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The capacity of humoral factors to influence polymorphonuelear leukocyte func- 
tion has been recognized by in vitro studies. Neutrophil phagocytosis is enhanced 
by the presence of a fragment of the third component of complement, C3b, on a 
target cell or complex (1). Neutrophils respond chemotacticallv in vitro to by-products 
of the complement reaction sequence such as the cleavage product of the fifth com- 
plement component, CSa, or the trimolecular complex of the fifth, sixth, and seventh 
components of complement, C567, and to components of the kinin-generating system 
such as kallikrein (2-4). The inhibitor of the activated first component of comple- 
ment (CIINH) blocks the neutrophil response to kallikrein. 1 Other factors which 
suppress chemotaxis in vitro are found in the sera of some patients (5-7). These 
factors have not been isolated, and in most instances it has not been definitively de- 
termined whether such inhibitors function by blocking the stimulus or by affecting 
the neutrophils directly. In addition, as chemotactic principles can deactivate their 
target cells, specific inhibitors must be separated from contaminating chemotactic 
activity. 

An inhibitor of chemotaxis is released from human  polymorphonuclear or 
mononuclear leukocytes during phagocytosis or exposure to mildly acid pH or 
endotoxin. This inhibitor, designated the neutrophil-immobilizing factor (NIF),2 
is not  chemotactic and acts directly and irreversibly on human  neutrophils to 
prevent  their response to a variety of different chemotactic principles without 
impairment  of their viability. This finding that  the leukocvtes themselves can 
modulate their response to humoral chemotactic factors represents an addi- 
tional link in the inflammatory reaction sequence. 
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a grant from the John A. Hartford Foundation, Inc. 
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1 Goetzl, E. J., A. P. Kaplan, A. Schreiber, and K. F. Austen. Unpublished observations. 
2Abbreviations used in this paper: ANIF, neutrophil-immobilizing factor released by 

leukocyte acid incubation; ENIF, neutrophil-immobilizing factor generated from leukoeytes 
by endotoxin treatment; NIF, neutrophil-immobilizing factor; PhNIF, neutrophil-immobiliz- 
ing factor found in leukocyte phagoeytosis supernatants. 
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Materials and Methods 

Polystyrene disposable chemotactic chambers (Adaps Inc., Dedham, Mass.) and micro- 
pore filters with a 3 # or an 8 # pore size (Millipore Corporation, Bedford, Mass.) were as- 
sembled as previously described (3). Hanks' solution and Medium 199 with or without phenol 
red (Microbiological Associates, Inc., Bethesda, Md.), ovalbumin five times recrystallized 
(Pentex Biochemical, Kankakee, ILL), dextran and Ficoll (Pharmacia Fine Chemicals Inc., 
Piscataway, N.J.), Escherickia coli 026:B6 lipopolysaccharide /3 endotoxin (Difco Labora- 
tories, Detroit, Mich.), trypau blue dye (Allied Chemical Corp., New York), sodium diatrizo- 
ate (Hypaque, Winthrop Laboratories, New York), insolubilized chymotrypsin and trypsin 
(Miles-Yeda, Ltd., Rehovoth, Israel), blue dextran 2000 and RNase (Pharmacia), glucagon 
(Mann Research Labs., Inc., New York), vitamin B12 (Eli Lilly and Company, Indianapolis, 
Ind.), and copper sulfate (Fisher Scientific Co., Medford, Mass.) were all purchased and used 
without further purification. Rice starch (Whittaker, Clark & Daniels, Inc., Plainfield, N.J.) 
was washed five times in distilled water before use. 

Ultrasonic fragmentation of leukocytes was performed using probe sonication (Ultrasonics 
Instruments International, Inc., Farmingdale, N.Y.). Leukocyte supernatants and chroma- 
tographic fractions were concentrated using positive pressure chambers and UM-2 membranes 
from Amicon Corporation, Lexington, Mass. Protein concentration was measured by optical 
density at 280 nm or by an adaptation of the Folin technique (8). Immunoelectrophoresis 
and radial immunodiffusion were performed by standard methods (9, 10). 

Measurement of Chemotaxis.--Chemotaxis of human neutrophils was quantitatively as- 
sayed by a previously described modification (3, 11) of the Boyden micropore filter technique 
(12). Blood, collected from normal subjects in plastic syringes, was added in 9-ml portions to 
14-ml plastic tubes containing 1 ml of 6% dextran in saline and 1 ml of 0.15 ~ citrate anti- 
coagulant solution (pH 5.2). After the red blood cells had settled for 1 hr at  37°C, the leuko- 
cyte-rich supernatant was removed by aspiration and centrifuged at 20C g for 5 rain. The cells 
were washed twice with Hanks' solution and resuspended in Medium 199, which had been 
made 0.5% in ovalbumin and adjusted to pH 7.4 by dropwise addition of 2% NaHCO3. For 
each experiment, the initial cell count was adjusted to 1.3-1.6 )< 106 leukocytes/ml. Chemo- 
tactic agents were also diluted in Medium 199, 0.5% ovalbumin, pH 7.4. Millipore filter pore 
size was 3 # for neutrophil chemotaxis. The interaction of leukocytes and chemotactic factors 
was carried out at  37°C in moist chambers for 2-21/~ hr so that the mean background neutrophil 
counts were 0~6 per high power field (hpf). Each interaction was examined in duplicate cham- 
bers and the counts expressed as the mean of 10 hpf, 5 from each of the duplicate filters. 

Leukocyte and Platdet Purlfication.--Red blood cells in citrated human blood were allowed 
to settle without dextran for 90 min at 37°C. The leukocyte and platelet-rich supernatant was 
removed by aspiration and spun for 10 min at 100 g to leave only platelets in the supernatant 
and bring mixed leukocytes into the pellet. After centrifugation of this supernatant at  400 g 
for 15 min, the platelets were recovered with fewer than 1 leukocyte per 500 platelets. The 
platelets were then washed twice and suspended in either Medium 199 or 0.06 M phosphate 
buffer 0.06 N in NaCI with 0.25 g/100 ml sucrose and 0.25 g/100 ml gelatin at pH 7.0. Less 
platelet aggregation was seen with the latter buffer. 

Mononuclear and polymorphonuclear leukocytes were separated from the leukocyte pellet 
on a Ficoll-Hypaque cushion by a previously described method (13). 4-6 X 107 leukocytes in 
3 ml of Medium 199 were layered on top of 3.5 m] of a solution containing 9.57 g of Ficoll in 
120 ml distilled water and 30 ml of 50% Hypaque. After centrifugation for 30 min at 400 g, 
the mononuclear leukocyte layer above the density interface was removed by aspiration and 
placed in a separate tube. The fluid layers were decanted from the polymorphonuclear leuko- 
cyte pellet. Both the mononuclear and the polymorphonuclear leukocytes were washed three 
times with Hanks' solution. Differential cell counts of leukocyte smears stained with Wright- 
Giemsa stain revealed 90% mononuclear cells and 96-99% polymorphonuclear cells in the 
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respective fractions. The mononuclear population consisted of 20-30c)¢ monocytes, 5 10~ 
polymorphonuclear leukocytes, and 60-75% lymphocytes. 

Soluble extracts were prepared from mixed leukocytes and purified polymorphonuclear and 
mononuclear leukocytes. Suspensions of 2 X 107 leukocytes in 2 ml of distilled water were ex- 
posed to probe ultrasound treatment for 5 rain at room temperature. After addition of 0.22 ml 
of 2 I,~ H2SO4, the mixtures were shaken for 1 hr at 25°C. This supernatant was removed, the 
faint viscous precipitate was extracted with another 1 ml of 0.2 N H2SO4, and the supernatants 
were pooled. The pH was adjusted to 6.0 by dropwise addition of l N NaOH and the soluble 
extract was separated from the precipitate that formed at 4°C overnight by centrifugation at 
1000 g for 20 rain. 

Preparation ~f Chemotactic Principles.--Purified human C5 was prepared by previously 
published methods (14). There was no detectable C3 activity (15) in C5 fractions obtained at 
the final purification step on hydroxylapatite. These same fractions showed a single band on 
immunoelectrophoresis with a rabbit anti-human C5 antiserum kindly supplied by Dr. H. J. 
Mtiller-Eberhard. C5 concentration in the pooled column fractions, 50-60/~g/ml, was deter- 
mined by radial immunodiffusion assay using this same antiserum. C5a was generated from 
these pools by 5% w/w trypsin digestion at 37°C for 30 rain in 0.05 M Tris HCI buffer, pH 7.8 
as previously described (2). This product served as the stock solution of CSa. Human kallik- 
rein capable of generating 50-150 ng of bradykinin from 0.2 ml of heat-inactivated human 
plasma/10 #1 of kallikrein solution was formed by incubating portions of a stock solution 
of prekallikrein with Hageman factor fragments (4). The Hageman factor fragments and pre- 
kallikrein were highly purified; the fragments were free of contaminating proteins, while the 
prekallikrein showed only one contaminating band on disc-gel electrophoresis at pH 9.3, which 
was IgG (4, 16). Neither component had chemotactic activity alone. 100 #1 of stock solutions 
of human C5a or kalllkrein in neutral buffer were diluted to 1 ml with suspending medium be- 
fore being pipetted into the stimulus side of chemotactic chambers. Autologous serum clotted 
in glass for 30 rain at 37°C was used as a chemotactic stimulus after 20-fold dilution in sus. 
pending medium. 

Assessment ~( Chemotactic [nhlbition.--The degree of chemotactic inhibition was assessed 
by adding a small volume of inhibitory supernatant to a sample of human neutrophils; the 
mixture was preincubated at 25°C for 10 mln and then pipetted into duplicate chemotactic 
chambers. Control supernatants, obtained from leukocyte suspensions never exposed to a 
specific release factor, were mixed with an equal number of human neutrophils and this mix- 
ture was tested against an identical chemotactic stimulus. The response in the presence of 
the control supernatants was arbitrarily assigned a value of 100~ and the effect of inhibitory 
supernatants, reflected as a decrease from this value, was expressed as per cent residual chemo- 
tactic activity. Inhibitory and control supernatants and column fractions derived from these 
supernatants were always adjusted to pH 7.4 and diluted at least fourfold with Medium 199 
before being mixed with an equal volume of neutrophils suspended in Medium 199 with 1% 
ovalbumin. The test neutrophils were therefore always in a buffer identical in final composition 
with that on the stimulus side of the chamber. In addition, control mixtures were set up al- 
ternately with inhibitor mixtures to minimize slight variations in the preincubation time and 
the neutrophil chemotactic response time. All control and inhibitor supernatants were sterilized 
by filtration through 0.45 # micropore filters and were either fresh or from storage at 4°C. 

RESULTS 

Production of Chemolactic Inhibi tors .--Three procedures  were  used  to  gene ra t e  

subs t ances  f rom h u m a n  leukocytes  which func t ion  as n eu t ro p h i l - a c t i v e  chemo-  

tac t ic  inhibi tors .  These  inh ib i to rs  are g iven the  general  des igna t ion  neu t roph i l -  

immobi l iz ing  fac tor  ( N I F ) .  T h e  N I F  g e n e r a t e d  f rom leukocy tes  b y  endo tox in  
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t rea tment  is referred to as E N I F ,  tha t  released by  leukocyte acidic incubat ion 
as A N I F ,  and tha t  found in leukocyte phagocytosis  supernatants  as P h N I F .  

Leukocyte incubation at acidic pH: Suspensions of 2 X l0  T ]eukocytes in 2 ml 
of Hanks '  balanced salt  solution previously adjusted to pH 6.0, 5.0, or 4.0 with 
1 N HCI were incubated for up to 4 hr  a t  37°C. The cells were sedimented by  
centrifugation and the superna tan t  was adjus ted  to p H  7.0 with 2 % NaHCO3.  
After  4-8 hr  storage at  4°C the superna tan t  was recentrifuged to remove the 
slight precipi ta te  tha t  always formed. Fig. 1 A i l lustrates the t ime course of 
appearance of A N I F  ac t iv i ty  in the leukocyte supernatant  during incubation 
at  p H  5.0. A N I F  ac t iv i ty  is near  maximal  by  1 hr. A t  1 hr, the v iabi l i ty  of 
p H  5.0-incubated leukocytes was the same as control cells incubated at  neutral  
p H  as assessed by  t rypan  blue exclusion, while at  2 hr their v iabi l i ty  was reduced 
to 70% relative to 85% for control leukocytes. There  were separate  ionicity 
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FIG. 1. The time course of generation of NIF. Each point represents the chemotactic re- 
sponse of test neutrophils suspended in ~ dilution of a NIF preparation relative to the re- 
sponse of neutrophils in the same dilution of a control supernatant. Chemotactic stimuli were 
kallikrein and autologous serum. (A) The time course of generation of ANIF at pH 5.0. (B) 
The time course of generation of PhNIF. 
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controls for each pH level, and under these circumstances the results at pH 4 
and 6 were similar. 

Leukocyte phagocytosis of starch particles: Suspensions of 2 X 107 leukocytes 
were mixed with four starch particles per leukocyte in 2 ml of buffer and in- 
cubated at 37°C for up to 11~ hr. The starch had been preincubated with 
autologous serum for 30 rain at 37°C, and then washed three times in 0.15 :," 
NaC1. The buffer was two parts Hanks '  solution added to one part  0.30 ~," 
dextrose in distilled water and made 0.5 % in ovalbumin with pH 7.4. Fig. 1 B 
shows the time course of appearance of PhNIF  in the supernatants after 
centrifugation to sediment the leukocytes and starch. The plateau of PhNIF  
activity at 40-60 rain correlated with the time of maximum leukocyte phago- 
cytosis of starch granules assessed by counting the mean number of intracellular 
granules per leukocyte under phase-contrast microscopy. Fig. 2 A shows a plot 
of PhNIF  activity generated in 1 hr bv 2 X 107 leukocytes at 37°C in relation 
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FIG. 2. Dose-response relationships in the generation of NIF .  The  calculation of respon.se 
was as in Fig. 1. The  chemotactic stimuli were C5a and those used in Fig. 1. (A) The  relation- 
ship of particle dose to release of PhNIF .  (B) The  relationship of endotoxin dose to release of 
ENIF .  
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to the number of starch granules per leukocyte in the starting mixture; the cell 
concentration and buffer were as above. P h N I F  activity reached a plateau at 
approximately six particles per leukocyte in the initial mixture. Leukocyte 
viability assessed by t rypan blue exclusion at 1 hr after the onset of phago- 
cytosis was 85 % for both controls and cells engaged in phagocytosis. 

Leukocyte exposure to endotoxin: Suspensions of 2 X 107 leukocytes in 2 ml 
of Hanks '  solution were incubated with 0.4 #g of endotoxin for up to 4 hr at 
37°C. The leukocytes were sedimented by centrifugation for 5 rain at 200 g and 
supernatants were stored at 4°C. The leukocytes were then washed twice, and 
reincubated for up to 4 hr at 37°C in low-potassium medium which was 0.15 N 
NaCl brought to pH 7.4 with 2% NaHCO3 solution. The leukocytes were 
sedimented by centrifugation and the supernatants harvested as a source of 
E N I F .  The effects of varying the time period of endotoxin exposure and the 
time of incubation in low-potassium medium on release of E N I F  from leuko- 
cytes were studied separately. As shown in Fig. 3 A, the optimal endotoxin 
activation time of leukocytes was 1-2 hr  as assessed by  release of E N I F  activ- 
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FIG. 3. The time course of generation of ENIF. The chemotactic stimuli and the calcula- 
tion of neutrophil response are the same as in Fig. 2. (A) Relationship between the endotoxin 
activation time and the release of ENIF. (B) Relationship between thelow-potassium medium 
incubation time and the release of ENIF. 
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ity into the supernatant when the activated leukocytes were subsequently incu- 
bated in low-potassium medium for 4 hr. Release of ENIF  into the endotoxin- 
free low-potassium medium by leukocytes optimally activated by a previous 
4 hr exposure to endotoxin reached a plateau after 1 hr of incubation (Fig. 3 B). 
The ENIF  was active in inhibiting the response to all three chemotactic 
stimuli. Low-potassium saline was not an absolute requirement for ENIF  gen- 
eration, but ENIF  activity in low-potassium medium supernatants was at least 
50 % greater than when the potassium concentration during leukocyte incuba- 
tion was 4.0 meq/liter. The supernatants obtained after a 1-2 hr activation 
time and before low-potassium medium incubation exhibited little inhibitory 
activity. Investigation of the relationship between the endotoxin dose to which 
leukocytes were exposed for 1 hr at 37°C and the ENIF  activity which they 
released into the low-potassium medium during a subsequent 2 hr incubation 
at 37°C revealed maximal endotoxin activation with 0.1 ~g of endotoxin per 
2 X 107 leukocytes (Fig. 2 B). Leukocyte viability after 2 hr of endotoxin acti- 
vation was always within control limits by try?an blue exclusion. After a sub- 
sequent 1 hr incubation in low-potassium medium, viability dropped slightly 
to a mean of 80 % as compared with 85 % for the controls. 

Separation of NIF from Chemotactic Stimuli.--Each of the NIF  preparations 
had definite chemotactic activity when used as the stimulus in chemotactic 
chambers (Fig. 4). When compared with the standard kallikrein stimulus, the 
relative activity was 12% for PhNIF, 29% for ANIF, and 65% for ENIF.  
Nonetheless, NIF  supernatants slightly inhibited chemotaxis when mixed with 
kallikrein on the stimulus side of a chamber and when placed on the cell side 
gave inhibition that did not correlate with their chemotactic activity (Fig. 4). 
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FIG. 4. Inhibitory and chemotactic activity of NIF supernatants. Either the test neutro- 
phils or the kallikrein standard stimulus was incubated in ~/i~ dilution of NIF before being 
loaded into chemotactic chambers. The chemotactic response was expressed relative to the 
response with control supernatants added to neutrophils or stimulus. The direct chemo- 
tactic activity of a lJi 6 dilution of each inhibitory supernatant was also tested and expressed 
relative to the standard kallikrein response. 
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As the chemotactic activity of the supernatants did not account for the 
N I F  inhibitory activity, these two properties were next separated chromato- 
graphically. 

Fig. 5 shows the results of fractionating N I F  preparations and leukocyte ex- 
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FIG. 5. G-25 Sephadex fractionation of E N I F  and ANIF preparations (A) and P h N I F  

and a leukocyte extract (B). G-25 Superfine Sephadex was packed in a 1.5 X 70 cm Pharmacia 
column with a 124 ml bed volume. Flow rate was 8 ml/hr  and the fraction volume was 4 ml. 
The markers were RNase (13,700 mol wt), glucagon (3500 mol wt), vitamin B12 (1360 tool 
wt), and copper sulfate, which colored e?fluent at 100~ bed volume. Fractions were diluted 
1/~ in Medium 199 before being assayed for inhibitory activity. 

tracts by gel filtration on G-25 Sephadex columns equilibrated in Hanks '  solu- 
tion. All fractions were screened for NIF  activity with neutrophils responding 
to an autologous serum stimulus. ANIF and E N I F  showed one peak of chemo- 
tactic inhibitory activity at about 60 % bed volume with an approximate molec- 
ular weight of 5000 (Fig. 5 A). PhNIF  and the leukocyte extracts yielded two 
peaks of chemotactic inhibitory activity. The first was at the dextran blue col- 
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umn front just ahead of the RNase marker and the second was at 60% bed 
volume before the glucagon marker (Fig. 5 B). The 5000 tool wt species present 
in all four preparations was used further to distinguish NIF inhibitory activity 
from chemotactic activity. 

Concentrations of pooled fractions from the 5000 tool wt region of G-25 
Sephadex columns were adjusted to the same chemotactic inhibitory potency 
as starting supernatants. The ratio of column pool to starting supernatant 
chemotactic activity for ENIF, ANIF, and PhNIF preparations so standard- 
ized ranged from 0.39 to 0.24. Thus, during the gel filtration isolation of NIF 
activity, 61 76 % of the chemotactic stimulating activity was removed. Heating 
at 56°C for 1 hr also eliminated 60-75 % of the chemotactic activity from crude 
preparations without diminishing inhibitory potency. The residual chemotactic 
activity in column-purified NIF was completely destroyed by heating without 
affecting NIF inhibitory potency. The combination of isolation by gel filtration 
and subsequent heating clearly resolved NIF activity from the chemotactic 
activity of the starting material. 

Cell Source of NIF. - - In  order to investigate the source of NIF in mixed 
leukocyte suspensions, 3.2 X 107 Ficoll-Hypaque-purified polymorphonuclear 
leukocytes in 2 ml of buffer were used for the generation of ANIF, ENIF, or 
PhN1F, or were extracted with 0.2 N H2SO4. A similar protocol was used with 
2.6 X 10 ~ mononuclear leukocytes. A purified suspension containing 32 X 107 
platelets in 2 ml of Hanks' solution was employed in attempts to generate 
ENIF and ANIF activity. Significant chemotactic inhibitory activity was re- 
leased from both polymorphonuclear and mononuclear leukocytes, but not from 
platelets (Fig. 6 A). The active preparations were then fractionated on G-25 
Sephadex columns. In addition, the extracts which could not be studied in crude 
supernatants due to hyperosmolarity resulting from neutralization of the H2SO4 
were also chromatogramed. These fractions were screened for chemotactic in- 
hibition and the fraction showing peak NIF activity which was located at ap- 
proximately 60 % bed volume is depicted in Fig. 6 B. The presence of NIF in 
both extracts indicated that it is contained preformed in polymorphonuclear 
and mononuclear leukocytes. The soluble extracts and the PhNIF crude super- 
natants from both types of leukocyte also contained a chemotactic inhibitor 
of higher molecular weight. 

Characteristics of Action of A:IF.--To define further the action of NIF, test 
neutrophils were exposed for a given time period to either column-purified NIF 
preparations or column-purified supernatants from unstimulated leukocytes, 
and then washed twice to remove free NIF before loading the neutrophils into 
chemotactic chambers. 5-10 rain was required for washing leukocytes and 
pipetting them into the chemotactic chambers. As shown in Fig. 7, the effect 
of each NIF preparation is maximal and irreversible within 5 min of preincuba- 
tion with neutrophils. The time course of NIF action was the same when ex- 
amined with the other chemotactic stimuli. 
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B o t h  c o l u m n - p u r i f i e d  P h N I F  (Fig.  8) a n d  A N I F  ( n o t  shown)  c o n c e n t r a t e d  

to t h e  or ig ina l  v o l u m e  app l i ed  to t he  c o l u m n  s h o w e d  a dose - response  i n h i b i t i o n  

of c h e m o t a x i s  w h e n  p r e s e n t  on  t he  cell s ide of t he  c h e m o t a c t i c  c h a m b e r .  I n  

c o n t r a s t ,  c o l u m n - p u r i f i e d  E N I F  o f t en  s h o w e d  a n  in i t i a l  f ia t  l ine  r e l a t i o n s h i p  

b e t w e e n  c h e m o t a c t i c  i n h i b i t i o n  a n d  d i l u t i on  or  even  a s l igh t  p rozone .  C r u d e  
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FIG. 6. Cell source of NIF. The details of NIF preparation were the same as in Fig. 5 and 
autologous serum was the chemotactic stimulus. (A) NIF activity in crude leukocyte super- 
natants. Results are expressed relative to supernatants from corresponding untreated leuko- 
cytes and were adjusted using a linear scale to 107 source leukocytes or 10 s platelets. ( B ) N I F  
activity in G-25 Sephadex column fractions. NIF inhibitory activity was assayed at a 1/~ 
dilution and adjusted to per cent chemotaxis per 107 source leukocytes as compared with the 
control supernatants. 
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FIG. 7. Irrevers{bility of action of NIF. All NIF preparations and controls were pools of 
G-25 Sephadex column fractions of supernatants prepared as in Fig. 5. The chemotactic 
stimulus was autologous serum, and results are expressed as described in Fig. I. 
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Fro. 8. Dose-response of G-25 Sephadex-purified PhNIF .  P h N I F  was generated from 
1.5 X 107 leukocytes as in Fig, 5. Autologous serum was the chemotaet ic  st imulus,  and results 
are expressed as described in Fig. 1. 

E N I F  supematants generally also showed a prozone at high concentrations 
while there was no prozone for crude PhNIF.  

Mixtures of neutrophils and }/16 dilutions of column-purified ANIF,  PhNIF,  
ENIF ,  or control leukocyte supernatants were preincubated for 1 hr, and then 
trypan blue dye was added. After a further incubation for 3 hr at 37°C, the 
neutrophils exposed to NIF  or control supernatants exhibited the same viabil- 
ity of 85 4- 5 % (mean 4- 2 SD). NIF  and control-treated neutrophils were also 
the same at 6 hr with a mean viability of 66 ± 8 %. 

Mononuclear leukocyte chemotaxis was carried out using the upper phase 
from Ficoll-Hypaque fractionation of human leukocytes. The total leukocyte 
count per high power field on the undersurface of 8-/z micropore filters was con- 
sidered to represent the mononuclear leukocyte chemotactic response. E N I F  
was found to be much less effective in inhibiting the mononuclear leukocyte 
response than the neutrophil response to human C5a (Fig. 9). For example, 
20% inhibition of mononuclear leukocyte chemotaxis required a 1/~ 6 dilution 
of E N I F  while comparable inhibition of neutrophils occurred at a 1/~56 dilution. 
The data are the same with autologous serum as the chemotactic stimulus. 

Enzymatic Digestion of NIF.--Both trypsin and chymotrypsin in insolu- 
bilized form were used to inactivate N I F  by digestion at 37°C. Pools of N I F  
activity from G-25 Sephadex column fractions of crude supernatants were used 
throughout. The digestion buffer was 0.1 M ammonium acetate, pH 8.2, 0.01 M 
in CaCI2. Fig. 10 demonstrates the destruction of all E N I F  activity after 4-8 
hr of chymotrypsin digestion with 50 % destruction by 1-2 hr. The results with 
ANIF and PhNIF  were similar. NIF  activity was unaffected by incubation at 
37°C without enzyme for up to 36 hr. Chymotrypsin treatment of identical 
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FIG. 9. ENIF inhibition of mononuclear leukocyte and neutrophil chemotaxis. C5a was the 
chemotactic stimulus. Cell counts in initial leukocyte test suspensions were 1.2 X l0 s mono- 
nuclear leukocytes per ml and 2.2 X 10 6 neutrophils per ml, and results are expressed as de- 
scribed in Fig. 1. 
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FIG. 10. Enzymatic digestion of NIF. Autologous serum was the chemotactic stimulus. 
Digestions utilized 5-10 #g insoluble trypsin or chymotrypsin per 1 ml of a a/~ dilution of 
pooled column-purified ENIF or control. Results are expressed as in Fig. 1. 

G-25 Sephadex column pools from control leukocyte supernatants  generated 

neither significant neutrophil inhibitory nor st imulating activity (Fig, 10). 
Trypsin digestion similarly inactivated N I F  but  did so more slowly, so that  

50% digestion was seen at 4 6  hr. 

DISCUSSION 

Three discrete procedures caused human  polymorphonuclear and mononu- 
clear leukocytes to release a preformed soluble low molecular weight inhibitor 
of the chemotactic response of human  neutrophils (Figs. 1, 3, and 6). None of 
the release procedures resulted in decreased viabil i ty of the donor cells. Release 
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was related to a particular phase in the interaction of the leukocyte and the 
stimulating factor. Maximum PhNIF generation occurred during the period 
of maximum phagocytosis, whether achieved by dose-response of the initial 
available particles or by increasing the time allowed the leukocytes to ingest a 
fixed dose of starch (Figs. 1 and 2). Exposure of neutrophils to endotoxin alone 
did not result in maximal release of ENIF until there was a subsequent incuba- 
tion in low-potassium medium (Fig. 3). Further evidence that the release of 
NIF  from leukocytes can be a selective event was indicated by the single peak 
of activity obtained on G-25 Sephadex fractionation of ANIF and ENIF  super- 
natants, whereas leukocyte extracts gave a minimum of two peaks of activity 
(Fig. 5). I t  is of interest that phagocytosis by either polymorphonuclear or 
mononuclear leukocytes also released at least two peaks of inhibitory activity. 
The mononuclear leukocyte population competent to liberate NIF (Fig. 6) has 
not been subfractionated, and contained 20-30 % monocvtes as well as lympho- 
cytes. The failure of the platelet suspension to serve as a source of NIF (Fig. 6) 
indicates that the minor platelet contamination of the donor leukocytes could 
not be a factor in the generation of NIF from these leukocyte sources. 

NIF inhibited neutrophil chemotaxis by a noncytotoxic action on the neu- 
trophiI itself. Blocking of the chemotactic stimulus is held unlikely since NIF 
effectively inhibited the neutrophil response to diverse unrelated stimuli (Figs. 
1 and 3) and was more effective when preincubated with the neutrophils than 
with the stimuli (Fig. 4). The effect on the neutrophil, although irreversible 
after a brief interaction (Fig. 7), did not impair viability as assessed by dye 
exclusion. Further evidence for a direct effect on the target cell resides in the 
ability of NIF to suppress random migration of purified human neutrophils 
(17). The effect on the neutrophil is not rapid deactivation (18) by a chemotactic 
principle because purified heat-treated NIF had full inhibitory activity in the 
absence of any chemotactic activity (Fig. 5). NIF also showed a more rapid 
time course of action (Fig. 7) than neutrophil deactivation by any of the chemo- 
tactic factors studied to date (18, 19). Although NIF can be released from both 
neutrophils and mononuclear leukocytes, the human neutrophil was more sen- 
sitive to its action than the human monocytes (Fig. 9). 

NIF is a low molecular weight, heat stable substance extractable from leu- 
kocytes under conditions which have been demonstrated to give high yields of 
lysosomal cationic peptides (20). The susceptibility of NIF to inactivation by 
chymotrypsin and trypsin (Fig. 10) suggested that NIF activity was dependent 
on a peptide present as at least part of its structure. The identical restricted 
chromatographic position of this heat stable molecule(s) from two different cell 
sources and under four discrete sets of conditions (Fig. 5) is consistent with 
NIF being a unique subspecies of the small molecules released from leukocytes. 

NIF activity was generated by procedures which may share common mech- 
anisms and which have all been previously shown to have profound effects on 
leukocvtes. Both leukocyte exposure to endotoxin and active phagocytosis re- 



EDWARD J .  GOETZL AND K.  F R A N K  A U S T E N  1577 

suit in the release into the supernatant of numerous biologically active factors 
including endogenous pyrogen (21, 22), lysosomal enzymes (23, 24), and lyso- 
somal cationic peptides and proteins (25, 26). NIF also shares with endogenous 
pyrogen and lysosomal enzymes the dependence on a low concentration of K + 
in the medium for full liberation after endotoxin exposure (27). At K + concen- 
trations below 3 meq/liter, there is suppression of leukocyte cytoplasmic mem- 
brane ATPase activity which presumably facilitates release of these substances 
(28). In addition, incubation of leukocytes at a reduced pH results in significant 
depression of the cell membrane monovalent cation-activated ATPase activity 
(28), and significant disruption of leukocyte granules (29). Both endotoxin ex- 
posure and phagocytosis result in increased production of lactate by leuko- 
cytes, and it is possible that a reduced intracellular pH is a common factor in 
the various procedures used to release NIF (30, 31). 

Inhibitors of human neutrophil chemotaxis have been observed in the sera 
of patients with alcoholism and cirrhosis (5) and glomerulonephritis (6). Both 
of these inhibitors apparently function by inactivating chemotactic factors al- 
though the action of the latter inhibitor was apparently reversible by heating. 
A chemotactic inhibitor which irreversibly blocks the activity of bacterial and 
complement-derived chemotactic factors has been isolated from the sera of 
some patients in high yield and is also present at low levels in normal sera 
(32); it is recoverable as both 3S and 7S molecular species. One child subject to 
frequent Gram-negative infections had in his serum an inhibitor of human neu- 
trophil chemotaxis which acted directly on cells and did not affect the chemo- 
tactic stimuli (7). This inhibition could be reversed by washing the neutrophils, 
but physicochemical characteristics of the inhibitor are not available. 

An inhibitor of rabbit neutrophil chemotaxis has been derived from rabbit 
leukocytes (33). I t  differs from NIF in being heat labile, having an approximate 
molecular weight of 28,000, occurring in the supernatants of resting but not 
phagocytizing leukocytes, and acting primarily by blocking the chemotactie 
stimulus. A heat stable human leukocyte-derived factor of approximately 4000 
mol wt has been shown to inhibit the random migration of guinea pig macro- 
phages in vitro by a direct but nonlethal action on the cells (34, 35). It  is ex- 
tractable from leukocytes and is also released during a prolonged incubation or 
a brief period of phagocytosis. This human leukocyte factor is reminiscent of 
NIF but the two preparations have not been tested in comparable assay sys- 
tems. It  should be noted, however, that NIF is not only more active in sup- 
pressing neutrophil than human monocyte chemotaxis (Fig. 9), but also ex- 
hibits the same target cell specificity in suppressing random migration. 3 

With regard to an in vivo biologic role, NIF may function at low concentra- 
tions to immobilize neutrophils in the early inflammatory focus without affecting 
their phagocytic and other functions. Later in the inflammatory response, higher 

a Goetzl, E. J. Unpublished observations. 



1578 HUMAN NEUTROPHIL- IMMOBILIZING FACTOR 

concentrations of N I F  released from both polymorphonuclear and mononuclear 
leukocytes may suppress the migration of further neutrophils into the lesion, 
favoring the transition of polymorphonuclear to mononuclear cell populations 
in inflaramatory foci. In addition, neutrophil lysates which are only weakly 
chemotactic for other neutrophils display marked chemotactic activity for 
mononuclear cells in vitro (36). Thus it is possible to suggest that there may 
be a leukocyte-directed transition from neutrophils to mononuclear cells in 
those inflammatory reactions in which there is early polymorphonuclear leu- 
kocyte predominance. 

SUMMARY 

A factor has been derived from human leukocytes which irreversibly inhibits 
the response of human neutrophils to diverse chemotactic stimuli without im- 
pairing their viability. I t  is released by both polymorphonuclear and mono- 
nuclear leukocytes during incubation in acidic medium, after endotoxin exposure 
and subsequent incubation in low potassium medium, and during phagocytosis 
of particles. I t  is extractable from both leukocyte types and therefore must be 
preformed. This chemotactic inhibitor is completely separable from contanfi- 
nating chemotactic activity in the crude supernatants, has a tool wt of 5000, 
and is inactivated by digestion with trypsin or chymotrypsin. I t  has been 
termed a neutrophil-immobilizing factor because it inhibits neutrophils directly 
and independently of the chemotactic stimulus, and has relatively little effect 
on human monocyte chemotaxis. 
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