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Abstract: By using a semi-rigid tripodal ligand 5-(4-carboxybenzyloxy)isophthalic acid (H3L) and
lanthanide metal ions (Nd3+, Tb3+), two novel lanthanide metal–organic frameworks, namely,
{[Nd2L2(DMF)4] DMF}n (1), and {TbL(DMF)(H2O)}n (2), were synthesized under mild solvothermal
conditions and structurally characterized by X-ray single crystal diffraction. Compounds 1 and 2
are isostructural, in which L3– ligands linked dinuclear lanthanide metal–carboxylate units to form
non-interpenetrated 3D network with (3,6)-connected topology. Luminescent investigations reveal
that compound 1 displays the near-infrared emission at room temperature, and compound 2 can be
employed as selective probe for Cr2O7

2− anion in aqueous solution based on luminescence quenching.
Moreover, compound 2 exhibits catalytic activity for cyclo-addition of CO2 and epoxides under
relatively mild conditions.

Keywords: lanthanide metal–organic frameworks; crystal structures; luminescent property;
catalytic performance

1. Introduction

Metal–organic frameworks (MOFs) as a class of new crystalline materials have drawn considerable
interest recently, because of their widely potential applications in the fields of heterogeneous
catalysis [1–4], chemical sensing [5–7], gas separation and storage [8–11], magnetism [12], photocatalytic
materials [13], etc. Compared to traditional zeolite materials, MOFs possess tunable surfaces and
pores, which are adjustable by choice of metal centers and modification of organic ligands. Hence, the
structural features of the organic ligands, e.g., flexibility, functionality, symmetry, could greatly affect the
performance and structure of the MOFs. Among various organic ligands, semi-rigid polycarboxylate
ligands have been demonstrated to be good candidates for the construction of multifarious MOFs,
which could adopt versatile conformations to meet different coordination environmental requirements,
leading to unpredictable and intriguing framework topologies. So far, a few functional porous MOFs
based on semi-rigid polycarboxylates have been widely reported. Taking the above into account, we
chose a semi-rigid tricarboxylate ligand 5-(4-carboxybenzyloxy) isophthalic acid (H3L). The ligand
exhibits a great variety of coordination modes to metal ions, due to the rigid benzoic acid and
isophthalic acid moieties. Moreover, the H3L features certain flexibility, owing to the presence of
–CH2O– group that can twist around to meet the requirement of the coordination environment. Among
enormous MOFs, lanthanide metal–organic frameworks (Ln–MOFs) have attracted increasing attention
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as special branch of functional MOFs because of their unique physical properties such as color-pure
luminescence, long excited-state luminescence lifetimes, distinct stokes shifts, typical sharp emission
peaks, and large paramagnetism [14–16]. The lanthanide ions are different from other metal ions,
mainly included the following aspects: (i) lanthanide ions could emit light over narrow wavelength
ranges and show high fluorescence quantum yields; (ii) the lanthanide family of ions usually has
high coordination number, e.g., eight-, nine-, ten-, eleven-, and twelve-coordinated with oxygen to
yield versatile clusters; and (iii) the luminescence of Ln3+ ions could be effectively sensitized when
coordinated with suitable conjugated chromophores by tuning f–f or f–d electronic transition, the
so-called “antenna effect” [17–19].

Chemical fixation and conversion of carbon dioxide (CO2) have been a hot area of research because
it was promising on solving the issue of greenhouse effect primarily caused by rapidly increasing CO2

levels in the atmosphere. Great effort has been devoted to reusing CO2 to synthesize valuable raw
materials, because CO2 is nontoxic, inexpensive, abundant, and important C1 building block. Some
examples show that MOFs could be ideal catalysts in the cyclo-addition reaction of CO2 with epoxides
to form cyclic carbonates, owing to abundant catalytic active sites formed by inorganic metal units and
organic ligands (e.g., metal-centered Lewis acid sites, Brønsted sites), which play a significant role in
catalysis reactions. Furthermore, MOF-based catalysts exhibit excellent separability and circulation,
thus there would be a very potential heterogeneous catalyst and have good application prospects in
industry [20].

With the above considerations in mind, two Ln-MOFs, {[Nd2L2(DMF)4] DMF}n (1), and
{TbL(DMF)(H2O)}n (2), based on the semi-rigid tripodal ligand H3L were obtained (H3L =

5-(4-carboxybenzyloxy)isophthalic acid). Compounds 1 and 2 are isostructural, and have been
determined by single-crystal X-ray diffraction. Luminescence explorations reveal that Tb3+-based
emission peaks of compound 2 could be selectively quenched by chromium (VI) anion, which suggested
that compound 2 could serve as a promising luminescent probe for chromium (VI) anions. In addition,
the studies have shown that compound 2 could catalyze the cyclo-addition of CO2 and epoxides under
mild conditions to form cyclic carbonates efficiently.

2. Experimental Section

2.1. Synthesis of Compound 1

A mixture of Nd(NO3)3·6H2 (0.035 g, 0.09 mmol) and H3L (0.020 g, 0.06 mmol) in DMF (2 mL),
EtOH (0.5 mL) and 150µL of HNO3 (2 mol/L) was sealed in a 25 mL Teflon-lined stainless steel autoclave.
The mixture was heated at 80 ◦C for 48 h, and then cooled to room temperature. Purple block single
crystals of 1 were collected in ca. 28% yield based on H3L. Elemental analysis for C47H50N5Nd2O19,
calcd (%): C, 44.19; H, 3.95; and N, 5.48. Found (%): C, 43.28; H, 4.33; and N, 5.19.

2.2. Synthesis of Compound 2

A mixture of Tb(NO3)3·6H2O (0.035 g, 0.08 mmol), and H3L (0.020 g, 0.06 mmol) in DMF (2 mL)
plus of H2O (1 mL) was sealed in a 25 mL Teflon-lined stainless steel autoclave. The steel autoclave
was heated at 80 ◦C for 48 h, and then cooled to room temperature. Colorless block single crystals of
2 were collected in ca. 24% yield based on H3L. Elemental analysis for C19H18NO9Tb, calcd (%): C,
40.51; H, 3.22; and N, 2.49. Found (%): C, 39.87; H, 3.47; and N, 2.73.

3. Results and Discussion

3.1. Synthesis

Two title compounds 1 and 2 were synthesized by using solvothermal method, inspired by the
paper by Ma et al. [21]. The semi-rigid ligand H3L and lanthanide nitrate salts are dissolved in a
mixture of DMF, EtOH, and H2O. Then, the resulting mixture was left undisturbed at 80 ◦C for 2 days.
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The reaction system was then gradually cooled to room temperature. The difference between our work
and the procedures followed by Ma et al. is that we have used lanthanide nitrate salts and Ma et al.
have reported Ln-MOFs by using lanthanide chlorides. It is well-known that many factors can affect
the formation of the final products during a specific solvothermal approach, such as the type of metal
salts, counter-anions, reaction temperature, pH values, the type of solvent, and starting concentrations
of reactants [22]. In our case, a series of contrast experiments have been performed to explore the
influence of reaction conditions on identity and crystallinity of the final products. The results show that
the type of metal salts play vital role in reaction system. We employed lanthanide chloride compounds
to synthesize Ln-MOFs under different reaction conditions of Ma et al. However, the resulting crystals
were already known complexes. In addition, the result of contrast experiments shows that a slight
difference in temperature and the proportion of mixed solvent of DMF, H2O, and EtOH have less
influenced on crystallinity of crystals.

3.2. Crystal Structure Descriptions

The single-crystal X-ray diffraction structure analyses indicate that compounds 1 and 2 are
isostructural. Their differences lie in metal salts used (Nd and Tb for 1 and 2, respectively). It should
be noted that the coordinated solvent molecules in compound 2 are slightly different from compound
1. As a representative example, only the structure description of compound 1 will be discussed here in
detail. Compound 1 crystallizes in centrosymmetric monoclinic C2/c space group (No. 15, standard
setting). Each asymmetric unit consists of one fully deprotonated ligand H3L, one crystallographically
individual Nd(III) ion, two coordinated DMF molecules and one DMF solvent molecule (half-occupied).
However, the asymmetric unit of compound 2 contains one L3– organic ligand, one Tb(III) ion, one
coordinated DMF molecule and one coordinated water molecule. As shown in Figure 1, the resulting
three-dimensional (3D) framework of 1 is constructed from dinuclear metal–carboxylate cluster
{Nd2(COOR)6(DMF)4} and organic ligand L3– as building units. Each Nd center is nine-coordinated
with two oxygen atoms from two bidentate carboxylate groups of two L3– ligands, three oxygen atoms
from two chelating bidentate carboxylate groups of the other two L3– ligands, two oxygen atoms from
one chelating carboxylate group of L3– ligand (Nd–O distances ranging from 2.419(4) to 2.674(4) Å),
and two oxygen atoms from two coordinated DMF molecules (Nd–O distance of 2.428(5) and 2.500(5)
Å). The coordination environment of Nd center can be considered as a distorted monocapped square
antiprism geometry (Figure 1a). Two neighboring Nd centers (Nd1 and symmetry-related Nd1A)
are linked by two carboxyl groups in a bridging and chelating mode and two carboxyl groups via
bidentate coordination mode to form dinuclear {Nd2(COOR)6(DMF)4} cluster, which connects six
carboxylate groups from six independent L3– ligands. Each fully deprotonated L3– ligand adopts
a µ5 coordination mode via three carboxyl groups linking metal clusters {Nd2(COOR)6(DMF)4} in
bridging chelation, bidentate and chelation coordination modes (Figure 1b). In order to meet practical
coordination configuration requirement, carboxyl groups rotate around the flexible alkyl bond and
two benzene rings of L3– are not in the same plane with dihedral angles of 17.48◦.

The rod-shaped clusters {Nd2(COOR)6(DMF)4} are interconnected by L3– ligands to form a
three-dimensional (3D) framework with two kinds of 1D channels along b (i.e., small and large
rectangular channels) and c (i.e., small oval channels and large diamond channels) directions. As
depicted in Figure 2, the coordinated DMF molecules protrude into the channels in the rectangular and
diamond channels, resulting in reduced dimensionality of channels. These channels are occupied by
guest DMF molecules, which could be located from the single-crystal X-ray diffraction data. The void
volume is estimated by PLATON program [23] to be about 53.6% of the unit cell volume of 5566.9 Å3

(coordinated and guest DMF molecules not taken into account) and 22.6% of the unit cell volume
(guest DMF molecule not taken into account).

To better understand the architecture of compound 1, topological analysis (i.e., reducing
multi-dimensional structures to simple node-and-linker nets) was performed using the TOPOS
program [24]. It became evident that each L3– ligand can be simplified as 3-connected node with
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point symbol {426}; the {Nd2(COOR)6(DMF)4} cluster is viewed as a pentagonal dodecahedron and
considered as 6-connected node, each of which is connected by six L3– ligands. On the basis of
above simplification model, the whole framework of compound 1 could be simplified as 2-nodal
(3,6)-connected net with the topology flu-3,6-C2/c, which is a subnet of flu according to TOPOS analysis.
The point symbol for net is {42.6}2{44.62.87.102} (Figure 3).
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3.3. Thermal Stability Analysis

Thermogravimetric analyses (TGA) were performed to investigate the thermal stabilities of
compounds 1 and 2 using single crystal samples under N2 atmosphere. As shown in Figure S1,
compounds 1 and 2 exhibited a similar profile. Compound 1 showed a weight loss of 27.6% at
20–450 ◦C, assigned to loss of guest and coordinated DMF molecules (calc. 28.5%). Further heating,
the structure began to collapse and decomposed into metal oxide. TGA of compound 2 displayed a
weight loss of 15.5% in the temperature range of 20–400 ◦C due to the removal of coordinated water
and DMF molecules (calc. 16.3%). Higher temperature resulted in the collapse of the structure and
decomposition of the organic ligand.

3.4. Photoluminescent Properties

The solid state photoluminescent spectra of compounds 1 and 2 were examined at room
temperature. As illustrated in Figure S2, the free H3L ligand exhibits the maximum emission
band at 363 nm (λex = 290 nm), which is attributable to the π*→ n or π*→ π transitions [25,26]. The
near-infrared (NIR) emission of the Nd3+ ion in compound 1 exhibits characteristic peaks at 1056
and 1330 nm upon excited at 808 nm by Nd:YAG laser, which can be assigned to the 4F3/2 →

4I11/2,
4F3/2 →

4I13/2 transitions of the Nd3+ ions, respectively [27,28] (Figure 4).
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Tb(III)-based compound 2 emits green luminescence visible to the naked eye under UV light
(λex = 310 nm) and exhibits the characteristic emission peaks for Tb(III) ion observed at 489, 544, 584,
and 620 nm (Figure S3), which could be ascribed to the transitions of 5D4 →

7FJ (J = 6–3) [29–31]. The
most intense emission peak corresponds to hypersensitive 5D4 →

7F5 transition at 544 nm [32,33]. The
photoluminescent spectra of 2 exhibits characteristic emission bands of Tb(III) ion and the ligand-related
emission peaks are not observable, which indicates energy transfer from H3L ligand to the Tb(III) ion
during photoluminescence [34]. UV-Vis absorption spectra of compounds 1 and 2 are displayed in
Figure S4. It is well established that the construction of Ln-MOFs not only have a significance to extend
the Ln-MOFs family, but also allow exploiting them as fluorescent probes because of their remarkable
luminescence properties and feature distinct advantages in sensitivity, operability and response time.
Recently, Ln-MOFs employed as chemical sensors have been widely studied, and mainly focused on
the fluorescence detection of small organic molecules [35,36], cations [37], and anions [38]. However,
the detection of chromium(VI) anion species (Cr2O7

2− or CrO4
2−) are poorly reported, which are

commonly poisonous in wastewater and cause environment pollution and be harmful to the livings’
health. This thus urgently calls for more new luminescent sensors to detect chromium(VI) anions.
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Based on the above, a series of spectroscopic experiments were conducted in water solutions
including different anions to explore the sensing ability of compound 2. The finely ground samples
(10 mg) were dispersed in 1.9 mL aqueous solution by using ultrasonic method to form steady suspension
solution, and then 100 µL KmX solution (0.1 mol/L, X = Br−, Cl−, I−, SCN−, IO3

−, NO3
−, BrO3

−, ClO3
−,

SO4
2−, CO3

2−, MnO4
−, Cr2O7

2−, and CrO4
2−) was slowly dropped into the above suspension solution

(0.005 mol/L). These resultant suspensions were investigated by using fluorescence spectrophotometer.
As illustrated in Figure 5a, the obtained fluorescence spectra still showed characteristic emission peaks
of Tb(III) ion and only the strongest 5D4 →

7F5 transition of Tb3+ centered at 544 nm were recorded
in Figure 5b. The results indicate that the emission intensities of different suspensions vary with
anions. Obviously, most anions, such as halide ions, SCN−, IO3

−, NO3
−, SO4

2−, CO3
2−, ClO3

−, and
BrO3

− display no obvious or negligible influence on the intensity. The addition of MnO4
− lead to

the fluorescence intensity slightly decrease, while Cr2O7
2−, CrO4

2− exhibit significantly quenching
behavior, indicating that compound 2 could act as a promising chemical sensor toward Cr(VI) in
aqueous solution. Since the Cr2O7

2− anion showed the strongest quenching effect on the intensity of
compound 2, it was chosen as the representative to investigate the fluorescence sensing behaviors.
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limit of compound 2 could reach 10−5 mol/L as a fluorescent sensor for detecting Cr2O7
2− (Figure 6a).

Moreover, the quenching efficiency was calculated by (I0 − I)/I0 × 100% equation, where I0 and I
represent the intensity of compound 2 before and after adding Cr2O7

2−, respectively. The quenching
efficiency could reach 97.2% when the concentration of Cr2O7

2− increased to 0.02 mol/L (Figure 6b).
Furthermore, we used the Stern–Volmer (S–V) equation to generate a plot of fluorescence intensity

vs the concentration of Cr2O7
2− in the low concentration range of 0–10–3 mol/L, I0/I = KSV [Cr2O7

2−] +

1 (KSV is quenching rate constant, and [Cr2O7
2−] represents the concentration of Cr2O7

2−). The S–V
plot reveals that there exists a nearly linear correlation at low concentrations (R2 = 0.9972), which could
be fitted as I0/I = KSV [Cr2O7

2−] + 1.01. The KSV value is calculated to be 2.26 × 103 L/mol (Figure 7),
indicating that the Cr2O7

2− has a high quenching efficiency on the luminescence of compound 2.
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3.5. Catalytic Performance

Recently, it has been reported that Tb3+ sites in Tb-based MOFs could act as Lewis acidic
centers [39]. Therefore, we explored the catalytic activity of compound 2, and here the conversion of
CO2 into cyclic carbonates was studied. The catalytic performance of compound 2 was investigated
by using propylene oxide (PO) as the model substrate to explore the optimized catalytic reaction
condition, and the corresponding results were shown in Table 1. The catalytic reaction was firstly
conducted using compound 2 (2 mol%) and tetra-n-butyl-ammonium bromide (n-Bu4NBr, 2.5 mol%)
as co-catalyst under relatively mild condition (0.2 MPa and 30 ◦C). The desired product propylene
carbonate (PC) was obtained after different reaction time (12 h, 24 h, and 36 h), and the yield could
reach 4.7%, 8.3%, and 9.9%, respectively (entries 1, 2, and 3 in Table 1). The results indicated that
catalytic activity of compound 2 was poor under these conditions. Subsequently, the reaction pressure
was increased to 1.0 MPa, the PO conversion reached 42.8% (entry 4). When the reaction temperature
was increased to 70 ◦C and the pressure was kept at 1.0 MPa, the reaction could be completed within
12 h. In these preliminary studies, the results indicated that the higher temperature and pressure could
facilitate the reaction process.

As shown in Figure 8a, PO conversion increased from 30 to 70 ◦C under 1.0 MPa pressure with the
reaction time of 12 h. Further increasing temperature, the PO conversion was not obviously increased.
In addition, the yield increased with the prolonged reaction time. It is noteworthy that the reaction
time was prolonged to 24 h, the reaction could be almost completed at a lower temperature of 60 ◦C
(entry 5 in Table 1). CO2 pressure was also important to influence the cycloaddition of PO and CO2.
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As is seen from Figure 8b, the PO conversion increased with CO2 pressure 0.2 to 1 MPa and leveled in
the pressure range of 1–2 MPa. Further increasing CO2 pressure (>2 MPa) could reduce the PC yield,
which might be ascribed to the disruption of the lattice structure at a high pressure. In addition, the
yields were very low when compound 2 or n-Bu4NBr was solely used as catalyst under the conditions
of 1.0 MPa and 70 ◦C for 12 h (entries 7 and 8). However, the PO conversion was remarkably enhanced
when compound 2 and n-Bu4NBr were employed simultaneously. It is known that compound 2 and
n-Bu4NBr have excellent synergetic effect in the catalytic system of CO2 cyclo-addition reaction [40–43].
In conclusion, the optimized reaction conditions should be 70 ◦C and 1.0 MPa CO2 pressure with
2 mol% catalyst 2 and 2.5 mol% co-catalyst n-Bu4NBr for 12 h.

Table 1. Cyclo-addition of CO2 with propylene oxide under different reaction conditions.

Polymers 2019, 11, x FOR PEER REVIEW 8 of 12 

 

addition reaction [40–43]. In conclusion, the optimized reaction conditions should be 70 °C and 1.0 
MPa CO2 pressure with 2 mol% catalyst 2 and 2.5 mol% co-catalyst n-Bu4NBr for 12 h. 

Table 1. Cyclo-addition of CO2 with propylene oxide under different reaction conditions. 

 

Entry Temperature (°C) Pressure (MPa) Time (h) Yield (%) 
1 30 0.2 12 4.7 
2 30 0.2 24 8.3 
3 30 0.2 36 9.9 
4 30 1.0 12 42.8 
5 60 1.0 24 98.7 
6 70 1.0 12 >99 

7 [a] 70 1.0 12 10.7 
8 [b] 70 1.0 12 17.3 
9 [c] 70 1.0 12 94.2 

Reaction conditions: PO (20 mmol), compound 2 (2 mol%), n-Bu4NBr (0.5mmol, 2.5 mol%) under 
different conditions. Determined by 1H NMR spectroscopy. [a] In the absence of n-Bu4NBr. [b] In the 
absence of 2. [c] The yield of the 4th cycling. 

 

Figure 8. Influence of (a) reaction temperature (P(CO2) = 1.0 MPa, t = 12 h), and (b) CO2 pressure (T = 
70 °C, t = 12 h) on the cyclo-addition of CO2 with PO. Other reaction conditions: PO (20 mmol); 
compound 2 (2 mol%); n-Bu4NBr (2.5 mol%). 

To further explore the catalytic performances of compound 2, different functional group 
substituted epoxides were employed for CO2 cyclo-addition reaction under optimized reaction 
conditions. As showed in Table 2, the yields of corresponding cyclic carbonates decreased with the 
increasing of the alkyl length, which is probably due to the steric hindrance (entries 1–4). The cyclo-
addition reactions of 1,2-epoxybutane and epichlorohydrin were catalyzed with high yield (entries 2 
and 3), which also demonstrated effective catalytic performance of compound 2. When styrene oxide 
was used as the reactant, the desired carbonate was generated with 88.4% yield (entry 4). However, 
the internal epoxide 1,2-epoxycyclohexane was converted to the corresponding cyclic carbonate with 
low yield (43.2%), which may be attributed to the high steric hindrance of cyclohexene oxide [44]. As 
a heterogeneous catalyst, recyclability is an essential feature to be considered in industrial 
applications. The recycling experiments were performed by using propylene oxide as substrate, and 
the results revealed that there was only 5.8% decrease of the catalytic activity after four catalytic 
cycles (Table1, entry 9; Figures S6 and S7). The recycled Tb-MOF was characterized by PXRD 
investigation, and the result showed the framework of compound 2 could be well consistent with 
original one (Figure S5).  

Entry Temperature (◦C) Pressure (MPa) Time (h) Yield (%)

1 30 0.2 12 4.7
2 30 0.2 24 8.3
3 30 0.2 36 9.9
4 30 1.0 12 42.8
5 60 1.0 24 98.7
6 70 1.0 12 >99

7 [a] 70 1.0 12 10.7
8 [b] 70 1.0 12 17.3
9 [c] 70 1.0 12 94.2

Reaction conditions: PO (20 mmol), compound 2 (2 mol%), n-Bu4NBr (0.5mmol, 2.5 mol%) under different conditions.
Determined by 1H NMR spectroscopy. [a] In the absence of n-Bu4NBr. [b] In the absence of 2. [c] The yield of the
4th cycling.

Polymers 2019, 11, x FOR PEER REVIEW 8 of 12 

 

addition reaction [40–43]. In conclusion, the optimized reaction conditions should be 70 °C and 1.0 
MPa CO2 pressure with 2 mol% catalyst 2 and 2.5 mol% co-catalyst n-Bu4NBr for 12 h. 

Table 1. Cyclo-addition of CO2 with propylene oxide under different reaction conditions. 

 

Entry Temperature (°C) Pressure (MPa) Time (h) Yield (%) 
1 30 0.2 12 4.7 
2 30 0.2 24 8.3 
3 30 0.2 36 9.9 
4 30 1.0 12 42.8 
5 60 1.0 24 98.7 
6 70 1.0 12 >99 

7 [a] 70 1.0 12 10.7 
8 [b] 70 1.0 12 17.3 
9 [c] 70 1.0 12 94.2 

Reaction conditions: PO (20 mmol), compound 2 (2 mol%), n-Bu4NBr (0.5mmol, 2.5 mol%) under 
different conditions. Determined by 1H NMR spectroscopy. [a] In the absence of n-Bu4NBr. [b] In the 
absence of 2. [c] The yield of the 4th cycling. 

 

Figure 8. Influence of (a) reaction temperature (P(CO2) = 1.0 MPa, t = 12 h), and (b) CO2 pressure (T = 
70 °C, t = 12 h) on the cyclo-addition of CO2 with PO. Other reaction conditions: PO (20 mmol); 
compound 2 (2 mol%); n-Bu4NBr (2.5 mol%). 

To further explore the catalytic performances of compound 2, different functional group 
substituted epoxides were employed for CO2 cyclo-addition reaction under optimized reaction 
conditions. As showed in Table 2, the yields of corresponding cyclic carbonates decreased with the 
increasing of the alkyl length, which is probably due to the steric hindrance (entries 1–4). The cyclo-
addition reactions of 1,2-epoxybutane and epichlorohydrin were catalyzed with high yield (entries 2 
and 3), which also demonstrated effective catalytic performance of compound 2. When styrene oxide 
was used as the reactant, the desired carbonate was generated with 88.4% yield (entry 4). However, 
the internal epoxide 1,2-epoxycyclohexane was converted to the corresponding cyclic carbonate with 
low yield (43.2%), which may be attributed to the high steric hindrance of cyclohexene oxide [44]. As 
a heterogeneous catalyst, recyclability is an essential feature to be considered in industrial 
applications. The recycling experiments were performed by using propylene oxide as substrate, and 
the results revealed that there was only 5.8% decrease of the catalytic activity after four catalytic 
cycles (Table1, entry 9; Figures S6 and S7). The recycled Tb-MOF was characterized by PXRD 
investigation, and the result showed the framework of compound 2 could be well consistent with 
original one (Figure S5).  

Figure 8. Influence of (a) reaction temperature (P(CO2) = 1.0 MPa, t = 12 h), and (b) CO2 pressure
(T = 70 ◦C, t = 12 h) on the cyclo-addition of CO2 with PO. Other reaction conditions: PO (20 mmol);
compound 2 (2 mol%); n-Bu4NBr (2.5 mol%).

To further explore the catalytic performances of compound 2, different functional group substituted
epoxides were employed for CO2 cyclo-addition reaction under optimized reaction conditions. As
showed in Table 2, the yields of corresponding cyclic carbonates decreased with the increasing of
the alkyl length, which is probably due to the steric hindrance (entries 1–4). The cyclo-addition
reactions of 1,2-epoxybutane and epichlorohydrin were catalyzed with high yield (entries 2 and 3),
which also demonstrated effective catalytic performance of compound 2. When styrene oxide was
used as the reactant, the desired carbonate was generated with 88.4% yield (entry 4). However, the
internal epoxide 1,2-epoxycyclohexane was converted to the corresponding cyclic carbonate with low
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yield (43.2%), which may be attributed to the high steric hindrance of cyclohexene oxide [44]. As a
heterogeneous catalyst, recyclability is an essential feature to be considered in industrial applications.
The recycling experiments were performed by using propylene oxide as substrate, and the results
revealed that there was only 5.8% decrease of the catalytic activity after four catalytic cycles (Table 1,
entry 9; Figures S6 and S7). The recycled Tb-MOF was characterized by PXRD investigation, and the
result showed the framework of compound 2 could be well consistent with original one (Figure S5).

Table 2. Cyclo-addition of CO2 with various substrates [a].
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[a] Reaction conditions: epoxides (20 mmol), compound 2 (2 mol%), n-Bu4NBr (2.5 mol%), CO2 (1 MPa), 70 ◦C, 12 h;
and [b] determined by 1H NMR spectroscopy.

A possible catalytic mechanism for Tb-MOF/n-Bu4NBr-catalyzed cyclo-addition of epoxides and
CO2 was discussed based on reported studies (Scheme 1) [45,46]. The framework of compound 2 could
enrich CO2 and epoxides owing to its porous channels, which might be beneficial for the reaction.
The Lewis acidic site (Tb ions) interacted with the oxygen atom of the epoxide, activating the epoxy
ring (Step 1). Then, the Br− nucleophile from n-Bu4NBr attacks the less hindered carbon atom of the
activated epoxide, promoting the ring opening of the epoxide to form active oxygen anion (Step 2).
Subsequently, this active oxygen anion reacted with CO2 to produce alkylcarbonate salt (Step 3). Finally,
the alkylcarbonate anion was converted to corresponding cyclic carbonate by ring closure and the
co-catalyst n-Bu4NBr was regenerated simultaneously (Step 4).
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4. Conclusions

In summary, two novel lanthanide metal–organic frameworks based on semi-rigid tripodal
ligand 5-(4-carboxybenzyloxy) isophthalic acid (H3L) have been solvothermally synthesized and
characterized. Compounds 1 and 2 are isostructural and possess 3D frameworks with flu-3,6-C2/c
structure topology, built from 6-connecting dinuclear metal–carboxylate unit and 3-connecting L3−

ligand. Photoluminescence measurement reveals that compound 1 shows near-infrared (NIR) emission,
and compound 2 displays a selective fluorescence quenching response to Cr(VI) anion in liquid
suspension. Owing to the accessible Lewis acidic sites in channels, compound 2 could be an efficient
heterogeneous catalyst for cyclization reaction with epoxides and CO2, and the recycling number could
reach four times without compromising catalytic activity.
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