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Abstract: In this paper, we review the principal theoretical models through which the 

dielectric function of metals can be described. Starting from the Drude assumptions for 

intraband transitions, we show how this model can be improved by including interband 

absorption and temperature effect in the damping coefficients. Electronic scattering processes 

are described and included in the dielectric function, showing their role in determining 

plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and 

refractive index are examined. Finally, a temperature dependent permittivity model is 

presented and is employed to predict temperature and non-linear field intensity dependence 

on commonly used plasmonic geometries, such as nanospheres.  

Keywords: photonics; plasmonics; thermoplasmonics; temperature dependence; non-linear 

optics; nanostructures 
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1. Introduction 

Plasmonics is the discipline describing the bridging between electromagnetic radiation and 

electronic oscillations. Recently, the research activity related to plasmonics has undergone a strong 

acceleration owing to the important role that it can play in different and important fields, such as 

nanomedicine [1–5], biosensing [6–12] nanophotonics [13–28], photovoltaic applications [29–32] or 

catalysis [33–36]. 

The fundamental quantity that is necessary for the designing and fabrication of reliable devices 

based on plasmonic resonances is the optical response of the system. Even though simple and intuitive 

models to generically describe the electric permittivity of a medium have been existing for a long time, 

practical applications require a precise knowledge of this quantity in different background conditions. 

Therefore, too simplistic frequency dependent models to describe the permittivity are not suitable for 

numerical calculations when the matching with experimental data is an issue. However, it is also 

unnecessary to employ very complex theoretical models, in fact quite often environment conditions 

simply do not require them: a more refined model is usually described with more parameters, which 

might be difficult and/or time expensive to determine. By collecting the efforts spent in the modeling 

of the electrical constants of noble metals, in this review we present how a theoretical model for the 

gold electric permittivity (but analogous considerations can be done for different kinds of metals) can, 

step-by-step, be gradually improved by including external parameters, which affect its value and thus 

the set of possible applications. We shall begin from the simple free electron Drude model, which 

accounts for intra-band transitions and we shall enrich it by progressively adding inter-band transitions 

(Lorentz model), size and shape dependence, temperature and other damping effects such as radiative 

relaxation and electron-surface scattering. 

Particular attention will be spent on heating processes, since the merger between plasmonics and 

bio/medical applications relies on a full comprehension of how much and how fast plasmonic resonances 

might increase the temperature of biological tissues [37]. In particular, this aspect becomes crucial for 

cancer treatment by means of metallic nanoparticles where the process is specifically based on cell 

hyperthermia [4,5,38–41]. 

Our aim is to provide a framework to show how the different models can improve the valuation of 

the optical response in different work conditions highlighting shape/size and temperature effects. 

2. Modeling the Optical Response of Metals: From Drude Model to Drude-Lorentz Model at 

Room Temperature 

Describing how electromagnetic waves interact with matter is a fundamental step towards the 

knowledge of the physical processes happening in nature. The ability to model this interaction offers 

the possibility to quantify and engineer the involved physical parameters, leading to the design and the 

fabrication of advanced nanostructured optical devices. 

Depending on the characteristics of the considered physical system (dimension, materials,  

timescale, etc.), there are different ways to model the ongoing optical phenomena. For instance, if light 

wavelength is much smaller of the system dimensions and only non-absorbing dielectrics or mirrors are 

involved, ray optics is able to precisely predict the light behavior. In this case, Snell’s law and 
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refraction indexes of the materials forming the system are enough to obtain reliable results. In fact, the 

materials can be assumed homogeneous with no losses, essentially decoupling the electromagnetic 

properties of light from its propagation. 

Historically, the efforts to properly describe the interaction of light with solids are backed to the 

beginning of 20th century when Drude proposed a relatively simple and intuitive transport model for 

electrons which could classically express the dispersive behavior of metals [42,43]. Actually, the 

Drude model (later modified by Lorentz) is at the base of all approaches which are currently used to 

describe the electric permittivity, therefore we shall start from its description and we shall see how it 

can be improved and tailored depending on applications and needs. 

2.1. The Drude Model  

A simple way to describe the interaction between an electromagnetic field and a generic material is 

to express the motion of its electrons through a forced, damped harmonic oscillator [44]. We can describe 

the system considering the displacement of an electric charge due to the force impressed by the 

incoming electric field: 

 (1) 

Regarding the left side, the first term expresses the acceleration of the charges induced by the 

electric field, the second one describes the damping factor due to electrons scattering where Γ is the 

damping coefficient, while the third term accounts for the restoring forces with a characteristic 

frequency ω0, typical of a harmonic oscillator. At the right side of the equation the driving term, i.e., 

the force (depending on the electric field E) acting on each electron with charge –q < 0. In Section 4 

we will expand Γ and we will show its fundamental role when the temperature dependence  

is considered. 

Since we are dealing with metals, we can temporary assume a free electrons behavior in the 

conduction band, hence we can neglect the restoring term (ω0 → 0). This approximation leads to the so 

called Drude model, namely only intra-band transitions will be considered. In this way, we can recast 

the damped oscillator equation in a more convenient way. In fact, by considering the oscillatory time 

dependence e
−iωt

 of the electric field (which can be extended to the displacement quantity r), and by 

applying the Fourier transform properties twice we obtain (the vectorial form was dropped for simplicity): 

 (2) 

By defining the electric polarization density P as the magnitude of the induced electric dipole 

moments, we obtain the following set of equations [43,45]. 
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where ωp is termed bulk plasma frequency, ε0 is the vacuum electric permittivity and χ is the electric 

susceptibility. Interestingly, the polarization density is usually defined to describe dielectric properties 

of materials however, within metals, we could argue that the polarization should diverge since bulk 

electrons are not bound to ions. However, we have to remember that these equations assume 

alternating electric field with no drift currents. Therefore, r can be seen as the oscillating displacement 

of electrons from the initial position. Eventually we can extrapolate the electric permittivity as: 

 (4) 

We recall that only intra-band transitions have been considered. In order to understand the importance 

of this parameter we have to remind that the electric permittivity rules the electromagnetic behavior 

during the wave propagation. In fact, the wave equation calculated from Maxwell’s laws explicitly sets 

it as the leading term which translates the media physical properties into optical phenomena: 

 (5) 

Here μr is the magnetic permeability and k0 the vacuum wave vector. It is clear that being able to 

quantify and modify the electric permittivity means controlling the optical response of the medium. 

It is worth noticing that we could have reached the same result considering the metallic behavior 

through a frequency dependent electric conductivity. Beginning from the same Newton Equation (1), and 

deriving just one time, we can describe the same system in terms of oscillating charge velocity instead 

of displacement, that is: 

 (6) 

where J represents the current density (electric current per unit area). We see that the electric conductivity 

σ represents the proportionality term between the current density and the electric field amplitude. To 

be noticed that the DC conductivity can be promptly recovered from this expression: 

 (7) 

Comparing this set of equations with Equation (3), we can find a direct relation between refractive 

index, permittivity, conductivity and susceptibility, namely: 

 (8) 

With this formalism, we can treat dielectric and metallic media in the same way. All the information 

is included either in the electric permittivity or in the conductivity. 
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Relations between Refractive Index, Permittivity and Conductivity 

Considering the importance of the optical constants for electromagnetic analysis, it can be very 

useful to understand the reciprocal trends and the function of these structural parameters depending on 

the frequency. For instance, the quantities Γ and ωp for gold at room temperature [43] provide the 

behavior shown in Figure 1. In this case Γ = 1 × 10
14

 [rad/s] and ωp = 13.8 × 10
15

 [rad/s]. We notice 

that while n and ε (from now on with ε we shall mean the relative permittivity εr) are monotonous over 

the considered frequency range, the real part of the conductivity σ drops at a certain frequency around 

Γ. In fact, at frequency above Γ, the frequency of the incident EM wave matches the electrons 

scattering process rate and this drastically reduces current density in the medium (i.e., the medium 

loses its metallic characteristics becoming dielectric-like). Even though the damping factor Γ cannot be 

freely tuned, it is important to understand its physical role and how it affects the media constitutive 

parameters. Therefore, it is interesting to notice that the role of Γ cannot be directly understood by 

looking at the n or ε plots. In particular, from σ plots (see Equation (7)), we see that the damping 

parameter Γ sets, at the same time, both the DC or low-frequency conductivity and the position of the 

pole of σ(ω). We recall that σ(ω) represents the proportionality term between J and E (see Equation (6)). 

Figure 1. (a) Real (blue, full) and imaginary part (red, dashed) of gold relative permittivity 

based on Equation (8); (b) Real (blue, full) and imaginary part (red, dashed) of gold 

refractive index based on Equation (8); (c) Real (blue, full) and imaginary part (red, 

dashed) of gold conductivity based on Equation (7); the Γ parameter is highlighted; (d) Real 

(blue, full) and imaginary part (red, dashed) of gold conductivity based on Equation (7) in 

logarithmic scale; the Γ parameter is highlighted.  
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The logarithmic plot in Figure 2 reports, in a wide range of frequency, the shape of Re(σ) for three 

different values of Γ. It can be observed that the frequency at which Re(σ) drops can be blue shifted 

only by diminishing its low frequency (DC) value. We also notice that the Perfect Electric Conductor 

(PEC) condition (infinite Re(σ) in AC regime) cannot be recovered within this model by setting Γ = 0 

as one may think by looking at Figure 2. In fact, in Figure 3, we report the behaviors of ε, σ and n over 

a wide range of Γ values for a given frequency, ωinc = 3.73 × 10
15

. From these plots we can extrapolate 

some important information. First, we see from Equation (4) that Γ = 0 leads to Im(ε) = 0 which 

represents a pure scatterer. Indeed, as shown by Equation (7), for Γ = 0 the conductivity σ is purely 

imaginary (Re(σ) = 0) since its real part would become infinite but over a vanishing spectrum. 

Therefore, the system does not absorb (it does not heat up). In the ideal case of a metallic nanoparticle 

(NP) with Γ = 0, the incident light would be completely radiatively re-emitted (scattered) without any 

dissipation. In this case the only energy leaking channel from the system would be radiation. On the 

other hand, Γ → ∞ leads again to Im(ε) = 0 (and to Re(ε) = 1, see Equations (8) and (9)), but now both 

the real and the imaginary parts of conductivity σ go to zero (see Equation (6)). Therefore, similarly to 

the Γ = 0 case, the dissipated power would be zero since it can be obtained by the Joule heating 

expression: PJoule = J × E where E is the electric field vector moving the charges and J represents the 

current vector induced in the medium; the latter is zero if the conductivity vanishes (J = Re(σ) ×E). 

Furthermore, considering that very high values of Γ imply Re(ε) = 1 and Im(ε) = 0, we can infer that 

this condition leads to lossless transparent medium. The behavior turning point is fixed by the 

operative frequency ωinc = 3.73 × 10
15

 as suggested by the plots in Figure 3. 

Figure 2. Real part of the conductivity based on Equation (7) for different values of Γ. 

Both axes are in logarithmic scale. 

 

In the article by Luk’yanchuk et al. [46] it was shown that, counter-intuitively, near the localized 

plasmon resonance the maximal absorption (dissipation) is reached for a specific value of Γ. At this 

point, it can be useful to underline the relationship between permittivity and conductivity: 
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Figure 3. Real and imaginary parts of permittivity (ε), conductivity (σ) and refractive index 

(n) over a wide range of values of the damping factor at the frequency ωinc = 3.73 × 10
15

. 

 

In fact, in order to obtain an elevated dissipated power, large values of J and E are needed within 

the metallic medium. The former is maximized by Im(ε) or Re(σ), the latter by the relation between 

Re(ε) and the structure geometry. For example, regarding a metallic nanoparticle, we can obtain a high 

electric field near its localized plasmon resonance [44] and the frequency at which the resonance 

occurs is mainly set by the particle geometry and the value of Re(ε) [47]. Obviously and importantly, 

this requests on Re(ε) will affect the value of Γ. At resonance, the incident power gets funneled in the 

particle due to diffraction [46] and its effective cross section exceeds its geometrical one [7,48]. Thus 

this condition, leading to a large E, needs to match with the requirement of a large induced current 

density J (namely Re(σ)). From previous plots, it is clear that, depending on the chosen frequency, an 

optimal value of Γ exists for maximizing Re(σ): given a certain frequency ωinc, the maximum 

conductivity can be found by setting Γσ-max = ωinc (this relation is easily demonstrated by calculating 

the dependence of Re(σ) on Γ, as it can be done starting from Equation (7)). Hence, by considering the 
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double request on Γ originating from the maximization of both E and J, it might occur that the optimal 

damping value Γopt leading to the maximum dissipation can be different from Γσ-max. 

As an example, in Figure 4 the dissipated power is reported over a wide range of Γ values, for a 

gold nanoparticle in air when the frequency of the incident radiation is ωinc = 3.73 × 10
15

. The NP 

permittivity has been modeled according to Equation (8). The figure clearly shows that the best 

absorber condition in terms of dissipated power is reached for a precise value of Γ and that Γopt is 

indeed different from ωinc. 

Figure 4. Dissipated power for a 10 nm radius Au NP in air over a wide range of Γ values 

at a given incident frequency: ωinc = 3.73 × 10
15

. The optimal value Γopt maximizing the 

dissipated power is shown.  

 

Therefore, we understand that Γ plays a crucial role in the metallic systems and in the next chapters 

we will show its dependence on temperature and how it can be linked to the plasmonic resonance lifetime.  

Even though it was possible to determine the conditions on the damping Γ to maximize the dissipated 

power, we need to consider more ingredients in the model of the permittivity in order to properly describe 

real systems. To do so, we need to consider also the interband transitions which happen to be crucial in 

red-shifting the localized plasmon resonances for metallic NPs [49,50]. In fact it has been shown 

experimentally [51] that gold NPs in solution (nsolution ~ 1.5) resonate around 540 nm even though the 

Mie theory, based on the Drude model previously introduced [44], predicts a resonance at      ,  

i.e., ~237 nm. Once again, we understand the importance of defining a correct modeling approach in 

order to obtain realistic results. 

In the next section, we will show how the dielectric function can be properly modified in order to 

retrieve some fundamental experimental results. 

2.2. Interband Transitions: The Lorentz Model  

It has been mentioned that the combination of a particular geometry and a precise value of Re(ε) 

can trigger a resonance in a nanostructure. For a spherical NP in quasistatic approximation [52] the 

resonance is induced when Re(ε) = −2, the so called Froelich condition [44]. In fact, it can be shown 

that the polarizability α of a metallic sphere, under these assumptions, can be calculated as: 
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where R is the NP radius, E and B are is the amplitudes of the incident field and the field calculated 

outside the sphere, εd and ε the permittivity of the embedding medium and the metal, respectively. 

When ε' ~ −2εd the polarizability is maximized, and since α is proportional to B/E, which is related to 

the near field enhancement, it represents also the condition for the localized plasmon resonance. 

However, considering that the experimental resonance appears at longer wavelengths than the theoretical 

one found by using the Drude permittivity of Equation (4) with Γ = 0 (≈237 nm for gold), it is clear the 

necessity of theoretically modifying ε to properly red-shift the peak. In particular, in 1977 Beach and 

Christy [49] and later, in 1981, Parkins et al. [53], reported a significant effect on Re(ε) due to the 

presence of interband transitions. To approximate this effect they introduced into the Drude model a 

real positive term δε such that experimental results were recovered. In particular, considering that the 

general expression (Γ = 0) for the permittivity is given by ε = ε∞ − ωp
2
/ω

2
, the authors considered the 

possibility of substituting ε∞ with the quantity ε∞ = 1 +δε namely ε = (1 + δε−ωp
2
/ω

2
). In Figure 5 is 

plotted the field enhancement on a 5 nm radius NP for different values of ε∞. 

Figure 5. Electric field enhancement calculated at 1 nm from a gold nanoparticle. The 

particle radius is 5 nm and it is surrounded by air. Different values of ε∞ have  

been considered. 

 

The modification of the ε∞ parameter clearly tunes the resonance on a wide frequency range 

therefore it allows the matching between theoretical and experimental results. The actual ε∞ can be 

found by fitting the experimental data. For instance, in [54] it was set ε∞ = 11.5 for λ > 516 nm. 

A more elegant and physical way to modify the dielectric function εm is to add the Lorentzian terms 

into the Drude expression in order to replicate the interband absorptions (Drude-Lorentz model). In 

1998 Rakic et al. [50] combined several oscillators to reproduce the absorption peaks due to interband 

transitions up to 5 eV: 
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Here m stands for the total number of the oscillators, each with lifetime Γj, strength fj and frequency 

ωj         is the modified plasma frequency including the oscillator strength f0. In Figure 6 the 

real and the imaginary parts of the permittivity are plotted by using this last approach, and they are 

compared with the Drude model.  

Figure 6. Real and imaginary part of gold permittivity. Comparison between Drude model 

with ε∞ = 1 (blue lines), ε∞ = 11.5 (red lines), Drude-Lorentz (DL, green lines) as proposed 

by Rakic in [50] and experimental data (black lines) from [55]. 

 

Regarding the real part, we see how the DL model and the Drude model with ε∞ = 11.5 are quite 

similar to each other in most of the visible region (>500 nm) while the Drude model with ε∞ = 1 is 

shifted to lower wavelengths. Whereas the DL model holds all over the spectrum [50], the Drude 

model with ε∞ = 11.5 was obtained by fitting the data below the interband transition frequencies  

(>516 nm). For higher frequencies, such as the UV region, this model is not capable of reproducing the 

experimental data. Turning our attention toward the imaginary part of the permittivity, we have to 

recall that the DL model is based on a set of absorption resonances defined by the typical Lorentzian 

shape. On the other hand, both the standard (ε∞ = 1) and modified (ε∞ > 1) Drude models overlap each 

other because ε∞ affects only the real part of the permittivity. This is an important point: in fact, if only 

the resonance positions need to be found, then Drude model with ε∞ = 11.5 works fine for energies 

below 2.4 eV (516 nm). However, as previously explained, if the dissipated power and the absorption 

cross section must be evaluated, the models will produce anomalous results. In Figure 7, experimental 

measurements of extinction efficiencies are compared by using DL and Drude (ε∞ = 11.5) models. 

From the plots, we can see how the DL permittivity gives a nice matching (both for the peaks 

position and the line widths) with the experimental measurements for all the diameters of the nanodisks. 

Instead, when the Drude model with ε∞ = 11.5 is employed, we observe a sufficient agreement only 

below 1.6 eV. At higher energies (shorter disks diameters), while the peaks positions are correct, both 

extinction values and line-width are not reliable when compared to experiments. 

Finally, it is worthy noticing the existence of at least two more analytical methods for describing the 

optical properties of materials. In 1992, Brendel and Bormann [56] replaced the Lorentz oscillator  

with a Gaussian-like term to describe the interband contribution. This lead to a slightly better fitting of  

the experimental data when compared to the Drude-Lorentz model. Similarly, in 2006 Etchegoin and 

co-workers [57,58] modeled the gold permittivity based on critical point analysis of Au interband 

transitions. Along with this method, they could fairly reproduce the Johnson and Christy Au 
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experimental data [59] with a relatively small number of fitting parameters. The critical point  

analysis [60–62] employs a family of analytical models to describe the joint density of states in the 

vicinity of interband transitions [63]. When modeling metals permittivity, in order to describe the 

asymmetric line shape of interband absorptions, this approach requires fewer terms if compared to the 

use of multiple Lorentzian oscillators [57]. However, it must be pointed out that the damping 

coefficient Γ0, comprised in the Drude term of Equation (10), is not affected by the method employed 

to describe the interband terms. In fact, this damping factor is associated with the scattering mechanisms 

of electrons within the conduction band and it is thus independent of the extra terms related to valence 

band electrons. 

Figure 7. Extinction efficiency of Au nanodisks of different diameters at a fixed height  

H = 20 nm. (a) Drude-Lorentz model (see Equation (10)); (b) Drude model with ε∞ = 11.5. 

The red line highlights the validity range of the Drude model (c,d) Experimental measurements 

from [64]. The red line highlights the validity range of the Drude model. Reprinted with 

permission from [64]. Copyright 2011 American Chemical Society. 

 

3. Heating Processes in Plasmonic Nanostructures  

The temperature dependence of the damping factor is an important aspect because plasmonic 

nanostructures tend to heat up when irradiated by an external light source: dissipated power due to the 
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Joule effect increases the temperature of both the metallic particles and the surrounding media. As 

already mentioned, the fraction of the incident power which can be converted to heat, may depend on 

several factors. Since resonances are dependent on both geometry and permittivity we have many 

possibilities to tune the enhancement spectrum shape of metallic nanoparticles. During the last decade, 

photothermal effects in plasmonic nanoparticles have been intensively studied both from a theoretical 

and analytical point of view. In 2006, Govorov and coworkers [65] studied NPs ensembles as heaters 

capable to melt a surrounding ice or a polymer matrix. They also reviewed the plasmonic heating 

process and characterized the heat generated in gold NPs ensembles in [66]. In 2010 Baffou and 

coworkers [67] the related heat sources to the optical hot spots inside plasmonic structures showing 

that they do not usually match one another. Once again, this finding can be explained by the different 

conditions leading to maximum current J and field enhancement E. More complex geometries have 

also been investigated. Rodriguez-Oliveros and Sanchez-Gil [68] numerically studied gold nanostars 

as optical heaters finding peculiar thermoplasmonic properties such as LSPR tunability and high 

absorption/scattering ratios depending on the geometrical symmetries and on the number of tips of the 

structure. Juen Tan and Gramotnev [69] investigated the heating mechanisms in metal wedges and they 

proposed a model to separate plasmon propagation from heat generation if the dependence of the 

permittivity on temperature can be neglected. In addition, tip-shaped structures have been analyzed and 

the relationships between high field enhancement and temperature increase have been pointed  

out [70–72]. In 2002 Sonnichsen et al. [73] showed a drastic reduction in the plasmon damping of gold 

nanorods compared to spherical NPs. This is due to the fact that when the plasmonic resonance is 

below the gold interband transitions energies, the damping factor due to interband recombination is 

very small and the plasmon lifetime grows while the resonance line width shrinks. The shape of a 

nanostructure can indeed influence its resonant behavior in two ways: (i) through the relationship 

between its geometry and the real part of the permittivity and (ii) through the effective length Leff 

which determines the damping factor due to the electron-surface scattering (see Equation (16)). The 

latter influences the plasmon lifetime, by increasing or decreasing the scattering rate depending on the 

V/S ratio of the particle. However, the shape implicitly determines the resonant condition and thus 

indirectly contributes to the entity of the damping factors. In 2000 Link and El-Sayed [74] extensively 

studied the connection between shape and size of nanoparticles with the corresponding radiative and 

non radiative scattering rates. In 2008 Pelton et al. [75] reviewed plasmonic properties associated with 

metal-nanoparticles pointing out how the geometry impacts on NPs and nanorods resonance positions, 

highlighting the limits of quasi-static approximation utilized in analytical calculations. Later in 2009 

Baffou and coworkers [76,77] studied the influence of the morphology on the resonances and the heat 

generation of plasmonic nanostructures employing the Green’ dyadic method. They found that for a 

spherical NP only the outer part of the particle participates in the heating generation process, therefore 

more elongated structures, such as nanorods, show a diminished shielding effect and the heating is 

more efficient. In fact they demonstrated that, considering the same structure volume, thinner particles 

and those presenting corners or sharp edges are more effective in producing heat. Other studies on this 

subject can also be found in [71,78–81] where the effect of heating is also considered in relation with 

the re-shaping of a particle close to its melting temperature. In 2012, Chen et al. [82] studied 

photothermal effects in gold nanospheres finding structures entering a pre-melting regime at 519 K and 

changing sensitively shape around 795 K, much lower than bulk gold melting point (1337 K). 
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Photothermal interaction between nanospheres has also been proposed as a plasmon ruler by  

Zhang et al. in [83]; the effect is based on the sensitivity of the absorption power on the distance 

between two NPs placed on a substrate. Being able to measure the absorption differences, can lead to 

nanometric gaps characterizations. Liu et al. [84] through the observation of thermal effects, such as 

melting and solidification in Ag nanowires, could precisely identify the heating location in the 

structures. A similar approach has been also applied to obtain plasmonic welding in silver nanowire 

junctions through a self limiting process that ends the melting when the connection between the wires is 

formed [85]. While melting and pre-melting behaviors are very important to thoroughly understand the 

heating effects on plasmonic structures, sometimes even a relative small increase in temperature can be 

very important. For instance, regarding medical applications, a 15–20 K increase of temperature can be 

sufficient to kill tumoral cells inducing apoptosis [5]. Therefore, the use of metallic NP can play a 

terrific role in cancer treatment. In fact, nano-sized metallic structures enable a precise localization of the 

heating in very narrow areas and thus allowing very specific targeting. Moreover, the field resonance 

plays another fundamental role allowing the use of lower incident power, hence preventing heating 

damages in healthy nearby regions. Other applications such as smart delivery has been also  

investigated [5]. Here, studies regarding the LSPRs tunability are very important because at resonance 

the stability of the nanoparticle-molecule bond is reduced and anti-cancer drugs can be locally released. 

Therefore, the possibility to design ad hoc nanostructures can lead to a wide range of applications, 

helping in choosing the more appropriate geometries and addressing the fabrication requirements. 

4. Influence of Temperature on Media Permittivity: The Damping Factor 

In Section 2, we showed how the Drude model can be refined to include interband transitions. A 

permittivity based on multiple oscillators has been proved to match the experimental data fairly well, it 

being able to detect both the resonances positions and the absorbing behavior of metallic 

nanostructures. On the other hand, by simply increasing the real part of the dielectric function it is 

possible to find the actual resonant frequencies of any metallic nanostructure, but this procedure 

largely underestimates the damping factor, leading to inflated field enhancements and imprecise 

predictions about scattering and absorption values. Therefore, it is mandatory to deeply examine the 

physical origin of the damping factor, how it can be described and its dependence on the temperature. 

It was mentioned that Γ describes the electrons scattering processes. In the ideal case of Γ = 0 the 

electrons, if already drifting, keep moving in a straight line without any interaction with the medium. 

As previously explained, while this condition leads to a perfect conductor in DC regime, the result is a 

perfect scatterer in AC regime at any frequency. In fact, even though Γ = 0 prevents the electrons from 

dissipating energy into heat, they can radiate while accelerating and decelerating under the influence of 

an external EM field [45]. This is due to the mathematical shape of σ(ω) which has been obtained 

through a damped Lorentzian oscillator model (see Equation (1)). Considering the motion of electrons 

in the conduction band of a metallic NP (but this is true for any metallic nanostructure) with Γ ≠ 0, we 

can imagine different kinds of scattering mechanisms such as electrons scattering with the lattice 

phonons (Γe-ph), with the NP surface (Γsurf) or one another (Γe-e). Defects are also involved in the 

scattering process but, in first approximation, we can neglect their contribution to the damping if 

sufficiently pure materials are employed. However, an approach to keep into account electrons-defects 
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scattering will be subsequently introduced (see Equation (18)). If Γe-ph, Γsurf and Γe-e are the involved 

players, we can define a specific damping factor for each of these processes which, together, contribute 

to the total scattering rate: 

pheeebulk

surfbulk

 


 

(12) 

Here we split the bulk and the surface contributions, the latter accounting only for the electrons 

hitting the interface between the NP and the surrounding medium. As previously anticipated, Γ is 

directly linked to the plasmonic resonance lifetime τ through Γ = 1/τ, in fact the resonance survives 

until its associated energy is completely dissipated. To be noticed that here we do not include the 

radiative power originated by the plasmonic oscillations. Even though this quantity can be analytically 

evaluated as done for example by Grigorchuk [86], this energy “leakage” is associated with the  

far-field radiation emitted by accelerating and decelerating charged particles and it is thus included in 

the electrodynamics described by the Maxwell’s equations. This is why we have a non-zero FWHM 

(Full Width at Half Maximum) for a metallic NP resonance plot even if we model its permittivity by 

setting Γ = 0, i.e., considering only the real part of the ε(ω) expression. The term responsible for the 

radiation is related to the Abraham-Lorentz force and it enables a channel through which energy can 

escape from the system as radiated power [45]. In 2011 Kats and coworkers [87] explicitly added this 

term in the complete damped harmonic oscillator equation:  

 (13) 

In this case, the steady state solution can be obtained as: 

 
(14) 

Thus we see that the total line width of the resonance is influenced by two factors: a radiative 

contribution proportional to Γs, which is temperature independent, and a dissipating one which accounts 

for the electronic relaxation processes, Γ. To be noticed that the radiative term, due to its dependence 

on ω
2
, explains why far field scattering spectrum is blue-shifted with respect to the near field one as 

shown in [87]. 

In the next section, we will briefly examine Γ and the physical processes originating the respective 

damping factors. 

4.1. Electron-Electron Scattering: Γe-e 

The electron-electron scattering rate was studied, for example, in 1958 by Gurzhi [88,89], and it 

was calculated in detail later in 1973 by Lawrence and Wilkins [90,91]. They employed the Born 
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approximation and the Thomas-Fermi screening of Coulomb interaction to describe frequency and 

temperature dependence of the collision process among electrons:  

 (15) 

When Au data are considered, Φ = 0.55 is the Fermi-surface average of scattering probability,  

Δ = 0.77 is the fractional Umklapp scattering coefficient, h is the Planck’s constant, kB is the 

Boltzmann’s constant, EF = 5.5 eV is the Fermi energy and T is the temperature. We notice that in the 

IR and optical frequency range the temperature dependent term turns to be negligible. However, the 

temperature plays a fundamental role when this scattering factor is employed to measure the DC 

conductivity at room temperature, as shown in Figure 8. We see that in the IR and optical range the 

impact of frequency on the damping value is quite important. Regarding the temperature, we 

understand that its contribute is clearly negligible being three orders of magnitude smaller than its 

frequency dependent counterpart in the optical range. 

Figure 8. (a) Temperature dependence of the electron-electron scattering in DC regime  

(ω = 0); (b) frequency dependence of the electron-electron scattering at room temperature  

(T = 293 K). Au is considered. 

 

4.2. Electron-Phonon Scattering: Γe-ph 

While for the electron-electron scattering the temperature plays a minor role in the optical range, the 

electron-phonon scattering is sensitively dependent on the environment condition. Holstein [92,93] 

derived its expression assuming free electrons without Umklapp collisions and a single Debye model 

phonon spectrum: 

 (16) 

where, for gold, θD = 170 K is the Debye’s temperature, Γ0 = 0.07 eV has been obtained by fitting Au 

bulk permittivity at frequency below 2.4 eV which is the gold interband transition onset [54]. However, 

this parameter can be extrapolated also from the DC resistivity in the case of isotropic scattering [94,95]; 

nevertheless, this latter method would underestimate Γ0 if the Fermi velocity was assumed position 

dependent on the Fermi surface [95]. Moreover, as explained in [95], the phonon behavior can be more 

complicated than the one assumed by Holstein (i.e., Debye dispersion), in fact for T → 0 the 2/5 factor 
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has to be modified in the infrared phonon-assisted expression. The values for Γe-ph in a wide range of 

temperatures are plotted in Figure 9. We see that from 293 K (room temperature) to 750 K (at which 

pre-melting has been observed [96]) Γe-ph increases about three times. At very low temperatures, Γe-ph 

begins to saturate and from 100 K we can see an almost linear behavior. The Debye temperature θD can 

be seen as the temperature above which all the modes are excited and can participate to the scattering 

process. Interestingly, this information is easily shown by the curve shape in case of the specific  

heat [43], however in Γe-ph it cannot be directly associated with the plot trend. 

Figure 9. (a) Electron-phonon scattering dependence on temperature up to 1000 K and  

(b) zoom at low temperature. Au is considered.  

 

4.3. Electron-Surface Scattering: Γsurf 

A standard approach to describe the damping effect due to the limited size of a nanostructure is to 

consider the scattering determined by the particle surface on the conduction electrons [97]. This leads 

to a term including a reduced mean free path of electrons when the effective length of the system shrinks: 

 (17) 

where A is a dimensionless parameter which takes into account the details of the scattering mechanism, 

vf = 1.4 × 10
6
 m/s is the gold Fermi velocity and Leff is the reduced mean free path of electrons. It is 

clear that the latter term is crucial since it carries all the information about the geometry of the system. In 

2003 Coronado and Schatz [98] followed a geometrical probability approach to predict a general form 

for Leff: 

 (18) 

where V and S are the volume and surface area of an arbitrary shaped convex particle. This expression 

assumes totally inelastic scattering from the surface and it expresses the average chord length by any 

two points of the surface [99]. The value of A is still debated and empirically depends on the shape of 

the considered particles. Coronado in [98] mentions that its value is closed to unity, but in 2005 

Berciaud et al. [51] found A = 0.33 as the best fitting value for individual gold nanoparticles 

absorption measurements. This value has been validated also for nanorods in 2006 by Novo and 
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coworkers [100] who confirmed the results obtained in [51]. However, different materials may present 

different values of A: in 2004 Liu and Guyot-Sionnest [99] found for Au/Ag core-shell nanorods 

different values for metal/metal (A ~ 0.1) and metal/external medium (A ~ 0.25) interfaces suggesting a 

more inelastic scattering at the metallic interface. In Figure 10 we plot the radius dependence of 

electron-surface scattering for a gold nanosphere using A = 0.33. 

Figure 10. Electron-surface scattering for a gold sphere with different radii. A shape factor 

A = 0.33 has been chosen.  

 

We see that below 10 nm, the influence becomes quite important, and the values are comparable 

with electron-electron and electron-phonon scattering factors in the optical range at room temperature. 

Furthermore, for very small NPs, other phenomena may occur in modifying the electric permittivity 

of metals. In 2001, Cai and co-workers [101] highlighted the importance of lattice contraction in 

shifting the surface plasmon resonances of silver NPs with dimensions between 2 nm and 10 nm. This 

effect is related to the change of the lattice constant of small particles induced by surface or interface 

stress, depending on the hosting matrix. For a cubic lattice and a spherical structure, lattice contraction 

due to surface stress f (or interface stress for embedded NPs) can be calculated as [102]: 

 (19) 

Here K is the compressibility and R the particle radius. As explained in [101], variations of lattice 

constants modify the electron density thus shifting the Mie resonances. This phenomenon adds up to 

the free path effect previously mentioned. However, whereas a reduced free path implies a red-shift of 

the Mie frequency, lattice contraction pushes the resonance towards higher frequencies as long as f is 

positive. Therefore, the effects can partially counterbalance each other. In fact, generally lattice 

parameters are expected to diminish with decreasing size; nevertheless lattice dilatation and negative 

stress are reported in literature [103]. 

The Mie resonance shifting due to lattice contraction can also be exploited to obtain photoelastic 

coefficient in noble metals as suggested by Temnov [104]. However, within this review, and especially 

in the following simulations, we consider bigger NPs (R = 10 nm), therefore we will neglect this effect 

in our modeling of the electric permittivity of gold. 
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5. A Temperature Dependent Permittivity Model with Interband Transitions 

Now that we have introduced the main quantities affecting the electric permittivity, we can merge 

them together to define a temperature dependent non-linear permittivity. Its expression will be formed 

by two terms: the first one taking into account the conduction electrons and the influence of temperature, 

the second one expressing the interband absorptions: 

 
(20) 

where Γ(T) = Γe-e(T) + Γe-ph(T) + Γe-surf is the total damping coefficient at temperature T. When gold is 

considered, γ = 14.2 × 10
−6

 K
−1

 is the thermal expansion coefficient, Γ0 = 8.04 × 10
13

 rad/s is the 

intraband damping coefficient [50], η is a dimensionless parameter which can be tuned to take into 

account defects-induced damping changes [105] and T0 = 293.15 K is the room temperature. In our 

simulations we will set η = 1, therefore neglecting damping adjustments due to the roughness or defects. 

We started by considering the Drude-Lorentz model where the intraband part was modified by inserting 

the temperature dependence of the plasma frequency, that includes a reduced electronic density due to 

the thermal volume expansion [54]. Furthermore, to preserve the Drude-Lorentz model behavior at 

room temperature, we introduced the damping parameters in the model by subtracting their contributes 

calculated at T0. In this way, at room temperature, our model can exactly reproduce the Drude-Lorentz 

model but, at the same time, we could include the dependence from the temperature. For simplicity, we 

will refer to this model as DLT (Drude-Lorentz-Temperature model). 

By using DLT we can numerically calculate the impact of the temperature on plasmonic nanostructures. 

In particular, we will show how resonances, field enhancement and scattering parameters are going to 

change with the temperature through a non linear iterative calculation implemented in a FEM (Finite 

Element Method) numerical technique. 

In the following simulations electromagnetic equations have been solved, through iterative calculations, 

along with the heat diffusion equation: 

 (21) 

Here ρ represents the material density, Cp the thermal capacity at constant pressure, u the velocity 

vector, k the thermal conductivity and Q the amount of heat provided to the system. In this case, Q is 

associated with the electromagnetic losses related to the Joule effect, as previously explained. 

In the hypothesis of stationary regime, this equation can be easily simplified. In particular, by 

considering that only the conductive heat transfer term is feasible (i.e., the convection term is by 
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definition zero inside the solid structure and it has been neglected in the surrounding medium), the 

equation solved for temperature T becomes: 

 (22) 

5.1. Tuning the Overall Temperature 

The first simulation considers a spherical nanoparticle with radius R = 10 nm embedded in a fused 

silica host matrix in interaction with a low power Gaussian beam (beam size w0 = 1 μm). We choose a 

low power source in such a way that the temperature rise, due to the dissipated power, can be 

neglected. In the simulations, in order to modify the values of the damping parameters, we tuned the 

overall temperature. The chosen T0 values will be the same as reported in [96]. In Figure 11, the plots 

showing extinction, absorption, scattering efficiency and electric field enhancement at 1 nm over the 

NP surface are reported. 

Figure 11. (a) Extinction efficiency; (b) scattering efficiency; (c) absorption efficiency; and 

(d) field enhancement for a gold nanospheres (R = 10 nm) embedded in silica at different 

temperatures. 
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In the figures, we can immediately observe how the increase of temperature lowers the value of all 

the selected quantities, while broadening the spectra across the resonance. It is interesting to notice 

how the scattering efficiency and the near field enhancement peaks shift with the temperature, while 

the absorption seems to depend on it only marginally. This can be understood by means of the 

mechanisms ruling the different optimal condition for maximizing absorption or scattering. Later on 

(see Section 5.2), when we will tune the incident power, thus triggering the system non linearities, we 

will clarify the origin of this shift. 

Another shift can be observed between the near and far field (scattering efficiency) peaks, at the same 

temperature. This can be explained in terms of radiation damping Γrad as previously anticipated [87] 

(see Section 4). Furthermore, by comparing the absorption and scattering efficiency, we notice the former 

to be at least one order of magnitude higher than the latter. The explanation is in the dimensions of the 

particle, in fact the radiation damping is proportional to the particle volume, namely the bigger the 

particle the higher the scattering efficiency [73]. This is illustrated by the following set of equations which 

relates absorption and scattering efficiencies, radiative and non radiative damping and polarizability:  

 (23) 

where α is the particle polarizability written in a more generalized form as reported in [106], k the 

vacuum wave vector of the incident radiation, ε the dispersive dielectric function, εd the surrounding 

medium permittivity, V the particle volume and L the depolarization factor which accounts for the 

particle shape and orientation. To be noted that here we explicitly distinguished the damping due to 

radiated energy (Γrad) from the damping associated with dissipated energy into heat (Γnon-rad). If 

retardation effects are neglected and if ε is described by means of a simple lossy Drude model (see 

Equation (4)), the radiative damping can be expressed as [106]: 

 (24) 

This formula highlights the strong dependence of the damping on both ω and the particle volume V 

and it can be associated to the Abraham-Lorentz term mentioned before in Equation (12). 

5.2. Tuning the Incident Power 

In the previous calculations, we homogeneously raised the whole system temperature hence inducing 

an increase in the damping factor values. Another possibility is to keep the system at room temperature, 

instead hitting the sample with a focused laser carrying higher power. In this way, we can determine 

how the resonances influence the temperature around the NP and how non linearities are triggered in 
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the system. In fact, the incident power at different wavelengths interacts with the sample according to 

its permittivity values. This implies different heating efficiencies, which lead to different temperatures, 

which, in turn, modify the damping factors and thus the dielectric function. Therefore, differently from 

the previous simulations, here the system enters in a non linear loop thus making the NP refractive index 

directly dependent on both frequency and intensity n(ω,I). In Figure 12, we report the field enhancement 

and the temperature increase reached at 1 nm outside a gold nanosphere for different incident powers, 

ranging from 10 mW to 600 mW. In analogy with previous calculations, the NP is placed in a silica 

host matrix with thermal conductivity κSiO2 = 1.4 [W/(m
.
K)], heat capacity cp,SiO2 = 730 [J/(Kg

.
K)] and 

density ρSiO2 = 2.2 × 10
3
 [Kg/m

3
]. The utilized thermal data for gold are κAu = 317 [W/(m

.
K)],  

cp,Au = 129 [J/(Kg
.
K)] and ρAu = 1.93 × 10

4
 [Kg/m

3
] [107]. 

Figure 12. (a) Calculated temperature increase; and (b) field enhancement spectra  

at 1 nm over the surface for a gold nanosphere (R = 10 nm) embedded in silica at different 

incident powers.). The incident field has been modeled as a Gaussian wave with beam size 

w0 = 1 m.  

 

Interestingly, in Figure 12 we observe, for a given incident power, a wide range of ΔT = T − T0 

depending on the chosen frequency. For instance, taking the maximum power, 600 mW, we see that 

the temperature rises by roughly 20 K at 1.7 eV while jumps to almost 550 K at 2.3 eV. In fact, far 

from the field enhancement resonance, the curves overlap for any considered power: the temperature 

increase is minimal and thus damping parameters do not change leading to similar results even though 

the input power is tuned. The situation is different around resonance where the temperature increases 

sensitively modifying the damping parameters thus changing the behavior of the NP. In the previous 

section the temperature was uniformly changed all over the considered spectrum while now we see that 

it strongly depends on the optical response of the nanoparticle. In Figure 13 is plotted the absorption 

efficiency in the range from 100 W to 1.5 W.  
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Figure 13. Calculated absorption efficiency spectra for a R = 10 nm gold nanosphere 

embedded in silica for growing input powers. 

 

Another interesting relation, always standing for any incident power, can be found between the 

electric field resonances and the temperature derivative with respect to the incident radiation energy. In 

Figure 14 the field enhancement is plotted next to the derivative of the temperature (both measured at  

1 nm from the NP). 

It is important to notice that the two graphs are each other strongly connected inasmuch as the electric 

field maxima correspond to the maxima of the temperature derivative. In fact, the temperature derivative 

with respect to the incident energy tells us how much the temperature is likely to change in a certain 

energy range. From 1.7 eV to 2.3 eV the derivative is positive, thus the temperature rises towards its 

maximum value which, in fact, is reached at 2.3 eV, as it can be viewed in Figure 14. At 2.3 eV the NP 

is indeed converting the maximum portion of incident energy into heat, as confirmed by the absorption 

efficiency plot (see Figure 13). The peaks showed by the derivative between 1.7 eV and 2.3 eV can be 

explained in terms of dissipated power due to the Joule heating. In fact, we can observe that the spectra 

of the dissipated power (Figure 15) have the same shape of the temperature increase (Figure 12). 

Figure 14. (a) Field enhancement; and (b) temperature derivative with respect to incident 

radiation energy for a gold nanospheres (R = 10 nm) embedded in silica at different 

incident powers. 
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Figure 15. Dissipated power (Joule heating) spectra for a gold nanospheres (R = 10 nm) 

embedded in Silica at different incident powers. 

 

In Section 2 was mentioned that the electric field resonant condition is given by the proper match 

between the real part of the permittivity and the nanostructure geometry. However, when temperature 

effects (Γ(T)) are considered, we might expect some influence on the resonance position (see Equation (18) 

and Figure 14). Interestingly, as shown in Figure 16, this effect is only weakly related to Re(ε), instead 

it is the imaginary part of the permittivity that undergoes a sensitive modification due to temperature  

(power) change. 

Figure 16. Power dependence of (a) the real and (b) imaginary part of the dielectric 

function (Equation (18)) for a gold nanosphere (R = 10 nm) embedded in Silica. 

 

Similar considerations on the marginal role of the real part of the permittivity can be found in [40] 

where optical effects where discussed at low temperature. 

In order to understand the shift of the near field enhancement shown in Figure 14, different 

considerations have then to be taken into account. From Figure 15 we clearly see how the steepness of 

the curves changes depending on the intensity values. In particular, in the same incident radiation energy 

range (from 1.8 eV to 2.2 eV), the amount of power dissipated grows faster at higher intensity. 

Therefore, the amount of power available for scattering (i.e., the part which is not dissipated) tends to 
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increase for lower energy values, which is especially true for high intensities (e.g., the steepness at  

600 mW is much higher than at 50 mW). This mechanism is behind the red-shift behavior observed in 

the near-field enhancement shown in Figure 14. 

6. Final Considerations 

We have seen that in order to numerically reproduce more realistic systems, where temperature 

related phenomena are an issue, it was necessary to properly improve the standard modeling of the 

permittivity. Temperature effects, together with dispersion relations, on host matrix should be considered 

since high temperature can indeed modify their permittivities [108]. When very high temperatures are 

taken into account, also the thermal expansion could play a role in plasmonic resonances. However the 

influence that this quantity might have on the electric permittivity is still debated: in [54] it is found 

that for an array Au rods the expansion is below 1.6 × 10
−2

 nm/K and thus small compared to 

permittivity temperature dependence. On the other hand, in [96], the thermal expansion was inserted in the 

permittivity model to explain absorption shifts in gold nanoparticles heated at different temperatures. 

Furthermore, other promising applications can derive from the coupling between heating and 

convective phenomena when particles are immersed in liquid environments. In 2011  

Donner et al. [109] showed that fluid velocity due to plasmonic heating can be neglected for single 

nano-sized particles but it is relevant when considering micro-sized systems or NPs ensembles. New 

modeling challenges come also from the emerging theme of superconducting plasmonics. About this 

subject, recently Tsiatmas and co-workers [110] proposed a generalized Drude model where a lossless 

term, representing the contribution of non-dissipating Cooper pairs, was added to the lossy 

metallic dispersion. 

Another emerging field linking nanophotonics to the plasmonic heating can be found in ultrafast 

optics where non-equilibrium electrons are created and non-linear effects are triggered [104,111–114]. 

In fact, when an ultrashort pulse is absorbed by free carriers in a metal, a non-equilibrium distribution 

of electrons is created within the skin depth of the medium [104]. Electrons then thermalize through 

electron-electron scattering in a time frame between tens to hundreds of femtoseconds. For silver and 

gold, relaxation times of 350 fs and 500 fs have been found respectively [115]. However, even after 

electronic thermalization, the system still remains in non-equilibrium since electronic temperature is 

much higher than the lattice one. At this point the electron-phonon interaction cools down the hot 

electrons and the lattice heats up reaching equilibrium conditions in the order of picoseconds [75,104]. 

Within this context, ultrafast acousto- or magneto-plasmonics offer even more challenges in terms of 

modeling perspectives. In these cases, spatial dependent strain and magnetization can modify the 

electric permittivity of metals and, in principle, the latter can be engineered to obtain peculiar and more 

complex optical responses [104]. 

All these topics give an idea of how important is a proper description of the media optical response. 

Moreover, it is interesting to realize how a relatively simple model based on several assumptions 

elaborated at the beginning of 1900 can be continuously improved to describe new optical phenomena.  
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7. Conclusions 

In this review, we described how a plasmonic system can be optically and thermally modeled. We 

analyzed the relationships among macroscopic media parameters, such as refractive index, electric 

conductivity and dielectric permittivity showing how they can be used to fully describe the dispersion 

behavior of a metallic nanostructure. We investigated the connection between dielectric function and 

the heating properties of resonant plasmonic NPs. We expanded the damping factor in a number of 

terms, each one of them related to a microscopic scattering phenomenon. Finally, we merged all these 

terms together in order to define a dielectric function capable of predicting the plasmonic behavior at 

different temperature regimes. The numerical calculations were realized by implementing in a FEM 

architecture a non-linear calculation regime which could account for the incidence intensity dependence 

on the refractive index of the metallic structures.  

We have found that any temperature change can strongly modify the field enhancement and absorption 

characteristics of plasmonic devices. The imaginary part of the permittivity has been shown to double (at 

around 800 K) its value with respect to the room temperature at resonant wavelength. Interestingly, for 

a given incidence power, a very different temperature increase can be induced in the NP. Owing to our 

non-linear calculation method, it was shown that for a gold NP the temperature rise might fall in the 

range from 30 K to 500 K depending on the chosen incident power and frequency. This result 

expresses a very high sensitivity of the absorption properties of the system. Another important finding 

is that the optical and thermal hot spots do not necessary coincide. In fact, scattering and absorption are 

indeed two parallel energy leaking channels acting at the same time. 

Finally, a deep understanding of the optical and thermal phenomena in plasmonic structures has a 

great importance in the study of metallic systems. Improved modeling techniques and advanced calculation 

possibilities can thus be tremendously useful for both new technological applications and for a better 

understanding of the microscopic electronic behavior in nano-sized structures. 
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