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A B S T R A C T

The novel 2019 coronavirus disease (COVID-19), resulting from severe acute respiratory syndrome coronarvirus-
2 (SARS-CoV-2) infection, typically leads to respiratory failure in severe cases; however, cardiovascular injury is
reported to contribute to a substantial proportion of COVID-19 deaths. Preexisting cardiovascular disease (CVD)
is among the most common risk factors for hospitalization and death in COVID-19 patients, and the pathogenic
mechanisms of COVID-19 disease progression itself may promote the development of cardiovascular injury,
increasing risk of in-hospital death. Sex differences in COVID-19 are becoming more apparent as mounting data
indicate that males seem to be disproportionately at risk of severe COVID-19 outcome due to preexisting CVD
and COVID-19-related cardiovascular injury. In this review, we will provide a basic science perspective on
current clinical observations in this rapidly evolving field and discuss the interplay sex differences, preexisting
CVD and COVID-19-related cardiac injury.

1. Introduction

The novel 2019 coronavirus disease (COVID-19) results from severe
acute respiratory syndrome coronarvirus-2 (SARS-CoV-2) infection and
typically afflicts the lungs, with severe cases leading to acute re-
spiratory distress syndrome [1]. Although the respiratory system is the
major organ system affected by SARS-CoV-2, cardiovascular complica-
tions should not be overlooked by healthcare workers and basic sci-
entists. In particular, acute myocardial injury, cardiac arrhythmias and
microvascular dysfunction and thrombosis are reported to contribute to
a large proportion of COVID-19 deaths [2–7].

Patients with pre-existing cardiovascular disease (CVD) do not ap-
pear to be more prone to SARS-CoV-2 infection since the prevalence of
CVD in COVID-19 cases is consistent with the high prevalence in the
general population [5,6,8,9]. However, pre-existing CVD is among the
most common risk factors associated with hospitalizations, elevated
cardiac injury biomarkers and death of COVID-19 patients [4,10,11]. As
such, it is plausible that pre-existing CVD may exacerbate the course of
disease and mortality in COVID-19 patients by promoting cardiovas-
cular injury including myocardial damage, arrhythmias and micro-
vascular dysfunction and thrombosis. Additionally, the pathogenic

mechanisms of COVID-19 disease progression itself may be associated
with the development of cardiovascular injury, which increases the risk
of in-hospital death [12,13].

While there is a robust body of evidence elucidating sex differences
in CVD, sex disparities in COVID-19 are becoming more apparent as
well [14]. Interestingly, mounting data also indicate that individuals
with higher risk of severe COVID-19 outcome due to preexisting CVD
and COVID-19-related cardiovascular injury include a disproportionate
number of males. In this review, we will discuss sex differences in the
interplay between preexisting CVD, COVID-19 severity, and COVID-19-
related cardiac injury by providing a basic science perspective based on
the current literature in this rapidly evolving field.

2. Sex differences in preexisting cardiovascular disease, risk
factors and COVID-19

As the clinical data surrounding COVID-19 infection and mortality
rates continues to become more robust, a staggering trend is becoming
apparent: COVID-19 positive males suffer worse disease progression
and have a higher rate of mortality than females despite having a si-
milar rate of infection [15]. The first published study investigating sex
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differences in the COVID-19 cases in China reports that men are more
likely to experience serious illness and are 2.4 times more likely to die
from COVID-19 while the average age of mortality and rate of infection
remains the same for both sexes [15,16].

Sex differences in COVID-19 result from a complicated interplay
between biological and societal influences, including preexisting CVD
(Fig. 1). Hypertension and history of CVD, both already known to in-
crease COVID-19 severity and mortality [17], display strong sex dif-
ferences with males exhibiting a higher prevalence of disease compared
to age-matched women, prior to menopausal years [18,19]. On the
other hand, women experience relatively worse outcomes of ischemic
heart disease compared with men [20]. In HF, the overall lifetime risk is
similar between men and women, there are marked sex differences in
the variations of this condition, with males being predisposed to HF
with reduced ejection fraction (HFrEF) and females to HF with pre-
served ejection fraction (HFpEF) [21]. In cardiac arrhythmias, the age-
adjusted incidence of atrial fibrillation and Brugada syndrome is lower
in women compared with that in men, whereas atrioventricular reentry
tachycardia and cardiac events in long QT syndrome are more prevalent
in adult females compared to males [22]. Lastly, male sex is an in-
dependent risk factor for various thrombotic events such as myocardial
infarction, venous thromboembolism and thrombotic stroke [23]. In
this section, we highlight sex differences in preexisting CVD and how
they may contribute to the striking sex differences found in COVID-19
mortality.

2.1. Sex hormones and chromosomes in CVD

Males exhibit increased risk of CVD compared to age-matched
women, prior to menopausal years [18,19]. These data indicate that
individuals more at risk of severe COVID-19 outcome due to pre-ex-
isting CVD include a disproportionate number of males.

The increased prevalence of CVD in males is multifactorial and well-
studied with biological variables including sex hormones and their re-
ceptors as well as sex chromosomes. As detailed in a previous review
from our group, the protective effects of estrogen have been well
documented over the past few decades and may help explain why fe-
males of premenopausal age have lower incidence of CVD when com-
pared to males [24,25]. Exerting its effects through both genomic and
non-genomic pathways, estrogen has been shown to ward off CVD
through its effects on vasculature, cardiomyocytes and cardiac fibro-
blasts to promote vasodilation, angiogenesis, and cardiomyocyte sur-
vival while reducing cardiac fibrosis and oxidative stress [24]. More
recently, the role of sex chromosomes has been implicated in the sex
differences found in CVD as well [26]. Sex chromosomes, which differ
between males (XY) and females (XX), can impart sex differences in
disease through altered expression of genes encoded by the X and Y
chromosomes [27]. Strikingly, studies that examined the effects of sex
chromosome complement (XX or XY) in the absence of sex hormones
reveal that XX chromosome complement increases the risk of devel-
oping CV complications including hypertension, atherosclerosis and
ischemic injury [26,28–30]. A handful of genes encoded by the X
chromosome that escape inactivation on the second X chromosome in
females are implicated as females have elevated expression of these
genes compared to male, many of which are epigenetic modifiers.
Taken together, premenopausal females seem to be protected against
CVD when compared to males; however, with reduced levels of es-
trogen, post-menopausal women have an elevated risk of CVD com-
plications. This increased risk could potentially prime older females
with COVID-19 for more severe cardiac outcome, although more data is
needed to parse apart the influence of menopause on COVID-19-related
CVD complications.

2.2. ACE2 in CVD and COVID-19

Angiotensin-converting enzyme 2 (ACE2) is the functional receptor

Fig. 1. Factors underlying preexisting CVD, risk of COVID-19 severity, and
COVID-19 related cardiovascular injury in males and females. Preexisting CVD
is modulated by sex chromosomes and hormones, ACE2 expression, drug in-
teractions, obesity and smoking, which may predispose males and females
differently to COVID-19 severity. CVD, obesity and smoking are risk factors
with a higher burden in male vs. female COVID-19 patients (shown with red
icons in males). COVID-19 pathogenic mechanisms also contribute to cardio-
vascular injury. Males exhibit higher burden of cardiac injury than females,
while no sex disparities in arrhythmia and microvascular injury and thrombosis
have been reported thus far. COVID-19-induced cardiovascular injury is
thought to be modulated by sex hormones, ACE2 expression and systemic in-
flammation, with the latter being more pronounced in males. Altogether, these
factors may explain why male COVID-19 patients seem to be at higher risk for
severe disease progression and cardiovascular injury compared to females. Red
icons reflect sex differences in factors observed in COVID-19 patients, gray
icons reflect factors wherein no sex difference has been found in COVID-19
patients or is yet unknown. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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for SARS coronaviruses including the novel SARS-CoV-2 that causes
COVID-19 [31,32]. ACE-2, a carboxypeptidase transmembrane protein
expressed in various cell types, regulates the activity of the renin-an-
giotensin system (RAS) by hydrolyzing angiotensin I (AngI) into Ang
1–9 and angiotensin II (AngII) into Ang 1–7 [33]. While ACE2 is
homologous to ACE, the enzyme that converts AngI to the vasocon-
strictive, pro-inflammatory, pro-hypertrophic and pro-fibrotic AngII,
ACE2 counterbalances the detrimental effects of ACE [34]. ACE2 con-
fers cardioprotection by enhancing vasodilation and preventing cardiac
hypertrophy, fibrosis and oxidative stress [34]. ACE2-deficient mice
exhibit elevated AngII levels, increased cardiac hypertrophy and fi-
brosis, and severe diastolic and systolic dysfunction, which is rescued
by recombinant human ACE2 therapy [35,36].

While animal models and analysis of human hearts at the whole
tissue level do not provide conclusive results regarding the direction-
ality of cardiac ACE2 expression in CVD [37–40], CVD does augment
ACE2 expression in cardiomyocytes. ACE2 expression is increased in
cardiomyocytes of patients suffering from dilated and hypertrophic
cardiomyopathy, aortic stenosis and HFrEF compared to control donor
hearts [37,41,42]. Interestingly, cardiac pericytes, fibroblasts and vas-
cular smooth muscle cells from these patients exhibited lower ACE2
expression compared to control donor hearts [37,41]. Altered cardiac
ACE2 expression profiles in CVD have been proposed as a mechanism
underlying the more severe course of disease in COVID-19 patients with
pre-existing CVD, since elevated cardiac ACE2 could mediate SARS-
CoV-2 infection.

2.3. Sex differences in ACE2

ACE2 is encoded by the X chromosome and is located in a region of
the X chromosome that escapes X-inactivation in females [43]. Since
females have two copies of the X chromosome compared to one copy in
males, most X-escapee genes are found to have higher expression in
females [44,45]. ACE2, however, displays an uncharacteristically het-
erogeneous pattern across various tissues exhibiting increased mRNA
expression in certain male tissues [44]. It is hypothesized that gene-
hormone interactions accounts for this uncharacteristic pattern of ex-
pression as ACE2 activity has been demonstrated to be sex hormone
dependent [46,47].

In the left ventricle (LV), hypertensive male rats (both sponta-
neously hypertensive and mRen2 strains) experience higher levels of
ACE2 activity and hypertrophy when compared to females [48,49].
Gonadectomy in males resulted in decreased ACE2 expression and re-
duced cardiac hypertrophy, whereas ovariectomy in females resulted in
increased LV ACE2 activity and cardiac hypertrophy coupled with re-
duced hemodynamic function of the heart [49]. In contrast, studies
using normotensive Lewis rats and MF1 mice did not demonstrate
sexually dimorphic cardiac ACE2 activity [48,50]. These studies,
however, demonstrated that estrogen altered the expression and ac-
tivity of ACE2 in other tissues including plasma, adipose tissue, and
kidneys, while the effect of estrogen was varied. A study investigating
the role of sex chromosomes in ACE2 activity revealed that while es-
trogen influenced ACE2 activity in the kidney of MF1 mice, sex chro-
mosomes complement (XX or XY) had no effect [50].

While ACE2 is encoded by the X chromosome, more highly ex-
pressed in certain male tissues than female tissues, and is influenced by
estrogen, it is still unclear whether sexual dimorphisms in ACE2 directly
contribute to the sex differences seen in COVID-19 severity and mor-
tality (Fig. 1. Even so, testing the use of short-term exogenous estrogen
treatment as a therapy for COVID-19 patients is now underway in a
Phase II clinical trial that includes both sexes (ID: NCT04359329) [51].

2.4. Sex differences, drugs and ACE2 in COVID-19

Since AngII plays a central role in CVD pathophysiology, drugs that
inhibit the activity of ACE (ACEi) or block AngII receptors (ARBs) are

commonly prescribed as a first-line treatment. Sex differences exist in
the cardiovascular efficacy and outcome of ARB and ACEi use, in-
dicating differences in drug absorption, distribution, metabolism, and
excretion between males and females [52–54]. Various ACEi and ARB
have been shown to enhance expression and activity of cardiac ACE2 in
experimental animal models [55,56]. More recently, single-cell RNA
sequencing (scRNAseq) revealed that hypertrophic cardiomyopathy
patients taking ACEi trended towards elevated ACE2 expression in
cardiomyocytes, fibroblasts, pericytes, and vascular smooth muscle
cells [37]. Similarly, cardiomyocytes from ACEi-treated aortic stenosis
and HFrEF patients exhibited enhanced ACE2 levels and unfavorable
ACE/ACE2 ratios [41]. Since ACE2 is the main receptor of SARS-CoV-2,
these studies led to initial concerns of enhanced susceptibility of SARS-
CoV-2 infection; however, there is currently no proof that this out-
weighs their protective role in modulating RAS activity [41,57]. In two
recent studies, including a large observational study of 8910 COVID-19
patients, no association was found between the use of ACEi and ARB
and increased likelihood of a positive SARS-CoV-2 test nor with in-
creased risk of COVID-19 complications when corrected for sex, among
others (Fig. 1) [58]. As such, effects of sex-specific efficacy of ARB and
ACEi on COVID-19 progression and outcome seem unlikely.

2.5. Sex differences in obesity

Obesity is a major risk factor for developing CVD and emerging
evidence shows that obesity is also risk factor of developing severe
COVID-19 outcome and mortality [59–64]. Sex differences in obesity
are well established (Fig. 1) [65]. Obesity prevalence is significantly
associated with sex and pathophysiological mechanisms of obesity are
modulated by both sex hormones and chromosomes [65,66]. Whether
sex differences exist in the prevalence of obesity in COVID-19 patients is
thus far not fully elucidated, but allude to higher prevalence of obese
male COVID-19 patients than female. A study of 200 COVID-19 patients
in New York City found no difference in proportion of males and fe-
males when COVID-19 patients were stratified by BMI [60]. However,
studies of 383 Chinese and 92 Italian COVID-19 patients reported that
the proportion of men was significantly higher in the overweight and
obese BMI groups [61,63].

Interestingly, it is hypothesized that RAS dysregulation may link
obesity to COVID-19 [67]. In line with this notion, an experimental
mouse study reported that sex hormones contribute to tissue-specific
ACE2 expression in the development of obesity-induced hypertension
[47]. Here, high-fat diet fed females did not develop obesity-hy-
pertension or elevated Ang 1–7 levels while males did. This effect was
abolished upon ovariectomy and estrogen increased ACE2 levels. Con-
sidering the central role ACE2 and dysregulated RAS are thought to
play in COVID-19, ACE2 may link sex differences, obesity, CVD and
COVID-19.

2.6. Sex differences in smoking

In addition to biological factors, societal factors, including smoking,
may also contribute to the sex differences present in COVID-19 (Fig. 1)
[68]. Reports from 2015 reveal 52.1% of Chinese males smoke com-
pared to just 2.7% of females [69]. Sex differences in smoking pre-
valence also exist in other populations, although to a much lesser de-
gree (Italy: 26% Males, 17.2% Females [70]; United States: 17.5% Males:
13.5% Females [71]). According to a meta-analysis, history of smoking
is one of the most prevalent preexisting factors associated with patients
hospitalized for COVID-19 infection [17]. Studies show smoking is also
a risk factor for the development of chronic obstructive pulmonary
disease, hypertension, and CVD [72], which are comorbidities posi-
tively associated with COVID-19 hospitalizations [17]. Single-cell
RNAseq studies recently revealed an upregulation of the SARS-CoV-2
receptor, ACE2, in the lungs of smokers compared to never-smokers,
which could influence the risk and severity of COVID-19 in smokers
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[73]. Taken together, the sex differences found among the smoking
population may contribute to the sex differences in COVID-19 hospi-
talizations and morbidity. Smoking, which is largely more common in
male populations, is associated with COVID hospitalization, can lead to
cardio-pulmonary comorbidities, and upregulates the expression of
ACE2 within the lung.

3. Sex differences in COVID-19-related cardiovascular injury

Cardiovascular injury in COVID-19 is mainly observed in the form of
acute cardiac injury, microvascular injury and thrombosis. Various
pathophysiological mechanisms may contribute to the development
COVID-19-related cardiovascular injury including direct cardiotropic
and endothelial viral infection, secondary systemic toxicity of the hy-
perinflammatory state, cardiovascular stress due to SARS-CoV-2-in-
duced respiratory failure, or a combination of all three factors [74,75].
Sex disparities underlie some of these factors leading to COVID-19-re-
lated cardiovascular injury.

3.1. Sex differences in clinical cardiac injury in COVID-19

Cardiac involvement is a prominent feature in COVID-19 patho-
physiology. Acute myocardial damage in COVID-19 patients may be
inferred from elevated circulating biomarkers, electrocardiographic
changes, and imaging studies revealing features of impaired cardiac
function [76]. Acute cardiac injury, based on circulating biomarkers, is
more frequent in severe compared to non-severe COVID-19 cases
[10,77,78] and circulating biomarker concentration is associated with
disease severity and fatality [10,78–80]. Altogether, up to 36% of
COVID-19 patients were reported to suffer from acute cardiac injury
based on elevated cardiac biomarkers [6,10,77,80].

While data is still emerging, some sex disparities seem to exist in
COVID-19-related cardiac injury. A study of 112 Chinese COVID-19
patients has shown a trend towards more men being diagnosed with
possible myocarditis than women [11]. Similarly, two studies of Chi-
nese COVID-19 patients showed that women account for more of the
mild cases which also exhibited lower levels of troponin I, creatine
kinase–myocardial band fraction, myoglobin, and N-terminal B-type
brain natriuretic peptide [79,81]. In a study of 1557 COVID-19-positive
individuals in New Haven, more males presented with abnormally
elevated troponin T [16]. A larger study of 2736 COVID-19 patients in
New York City, however, reported no significant sex differences when
COVID-19 patients were stratified by troponin T levels [80]. In a study
of 1557 COVID-19-positive individuals in New Haven, more males
presented with abnormally elevated troponin T than females [16]. In-
terestingly, in this patient population, a model of combined risk factors
including, age, hypertension and body mass index, showed that pro-
static disease increased the odds of COVID-19 patients having elevated
troponin T levels, independently of the other risk factors [16]. Together
these data indicate that individuals more at risk of severe COVID-19
progression and outcome due to cardiac injury may include a dis-
proportionate number of males (Fig. 1).

3.2. Sex differences in clinical cardiac arrhythmia in COVID-19

The clinical burden of cardiac arrhythmias in COVID-19 patients is
becoming increasingly clear. Various forms of cardiac atrial and ven-
tricular rhythm disorders have been reported in COVID-19 patients
including atrial fibrillation, sinus tachycardia and bradycardia, com-
plete conduction block and cardiac arrest [82]. Arrhythmia may as-
sociate with sudden cardiac death, which is a pathologic outcome also
observed in COVID-19 patients [83–85]. Arrhythmia in COVID-19 pa-
tients is associated with myocardial injury and is thought to reflect the
severity of illness [81,86,87]. Indeed, ICU admission is associated with
arrhythmia, with up to 44% of COVID-19 patients in the ICU suffering
from arrhythmia [5,88]. While the association of arrhythmias and in-

hospital mortality in COVID-19 patients is inconclusive, it has been
reported that the prevalence of arrhythmia is 60% in fatal COVID-19
cases [89].

Sex differences exist in cardiac electrophysiological characteristics
as female sex is a known risk factor for drug-induced QT prolongation
and torsade des pointes arrhythmia [90]. Whether sex differences exist
in arrhythmia in COVID-19 patients remains under-reported. Since ar-
rhythmia is associated with myocardial damage and elevated cardiac
biomarkers are more prevalent in male COVID-19 patients, it is plau-
sible that arrhythmia may also be more prevalent in male COVID-19
patients. However, a Chinese study of 234 COVID-19 patients shows no
differences between the proportion of male and female COVID-19 pa-
tients with or without arrhythmia [86]. Future studies will be im-
perative to shed light on sex disparities in arrhythmia occurrence in
COVID-19 patients (Fig. 1).

3.3. Sex differences in clinical microvascular injury and thrombosis in
COVID-19

Mounting reports on microvascular dysfunction and thrombosis in
COVID-19 patients suggest that endothelial dysfunction and coagula-
tion imbalances may contribute to COVID-19 pathophysiology.
Elevated levels of fibrinogen and D-dimer levels have been reported in
COVID-19 patients, indicating elevated clot formation and fibrinolysis
[91]. Elevated D-dimers were found to be associated with poor prog-
nosis and increased risk of death [4,92]. Histology on post-mortem
lungs and skin from COVID-19 patients revealed thrombogenic vascu-
lopathy [93,94]. Moreover, thromboembolisms have been observed in
several organs in COVID-19 patients [95–97]. Overall, 20–30% of
COVID-19 patients in the ICU have been reported to suffer from
thrombosis and major thromboembolic sequelae [7].

While data on sex differences in microvascular injury and throm-
bosis in COVID-19 is still sparse, sex disparities do not seem to be ob-
served (Fig. 1). A study of 248 Chinese COVID-19 patients shows that
there is no significant difference in proportion of male and females in
normal and high D-dimer groups [98]. Accordingly, a meta-analysis
reported that elevated D-dimer in severe COVID-19 cases and non-
survivors do not seem to associate with sex [99]. Interestingly however,
an Italian study of 100 COVID-19 patients reported that fibrinogen le-
vels in female COVID-19 patients were significantly higher compared to
female controls, while this increase was not significant in males [100].

3.4. Sex differences in SARS-CoV-2 cardiotropic infection

Cardiac samples from patients who succumbed to the previous SARS
coronavirus in 2003 provides insight into the cardiotropic potential of
coronaviruses. SARS-CoV, which also binds to the ACE2 receptor, was
detected in 35% of hearts [101] and present in cardiomyocytes that
displayed vacuolar degeneration, atrophy and cytoplasmic lysis [102].
While SARS-CoV-2 has been detected in hearts of COVID-19 patients, no
reports yet have shown conclusive evidence of direct SARS-CoV-2 in-
fection in non-inflammatory myocardial cells in COVID-19 patients
[103–106]. Several cell cardiac cell types express ACE2, including
cardiomyocytes [107]. Recently, it was demonstrated that SARS-CoV-2
was able to infect human inducible pluripotent stem cell-derived car-
diomyocytes in vitro, suggesting the potential for SARS-CoV-2 cardio-
tropic potential [108].

While data on sex differences in cardiotropic SARS-CoV-2 is yet
unavailable, sex disparities do exist in the epidemiology and patho-
physiology of viral myocarditis induced by various viruses, and this
may also be the case for SARS-CoV-2 [109–111]. Expression of the
SARS-CoV-2 receptor ACE2 is regulated by sex hormones in opposite
directions in male and female mice [49]. A recent study reported that
androgen signaling may regulate ACE2 expression and subsequent
SARS-CoV-2 infection in human cardiac cells since treatment with the 5
alpha reductase inhibitor dutasteride and androgen receptor modulator
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spironolactone augmented ACE2 levels and internalization of SARS-
CoV-2 recombinant spike receptor binding domain in human embryonic
stem cell-derived cardiac cells [16]. As such, sex hormones may un-
derlie possible sex differences in cardiotropic SARS-CoV-2 infection by
regulating ACE2 expression.

3.5. Sex differences in endothelial dysfunction

Microvascular injury and thrombosis in COVID-19 are thought to be
caused by endothelial dysfunction since activated and injured en-
dothelial cells recruit inflammatory cells and activate the coagulation
cascade [112]. Histology on post-mortem from COVID-19 patients re-
vealed that SARS-CoV-2 is able to directly infect endothelial cells
concomitant with endothelialitis and apoptosis in several organs [113].
Accordingly, SARS-CoV-2 was shown to be able to directly infect
human blood vessel organoids in vitro [114].

Sex differences in endothelial dysfunction are well-established
[115]. For instance, estrogen promotes proper endothelial cell function
by enhancing endothelial nitric oxide synthase (eNOS) expression while
testosterone has opposite effects [24]. A hallmark of endothelial dys-
function is dampened eNOS expression with NO deficiency [116]. De-
creased NO levels in injured endothelial cells contribute to thrombus
formation [112]. Recently it was proposed that eNOS deficiency could
be a pathophysiological mechanism in COVID-19 [116]. As such, sex
hormones may affect endothelial dysfunction in COVID-19. However,
also in the absence of sex hormones, sex differences exist in barrier
integrity and survival between male XY and female XX microvascular
endothelial cells [117,118]. Although sex-differences in COVID-19-re-
lated microvascular injury and thrombosis in the clinic do not seem
apparent thus far (Fig. 1), it is plausible that sex-differences play a
pathophysiological role in COVID-19 endothelial dysfunction.

3.6. Sex differences in soluble ACE2

Upon binding to ACE2 on the cell surface, SARS-CoV-2 is en-
docytosed leading to downregulated ACE2 cell surface expression
[119]. As such, the protective effects of ACE2 are likely blunted. Loss of
membrane-bound ACE2 is hypothesized to be a critical step in the
cardiac injury pathology in COVID-19. This notion is supported by
experimental animal models wherein ACE2-deficient mice exhibit hy-
pertrophy, fibrosis, HF and enhanced inflammation [35,36,120]. Au-
topsy material from the SARS epidemic revealed SARS-CoV infection in
35% of cardiac specimens concomitant with decreased membrane ACE2
levels, cardiac hypertrophy, inflammation, and fibrosis [120], in-
dicating that loss of membrane-bound ACE2 indeed may be a patho-
genic mechanism in SARS-CoV-induced cardiac injury. Similarly, ACE2
expression and activation in endothelial protects against endothelial
dysfunction in atherosclerosis, hypertension and thrombosis
[121–123]. It has been shown that ACE2 is released into the circulation
which advances several CVD pathologies, and levels of soluble ACE2 in
plasma correlate with worsened disease severity and prognosis in HF
patients [34,124]. To date, no reports are available on levels of cardiac
membrane-bound ACE2 or circulating levels of soluble ACE2 in COVID-
19 patients. However, it seems that men, who are at increased risk of
more severe COVID-19 progression, present with higher soluble ACE2
levels than women as was observed in both healthy subjects and two
independent cohorts of HF patients [125,126].

3.7. Sex differences in systemic inflammation in COVID-19

SARS-CoV-2 infection is characterized by a robust cascade of in-
flammatory and immune events. In the early stages of infection, COVID-
19 patients present progressive lymphocytopenia; however, patients
were reported to eventually develop elevated white blood cell and
neutrophil counts [2,5,127]. In the hyperinflammatory phase, driven by
the host immune response, inflammatory markers become elevated and

secondary organ damage may occur in what is deemed the cytokine
storm. Systemic cytokine elevation is known to be cardiotoxic with the
potential to induce profound myocardial injury, as reported in patients
treated with chimeric antigen receptor T-cells who develop cytokine
release syndrome [76,128,129]. Furthermore, cytokine storms may
directly mediate ventricular electrical remodeling and significant QT
interval prolongation, predisposing for ventricular arrhythmias [130].
Additionally, proinflammatory cytokines are known to promote coa-
gulation and thrombosis by enhancing expression of tissue factor on
endothelial cells, activating coagulation factors and inhibiting fi-
brinolysis, as is observed in severe cases of sepsis [131].

While the rate of SARS-CoV-2 infection seems to be similar between
males and females [15], the ability to mount an immune response to
protect against COVID-19 may contribute to sex differences seen in
COVID-19 mortality and cardiac injury. Through a combination of sex
biasing factors, females have a greater ability to detect virial infection
and generally experience a more robust response to viral infection
which could contribute to their protection against COVID-19 when
compared to males [132–135]. Both sex hormones and sex chromo-
somes influence sex differences in immunity [134,136]. Sex hormones
have been shown to bind to receptors on immune cell surfaces to alter
their gene expression and activity [134]. Additionally, the X chromo-
some encodes a high density of immune-related genes and microRNAs
which, despite inactivation of the second X chromosome in females,
remain overly expressed in females compared to males, contributing to
the heightened immune response in females [136–138]. The male-
specific Y chromosome, which encodes substantially less genes than its
X chromosome counterpart, has also been found to influence immune
function as Y chromosome genes are expressed in various immune cell
types and have been shown to alter immune function [139,140].

Notably, similar sex differences were also observed in the previous
coronaviruses SARS and Middle East respiratory syndrome (MERS). In
both SARS and MERS outbreaks, males had higher mortality rates than
females [15,141,142]. Mouse studies investigating SARS, which also
infects the airways and lungs through the ACE2 receptor, revealed that
infected male and female mice had a unique immune signature com-
pared to males, and estrogen protected against SARS severity partially
through mediating this immune response [141]. While the data is still
sparse, reports show a sex-specific immune signature may be present in
SARS-CoV-2 infection as well (Fig. 1). One study found male COVID-19
patients exhibit elevated circulating white blood cells and neutrophils
when compared to female patients [15]. Another study revealed male
COVID-19 patients exhibit a lower lymphocyte count and elevated le-
vels of IL-10, TNF-α, and CRP compared to females [143]. It remains to
be elucidated to which extent the sex differences observed in systemic
inflammation in COVID-19 patients translate to differences in in-
flammation-induced cardiac injury, arrhythmia and microvascular
dysfunction and thrombosis.

3.8. Sex differences in COVID-19 drug-induced cardiac arrhythmia

Arrhythmias in COVID-19 patients may result from biological fac-
tors in the pathophysiology of COVID-19 or may be induced by drugs
used for treating COVID-19 [144]. While the clinical efficacy of these
drugs is still relatively unknown, the antimalarial drugs chloroquine
and hydroxychloroquine were shown to have antiviral properties
against SARS-CoV-2 in vitro by increasing endosomal pH and interfering
with ACE2 glycosylation [145,146]. Administration of chloroquine and
hydroxychloroquine with or without adjunctive azithromycin has been
reported to significantly prolong the QT interval in COVID-19 patients
[147–151]. The risk of developing torsade des pointes ventricular ar-
rhythmia and arrhythmic death in COVID-19 patients treated with
hydroxychloroquine/chloroquine/azithromycin however does not seem
to increase [147–152].

Interestingly, an in silicomodeling study using mathematical models
of ion currents from human ventricular cardiomyocytes and clinically
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therapeutic drug doses has shown that females with preexisting cardi-
ovascular disease may especially be susceptible to antimalarial drug-
induced QT prolongation compared to males with cardiovascular dis-
ease or healthy individuals of either sex [153]. Indeed, sex differences
in cardiovascular drug responses have been reported and female sex is a
known risk factor for drug-induced QT prolongation and torsade des
pointes which may be caused by female sex hormones affecting cardi-
omyocyte ion currents [90,154]. However, thus far no sex differences
have been reported inthe prevalence of QT interval prolongation in
COVID-19 patients treated with hydroxychloroquine/chloroquine with
or without azithromycin (Fig. 1) [147,148,150].

4. Concluding remarks

Preexisting CVD and cardiovascular injury seem to be a prominent
feature of COVID-19 severity and outcome. Research in the COVID-19
field is rapidly evolving; however, the thus-far observed sex disparities
already emphasize the need to understand the pathophysiological role
of sex hormones and chromosomes in COVID-19 disease progression
and COVID-19-related cardiovascular injury. Clinically, studies show
that males with preexisting CVD are particularly prone to more severe
COVID-19 disease and COVID-19-related cardiovascular injury. As
such, sex hormone and chromosome COVID-19 interactions will be a
promising field of study to elucidate novel protective mechanisms and
therapies for the treatment of COVID-19. Additionally, sex differences
in ACE2 expression, inflammation and drug absorption, metabolism
and tolerance make it imperative to study sex-specific disparities within
COVID-19 treatment efficacy [155,156]. Considering that sex differ-
ences in cardiovascular drug responses have been reported, sex differ-
ences will be of special interest for treating COVID-19-related cardio-
vascular injury [154,157,158]. Lastly, cardiac abnormalities including
myocarditis, fibrosis, edema and left and right ventricular dysfunction
have been reported in recovered COVID-19 patients [159–161]. Al-
though as of yet no sex differences were found in recovered COVID-19
patients, it has been reported previously that males and females exhibit
different functional outcome and long-term mortality after myocarditis,
cardiac arrest and thrombotic events [109,159,162,163]. Longitudinal
follow-up studies will therefore be imperative to gain more insight into
the long-term cardiovascular effects and recovery in male and female
COVID-19 patients.
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