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Iodine contrast agent is widely used in liver cancer radiotherapy at CT simulation stage to
enhance detectability of tumor. However, its application in cone beam CT (CBCT) for
image guidance before treatment delivery is still limited because of poor image quality and
excessive dose of contrast agent during multiple treatment fractions. We previously
developed a multienergy element-resolved (MEER) CBCT framework that included x-ray
projection data acquisition on a conventional CBCT platform in a kVp-switching model
and a dictionary-based image reconstruction algorithm that simultaneously reconstructed
x-ray attenuation images at each kilovoltage peak (kVp), an electron density image, and
elemental composition images. In this study, we investigated feasibility using MEER-CBCT
for low-concentration iodine contrast agent visualization. We performed simulation and
experimental studies using a phantom with inserts containing water and different
concentrations of iodine solution and the MEER-CBCT scan with 600 projections in a
full gantry rotation, in which the kVp level sequentially changed among 80, 100, and
120 kVps. We included iodine material in the dictionary of the reconstruction algorithm.
We analyzed iodine detectability as quantified by contrast-to-noise ratio (CNR) and
compared results with those of CBCT images reconstructed by the standard filter back
projection (FBP) method with 600 projections. MEER-CBCT achieved similar contrast
enhancement as FBP method but significantly higher CNR. At 2.5% iodine solution
concentration, FBP method achieved 170 HU enhancement and CNR of 2.0, considered
the standard CNR for successful tumor visualization. MEER-CBCT achieved the same
CNR but at ~6.3 times lower iodine concentration of 0.4%.

Keywords: cone beam CT, radiotherapy, image guidance, liver cancer, multienergy cone beam CT,
element decomposition
February 2022 | Volume 12 | Article 8271361

https://www.frontiersin.org/articles/10.3389/fonc.2022.827136/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.827136/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.827136/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.827136/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.827136/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xun.jia@utsouthwestern.edu
mailto:chenyang.shen@utsouthwestern.edu
https://doi.org/10.3389/fonc.2022.827136
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.827136
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.827136&domain=pdf&date_stamp=2022-02-01


Wang et al. Iodine Detection via MEER-CBCT
1 INTRODUCTION

Image guidance is a critical component of cancer radiation
therapy. By imaging the patient anatomy at the treatment
position, image guidance allows accurate positioning of the
tumorous target against the therapeutic radiation beam,
thereby increasing dose to the target and sparing dose to
nearby healthy organs. Clinical advantages of image guidance
in radiotherapy have been previously demonstrated by a number
of studies (1).

Cone beam CT (CBCT) installed on a medical linear
accelerator (LINAC) is currently the most widely used tool for
imaging guidance in radiation therapy (2). Yet, one challenging
context of tumor visualization is liver cancer. Due to low soft-
tissue contrast in x-ray CT and similar x-ray attenuation
properties between liver tumor and normal liver, it is difficult
to directly visualize liver tumor in CBCT, leading to tumor
targeting uncertainty. This problem is further exacerbated by
other issues such as imaging artifacts due to respiration-induced
organ motion during image acquisition. Intravenous contrast
enhancement (IVC) is routinely used in treatment planning CT
of liver cancer radiotherapy because of improved tumor contrast.
However, it cannot be reliably employed on standard CBCT due
to poor image quality. A previous study found that IVC-CBCT
was effective in only 1/4 of patients with tumor size larger than
120 cm3 under breath-hold scans. Small tumors or free-breathing
CBCT do not show contrast enhancement (3). The dose of
repeated injection of the iodine contrast agent over multiple
treatment fractions further leads to the concern of toxicity.
Hence, there is a strong desire to improve CBCT technology to
support image guidance in liver cancer radiotherapy. This is
particularly needed in adaptive radiotherapy to enable accurate
tumor delineation at each fraction (4, 5).

One potential approach to increase sensitivity of CBCT
imaging to imaging contrast agent for tumor visualization is to
take advantage of energy dimension of the x-ray imaging. As the
energy dependence of x-ray attenuation property of iodine is
different from other materials in a human body, such as tissue
and bone, it may be possible to differentiate iodine contrast from
other materials by utilizing information provided by the energy
dimension. In fact, extensive studies have been conducted on the
CT platform to realize dual-energy or multienergy CT
function and to differentiate materials, with iodine imaging
being one of the major applications (6–9). On the CBCT
platform side, Zbijewski et al. (10) studied the accuracy of
material classification in dual-energy CBCT under different
reconstruction algorithms using a table-top system. Lee et al.
(11) realized the single-scan dual-energy CBCT function using a
multislit filter installed between the x-ray source and the scanned
object. The filtered and unfiltered x-ray beams generated
projection data at two different energy levels. A novel
reconstruction algorithm was developed to employ the joint
sparsity between the low- and high-energy CT images. In
another study, Li et al. (12) developed a reconstruction
algorithm that utilized spatial and spectral correlation among
images to improve image quality. Lately, Cassetta et al. (13)
achieved fast-kilovoltage peak (kVp) switching function for dual-
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energy CBCT using the on-board imager of a commercial
LINAC and successfully produced virtual monoenergetic and
relative electron density images.

In our previous study, Shen et al. (14) successfully controlled
the CBCT platform on a commonly used LINAC to realize
multienergy CBCT data acquisition via the kVp switching
scheme, i.e., taking x-ray projections with the kVp level cycling
through different levels among projections. To address the
undersampling problem caused by the kVp switching, they also
developed a multi-energy element-resolved (MEER) CBCT
framework to simultaneously reconstruct CBCT images at
different kVp levels, as well as electron density map and the
maps of a few major chemical elements. A physics model that
correlates the CBCT images at different kVp levels, the electron
density image, and the element images was built into the
reconstruction algorithm, which served as a strong constraint
on the solution to ensure their quality. In this paper, we report
our recent developments to investigate the feasibility of using the
MEER-CBCT framework for iodine contrast agent identification.
The contributions of this study are twofold. First, on the
algorithm side, we extended the previous MEER-CBCT
reconstruction algorithm Shen et al. (14) to include iodine-
related materials in the dictionary of the algorithm, which
allowed us to handle the image reconstruction problem in the
presence of the iodine contrast agent. We further converted the
nonconvex optimization model in our previous study (14) into a
convex form, making it easier and more efficient to solve the
problem. Second, we also performed comprehensive simulation
and experimental studies to quantitatively determine the lowest
possible contrast agent concentration level identifiable in MEER-
CBCT images to demonstrate the potential feasibility of this
method for iodine contrast imaging.
2 METHODS

2.1 Image Reconstruction Model
The image reconstruction model generally followed that in our
previous study (14). In this study, we converted the model
into a convex form to make it numerically more tractable.
We also included materials with iodine in the dictionary to
handle the reconstruction problem in the presence of the
contrast agent.

The general form of MEER-CBCT model can be formulated
as follows:

min
F,r≥0,l≥0

1
2
R(F) +

b
2
G(F, r, l) : (1)

The first term R(F) is established for ME-CBCT
reconstruction problem, where F = [f1, f2, … , fN]∈ RM × N

denotes black CBCT images at N=3 different energy channels.
fi ∈ RM represents an image of the x-ray attenuation
coefficient at the ith energy channel. M is the number of
pixels in the image.

The second term G(F, r, l) characterizes the relationship
among F, the image of relative electron density (rED) to water
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r ∈ RM×M, a diagonal matrix with each diagonal element
corresponding to rED of each voxel, and images of elemental
compositions (EC) l ∈ RM×D, where D indicates the number of
elements of interest. In this study, we focused on three
elements (D=3), i.e., hydrogen (H), oxygen (O), and iodine (I).
The first two are major elements constructing majority of
human nonbone tissues, and I is the effective element of the
iodine contrast agent. We did not consider bony tissues, because
this study focused on iodine contrast identification and it is
expected that iodine contrast agent mainly exists in soft tissues.
b is the parameter balancing the contributions from the two
terms. Note that r ≥ 0 and l ≥ 0 were naturally requested.
In addition, let 1D and 1M denote column vectors of length D and
M with all entries being in unity, l1D = 1M was required, since
the compositions of all elements in each voxel should add up
to the unity.

2.1.1 Image Reconstruction
We considered a tight-frame-based image reconstruction model
(15, 16) in this study. As such, the detailed expression of R(F) can
be given as

R(F) = jj PF − B jj2F +2a1o
N

i=1
jjWfi jj1, (2)

where P indicates the x-ray projection matrix characterizing the
CBCT data acquisition process, while B represents the acquired
CBCT projection data. Note that in a kVp switching data
acquisition, images at different kVp levels were projected to
different angles. This projection angle information was implicitly
contained in the projection matrix P. In this model, a1 is the
regularization parameter, andW is the tight frame (TF) operator.
||ṡ||F and ||ṡ||1 denote the matrix Frobenius norm and l1 norm,
respectively. The first term in Eq. (2) enforced fidelity between
the reconstructed CBCT images and acquired projections. The
second term encouraged sparsity in the TF-transformed images
to help in removing noise and artifacts while preserving edges
in F.

2.1.2 Material Decomposition
In Eq. (1), G(F, r, l) was established to relate the x-ray
attenuation coefficients with rED and EC. This was achieved
based on an empirical model (17):

fi = r(kPE~Z3:62
i + k

RẐ 1:86
i + kCi Þ: (3)

Here , kPEi , kRi  and k
C
i are parameters character iz ing

contributions of photoelectric effect, Rayleigh scattering, and
Compton scattering, respectively, to the x-ray attenuation at the
ith energy level. These parameters are dependent on the specific
CBCT scanner. For a given scanner, they can be obtained via a
calibration process (18). In addition, l was encoded in ~z and ẑ as
~z = (lz3:62) 1

3:62  and ẑ = (lz1:86) 1
1:86 , where z = [z1, z2, …, zD]

T ∈
RD×1 gives the atomic numbers for D different elements.
Furthermore, let KC

M = 1M(k
C
1 , k

C
2 ,…, kCN ), and K = (k1, k2, …,

kN) where ki = kPEZ3:62i + kRZ1:86
i Through a simple derivation, the

forward model in Eq. (3) can be rewritten into a matrix equation
form for multiple energy levels, i.e.,
Frontiers in Oncology | www.frontiersin.org 3
F = r(lK + KC
M Þ: (4)

We further assumed that EC of each voxel can be sparsely
represented over a dictionary consisting of EC of different tissues.
Hence, we expressed EC as l ≈ VL, where V ∈ RM × E gives the
dictionary coefficients with each row being a sparse vector
specifying the contribution of each dictionary material. This
leads to a model F = r(VLK + KC

M).
With this equality connecting EC, rED with x-ray attenuation

image, it would be straightforward to define an objective function
as the difference between the two sides of this equation, jjF −
r(VLK + KC

M)jj2F , and minimize it in the reconstruction problem.
The requirement that the representation over L is sparse can be
achieved by minimizing an objective function term of ||V||0,
where ||s ̇||0 denotes the l0 norm.

However, one obvious limitation of this approach is the
nonconvex form of the objective function due to the product
of r and v, as well as the l0 norm. To circumvent the
problem, we combined r and v and defined a new variable
X = rsV̇. Since it was required that l1D = 1M, it followed
that V1E = VL1D = 1M, where 1E is the column vector of
length E with all elements being 1. We also relaxed the sparse
penalty from the l0 form to the convex l1 form. With these
changes, the objective function for the material decomposition
can be expressed as

G(F, r, v) = jjF − X(LK + KC
E ) j2F +

2a2

b o
M

j=1
j xj jj1,
��

����� (5)

where KC
E = 1E(k

C
1 , k

C
2 ,…, kCN ). xj ∈RM × 1 is the jth row of x and

a2 is the sparsity regularization parameter.

2.1.3 Combined Model
With the image reconstruction and material decomposition
terms defined in Eq. (2) and Eq. (5), the complete convex
model of MEER-CBCT reconstructoin can be written as:

F∗,X∗f g = argminF,X≥0
1
2 jj PF − B jj2F + b

2 jj F − X

(LK + KC
E ) jj2F

+a1o
N

i=1
jj Wfi jj1 + a2o

M

j=1
jj xj jj1 :

(6)

After we solve this problem to obtain x, we can easily compute
r and v as

r = diag(X1E),  and V = r−1X, (7)

2.2 Numerical Algorithm
The model in Eq. (6) is convex and can be solved by the
Alternating Direction Method of Multipliers (ADMM) (19).
Similar to the iterative scheme proposed in (14), we
incorporated ADMM to split the optimization problem into
several subproblems and solved F and x in subproblems in an
alternating fashion. Specifically, after introducing auxiliary
variable, the augmented Lagrangian function was
February 2022 | Volume 12 | Article 827136
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L(F,X,U ,h1) =
1
2 jjPF − B jj2F + b

2 jj F − X(LK + KC
E ) jj2F

+a1o
N

i=1
jj ui jj1 +a2o

M

j=1
jj xi jj1 + I+(X)

+ m1
2 jjU −WF − h1 jj2F ,

(8)

where I+(X) = f
0 X≥ 0

∞ otherwise
, h1 is the Lagrange multiplier, and m1 is fixed

positive parameter. The iterative scheme became

F(k+1) = argminF L(F,X
(k),U (k),h(k)

1 )

U (k+1) = argminU L(F(k+1),X(k),U ,h(k)
1 )

X(k+1) = argminX L(F
(k+1),X,U (k+1),h(k)

1 )

h(k+1)
1 = h(k)

1 − (U (k+1) −WF(k+1)),

(9)

where k indexes the iteration steps.
The objective function of the F-subproblem was in a form of a

summation of three least squares terms. Hence, it had a closed-
form solution

F(k+1) = (PTP + bI + m1W
TW)−1(PTB + bX(k)(LK + KC

E )

+WT (U (k) − h(k)
1 ) Þ: (10)

In practice, we solved this using conjugate gradient algorithm
instead of directly computing the matrix inverse, which was
computationally challenging.

The U-subproblem was a soft shrinkage problem and can be
solved for each pixel independently. The closed form solution is

u(k+1)i = max Wf (k)i + (h(k)
1 )i −

a1

m1
, 0

� �
for i = 1,…,M : (11)

As for the subproblem of x, the objective function is a least
square term with the l1 regularization and nonnegative
constraint. There is no closed-form solution, and we have to
solve it in an inner iteration scheme. Similar to Eq. (6), we used
ADMM to solve this X-subproblem by introducing another
auxiliary variable Y. The corresponding augmented Lagrangian
function now becames

Linner(X,Y ,h2)

=
b
2
jj F − X(LK + KC

E ) jj2F +a2o
M

j=1
jj yi jj1 +I+(Y)

+
m2

2
jjY − X − h2 jj2F , (12)

where h2 is the Lagrange multiplier and m2 is fixed positive
parameter. Here, the iteration scheme was to alternatively update
three variables:

X(p+1) = argminX Linner(X,Y
(p),h(p)

2 )

Y (p+1) = argminY Linner(X
(p+1), blackY ,h(p)

2 )

h(p+1)
2 = h(p)

2 − (Y (p+1) − X(p+1)),

(13)
Frontiers in Oncology | www.frontiersin.org 4
where the superscript p indexes the inner loop. Denote , the
closed-form solution of X and Y were

X(p+1) = (AAT + m2I)
−1(AF(k+1) + m2(Y

(p) − h(p)
2 ))

Y (p+1) = max X(p+1) + h(p)
2 − a2

m2
, 0

n o
:

(14)

The convergence of the proposed algorithm is guaranteed
(19). The iterative process of the algorithm is summarized in
Algorithm 1.

Algorithm 1 ADMM algorithm Eq. (6)
Input: projection data B, dictionary L, K, and KC

M

Parameters: m1, m2, a1, a2, b, tolerance ∈, kMax, and pMax
Initialize: F, X, U, Y, and k, p = 0
while k < kMax or ||F(k) – F(k–1)||2/||F

(k)||2 >∈ do

F(k+1) = (PT  P + bI + m1W
TW)−1(PTB + bX(k)(LK + KC

E )

+WT (U (k) − h(k)
1 ))

u(k+1)i = max Wf (k)i + (h(k)
1 )i −

a1
m1
, 0

n o
 for i = 1,…,M

while p < pMax or ||X(k) – X(k–1)||2/||X
(k)||2 >∈ do

X(p+1) = (AAT + m2I)
−1(AF(k+1) + m2(Y

(p) − h(p)
2 ))

Y (p+1) = max X(p+1) + h(p)
2 − a2

m2
, 0

n o

h(p+1)
2 = h(p)

2 − (Y (p+1) − X(p+1))

p = p + 1

end while
return X(k + 1) = X(p)

h(k+1)
1 = h(k)

1 − (U (k+1) −WF(k+1))

k = k + 1    and p =  0

end while
return F* = F(k) and X* = X(k)

2.3 Dictionary
In our previous study (14), the dictionary was constructed with
ECs of 71 human tissues of a reference human listed in a previous
publication (20). In this study, to handle the image
reconstruction problem in the presence of iodine element, we
expanded the dictionary by adding one more tissue with 100%
iodine element. Note that using a linear combination of this
iodine tissue and other tissues in the dictionary, we can express
materials with any iodine concentrations. Additionally, we
removed Ca component from the dictionary. In clinical
practice, iodine contrast agent only exists in soft tissue
material, where the amount of Ca component is expected to be
negligibly small.

2.4 Evaluations
We performed both simulation studies and experimental
validations using a phantom with inserts containing water and
iodine solution (175 mgI/ml) of different concentrations, see
Figure 1. In the experimental studies, the physical phantom was
February 2022 | Volume 12 | Article 827136
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made of acrylic. Its diameter was 20 cm. Nine inserts were placed
inside the phantom with one at the phantom center and eight
evenly placed on the periphery with their centers on a circle of a
radius of 7.5 cm. Each insert was a 50-ml plastic lab tube with a
diameter of 3 cm. The solution for the insert at the phantom
center was pure water. The other eight inserts contained iodine
solution with concentrations of 0.1%, 0.5%, 1.0%, 1.5%, 2.0%,
3.0%, 5.0%, and 10% in weight (%w/w).

The hardware platform used in this study was the on-board
imaging system of a Varian TrueBeam LINAC (Varian Medical
System, Palo Alto, CA, USA). The source-to-isocenter distance
was 100 cm, and the source-to-detector distance was 150 cm. We
programmed the CBCT system to implement the kVp switching
scanning protocol using its developer mode controlled by a
customized “xml” file. We scanned the phantom to acquire
x-ray projections. In a CBCT scan with 600 projections evenly
distributed in a full gantry rotation, the energy levels were set to
sequentially cycle through 80, 100, and 120 kVp. To ensure
future clinical translation of the develop method, we employed x-
ray beams in the 80–120-kVp range that are commonly available
in clinical CT scanners. We also attempted to spread the kVp
values to allow the largest possible spectrum separation, which is
beneficial for material decomposition. These considerations led
to the selected 80-, 100-, and 120-kVp beams. The tube currents
for these three kVp levels were 1.4, 0.8, and 0.5 mAs, respectively.
These mAs levels were empirically chosen. A relatively lower
mAs was used for the channel with a higher kVp level to make
the noise level approximately similar among different
energy channels.

In the simulation studies, we constructed a digital phantom
with the same dimension as the physical phantom. However, we
replaced the background acrylic material with pure water for
simplicity. The digital phantom was then voxelized with a voxel
size of 1 mm3. We defined the material composition and density
of all voxels based on known phantom information. x-ray
projections of the digital phantom was then calculated
following the same kVp switching scheme as in the actual
experiment using our in-house developed Monte Carlo
Frontiers in Oncology | www.frontiersin.org 5
simulation tool (21). All other settings in the simulation
matched those of the experiment.

In both simulation and experimental studies, we first
reconstructed the MEER-CBCT images using Algorithm 1. To
benchmark our method, we compared the reconstruction results
against those of the clinical standard Filtered Back Projection
(FBP) reconstruction method and those of iterative
reconstruction method using single energy data. For FBP
reconstruction, projections at 80, 100, and 120 kVps
were simulated/acquired individually with 600 projections
covering a whole gantry rotation to allow sufficient number of
projections to reduce streak artifacts. This means that the
comparison actually favored the FBP reconstruction case, as in
the MEER-CBCT case, each energy only had one-third number
of x-ray projections. For iterative reconstruction with single
energy, the setup was the same as MEER-CBCT. The
algorithm solved the problem in Eq. (1) with b = 0 to
determine images F. This setting essentially treated the three
energy channels independently and ignored the interchannel
relationship expressed in Eq. (4).

To quantitatively evaluate the results, we considered
two metrics. The first one was contrast enhancement defined
as �xroi − �xbg , where �xroi is the mean value of the image intensity
of a region of interest (ROI) and �xbg is the mean value of the
image intensity of the background. The ROIs were selected as
square regions within the eight circular inserts at the periphery
region, and the background was the square region in the insert
located at the center of the phantom. In the experimental study,
the ROI selection was carefully performed to avoid bubbles in
each insert. We used this metric to measure contrast
enhancement caused by the iodine contrast agent. The second
metric was contrast-to-noise ratio (CNR), a key quantity
characterizing the detectability of an object (22). CNR was
defined as

CNR =
2 �xroi − �xbgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2
roi + s 2

bg

q , (15)
FIGURE 1 | Phantom used in this study with inserts of different concentrations of iodine.
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where sroi and sbg are the standard deviations of image intensity
at the ROI and the background, respectively. Additionally, since
we know the ground truth iodine concentrations, we also
evaluated errors of iodine concentrations derived by
MEER-CBCT.

All the numerical computations analyzing results were
conducted on a desktop with CPU (Intel i7-6700, 3.4 GHz)
and MATLAB 9.2 (R2017a).
3 RESULTS

3.1 Convergence and Parameter
Sensitivity Analysis
Before presenting the image reconstruction results, we first show
the convergence property of the numerical algorithm and results
on sensitivity analysis of parameters in the algorithm. We
empirically demonstrated the convergence of the proposed
ADMM algorithm in Figure 2. Specifically, we examined the
objective value in Eq. (6). We also studied the relative change in
the restored images F and the variable x that was introduced to
convexify the optimization problem between two successive
iteration steps during the iteration process. Here, we only
considered the simulation study. All the three quantities
showed monotonically decaying trends. The objective function
saturated at the end, indicating that the iteration reached
convergence. We stopped the iteration at the step number 40,
where the objective function value did not decrease significantly
any further, and the relative changes of x and F were less than 10-
2 and 10-3, respectively.

There are multiple parameters in Algorithm 1, whose values
are expected to affect the final results. Hence, it is important to
study the sensitivity of the results to these parameters and select
their optimal values. There are five parameters in Algorithm 1,
b, a1, a2, m1, and m2. The two parameters m1 and m2 are expected
to only affect algorithm convergence rate, but not the results.
Therefore, we studied the sensitivity of parameters b, a1, and a2.
It would be computationally challenging to scan the entire range
of these parameters. Hence, we first sampled a few combinations
of these parameters in the possible value range and gradually
adjusted the parameters in a trial-and-error way to determine the
optimal parameter set that yielded the highest CNR of different
Frontiers in Oncology | www.frontiersin.org 6
inserts in the reconstructed image with 80 kVp. After that, we
fixed two parameters at their optimal values and studied the
dependence of CNR as a function of the third parameter. Similar
to the convergence study, the simulation case was used here. The
results are shown in Figure 3. Based on this study, the optimal
parameter values were b = 50 and a1 = 1.0. The CNR was found
to be not sensitive to a2, and we set it to a2 = 0.001 in this study.
These parameter values were used in subsequent image
reconstruction studies.

3.2 Reconstruction Results
Figures 4 and 5 present the reconstructedMEER-CBCT images in
the simulation and the experimental studies, respectively. The first
and the second rows in each figure are images of the phantom
images reconstructed by the FBP algorithm and the MEER-CBCT
algorithm, and columns are for different kVps. Comparing the
results using the FBP reconstructionmethod, the images produced
by the MEER-CBCT method achieved improved image quality, as
indicated by visually reduced noise level, which can be ascribed to
the inclusion of regularization terms in spatial and energy
dimension in the reconstruction process.

For quantitative comparison, we first present the results of
contrast enhancement in Figure 6. As expected, the contrast
enhancement increased approximately linearly with respect to
the iodine agent concentration. The contrast enhancement
became higher for lower kVp levels due to increased
photoelectric interactions at low-energy range. The enhancement
levels in the images reconstructed by the FBP algorithm and by the
MEER-CBCT algorithm generally agreed with each other,
indicating that the use of regularization terms in our method did
not suppress image contrast.

Figure 7 presents the results of CNRs. As expected, CNRs
increased with iodine agent concentration and reduced kVp
levels. In both simulation and experimental studies, for a given
concentration of the iodine solution, the corresponding CNR
obtained by our method was significantly higher than that of the
FBP reconstruction method. For instance, the CNR of MEER-
CBCT was approximately 6.5 times of that of the FBP method at
2.5% iodine contrast concentration in the experimental study
(13.0 and 2.0, respectively). This can be ascribed to the use of
image domain regularization, as well as the correlation among
images at different kVps that was made possible by Eq. (4).
FIGURE 2 | Empirical analysis on algorithm convergence. Left: objective value, middle: ||X(k) – X(k – 1)||2/||X
(k)||2, right: F

(k)
– F(k–1)||2/F

(k)||2.
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We considered CNR = 2.0 as the threshold of tumor
detectability. Based on the experimental study [Figure 7
(right)], the case with 2.5% of iodine contrast solution
concentration yielded this level of CNR (averaged over all
energy channels) for the conventional FBP reconstruction
method. At this concentration level, Figure 6 indicates that the
averaged contrast enhancement over all energy channels was
about ~170 HU. In clinical practice, the reported contrast
between liver tumor and normal liver varies in the range of
~50 HU to ~300 HU depending on specific protocols of CT scan
and contrast injection (23–25). The enhancement at this 2.5%
iodine contrast case fell in this range. Compared with the FBP
reconstruction method, MEER-CBCT achieved the same CNR
level of 2.0 at ~0.4% of iodine solution concentration, about 6.3
times reduction of concentration.

Figure 8 presents comparisons of contrast enhancement
results and CNRs between MEER-CBCT images and those
reconstructed by iterative reconstruction algorithm for each
energy channel independently in the simulation case. It was
observed that the two methods maintained the same level of
Frontiers in Oncology | www.frontiersin.org 7
contrast enhancement. MEER-CBCT was able to improve CNR
by approximately a factor of 2 because of the incorporation of
interenergy relationship.

One advantage of MEER-CBCT algorithm is the capability of
resolving iodine contrast distribution. Figure 9A, B presents the
computed iodine concentration image in the simulation and the
experimental studies, respectively. We plotted the iodine
concentration in each insert over the known ground truth
value in Figure 9C. The results derived by MEER-CBCT
agreed well with ground truth values in general. The deviation
from ground truth started to appear at low iodine concentration
cases. Note the plot is on a log-log scale. The mean relative errors
for the simulation and the experimental studies were 15%
and 20%.
4 DISCUSSION

One important aspect for clinical application of CBCT for
radiotherapy image guidance is x-ray radiation dose, as
FIGURE 4 | Reconstructed CT images in the simulation study. Dashed rectangles indicate zoomed in view regions. The CT images are displayed at a window of
[-500, 500 HU].
FIGURE 3 | Sensitivity analysis on b (left), a1 (middle), and a2 (right).
February 2022 | Volume 12 | Article 827136

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Iodine Detection via MEER-CBCT
excessive radiation dose can increase risk of secondary cancer. In
the MEER-CBCT approach, we acquired x-ray projection data in
a single rotation via the kVp switching approach. The radiation
dose is hence expected to be approximately the average of the
radiation dose of CBCT scans of each individual kVp scan, which
is considered acceptable.

One contribution of this study is convexifying the
reconstruction model presented in our previous work (14). The
advantages of this approach included a unique solution to the
optimization problem, and more importantly, a numerical
algorithm that can solve the problem more efficiently. In the
simulation study, our algorithm was 3.5 times faster than the one
used to solve the nonconvex model in (14) with the same
performance. Meanwhile, because of the convex nature, our
model does not rely on the choice of initial guess, which is a
favorable feature for practical applications.
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Despite the exciting results in terms of achieving the same
level of CNR as the FBP algorithm with substantially reduced
iodine dose, the current study has a few limitations. First, the
study was performed using a relatively small size phantom,
where the impact of x-ray scatter was not significant. It is
well known that x-ray scatter is a major concern affecting
quantitative accuracy of CBCT imaging due to the large x-ray
illumination field and detector size (26). In the liver site, the
large body size would increase scatter component and
reduce primary component of the x-ray beam at the detector,
making the impact of scatter more profound than that
of the phantom case. Hence, future challenges include
proper removal of scatter before CBCT reconstruction. Over
the years, advanced hardware-based or computation-based
scatter correction methods have been successfully developed
(26–28). These methods could be used to preprocess the x-ray
FIGURE 6 | Comparison of contrast enhancements between our method and FBP reconstruction method in simulation study (left) and experimental study (right).
Result of 10% iodine concentration not displayed to focus on relevant data range.
FIGURE 5 | Reconstructed CT images in experimental study. Dashed rectangles indicate zoomed in view regions. The CT images are displayed at a window of
[-500, 500] HU.
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projection data before using our algorithm for MEER-
CBCT reconstruction.

Second, many factors affecting contrast agent visualization in
CBCT images have not been considered in this initial study,
which hence pose challenges to translate our method to clinical
practice. The first factor is kinetic behavior of contrast
Frontiers in Oncology | www.frontiersin.org 9
enhancement of liver tumor. In fact, the liver tumor contrast
enhancement shows a complex kinetic behavior occurring
during a time interval with a length comparable with the
CBCT data acquisition time (23). The CBCT acquisition has to
be performed at a proper time after contrast injection, and the
data acquisition time would average the contrast enhancement
FIGURE 8 | Comparison of CNR (left) and contrast enhancement (right) between MEER-CBCT and images reconstructed by iterative algorithm with each energy
channel independently in simulation study.
A B C

FIGURE 9 | (A, B) Iodine concentration images in simulation and experimental studies. (C) Derived iodine concentration as a function of ground truth value. Dashed
diagonal line indicates the ideal situation.
FIGURE 7 | Comparison of CNRs between our method and FBP reconstruction method in simulation study (left) and experimental study (right). Result of 10%
iodine concentration not displayed to focus on relevant data range.
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level. The second factor is organ motion. Liver is subject to
respiratory motion. This motion during the CBCT scan, if
unaddressed, would further blur the resulting images and
diminish the contrast enhancement in the reconstructed
images. We are in the process of developing a liver phantom
with a realistic contrast enhancement mechanism and motion to
study the impact of these factors. Novel image reconstruction
techniques, such as reconstruction algorithms with temporal
dimension included (29) or using deep learning (30), may be
potentially employed to overcome these challenges.
5 CONCLUSION

To improve the detectability of iodine contrast agent in CBCT for
image guidance of liver cancer radiotherapy, we developed
a MEER-CBCT framework that acquired x-ray projections in a
kVp switching scan on a conventional CBCT platform of a
LINAC. MEER-CBCT image reconstruction method
simultaneously reconstructed x-ray attenuation images at all
kVp levels, the image of rED and images of EC. The
composition of each voxel was subject to a constraint of a
sparse representation of materials in a dictionary containing
typical human tissues and iodine. We converted the nonlinear
formalism of MEER-CBCT reconstruction problem to a linear
form to ease the burden solving this problem. In both simulation
and experimental studies, MEER-CBCT achieved similar contrast
enhancement as the clinical standard FBP reconstruction method
Frontiers in Oncology | www.frontiersin.org 10
but significantly higher CNR. At 2.5% iodine solution
concentration, FBP method achieved ~170 HU enhancement
and CNR of ~2, considered the acceptable CNR for successful
liver tumor visualization. MEER-CBCT yielded the same CNR
but at ~6.3 times lower iodine concentration of 0.4%.
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