these challenging substrates was achieved by
using the conditions described in this study giving 88%—99%
ee. The method was successfully applied in the synthesis of an
anti-HIV agent. Furthermore, various (hetero)aromatic-sub-
stituted enones were well-tolerated, resulting in 94%—99% ee
of the corresponding chiral ketones.
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