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ABSTRACT

Non-coding genetic variants/mutations can play
functional roles in the cell by disrupting regulatory
interactions between transcription factors (TFs) and
their genomic target sites. For most human TFs,
a myriad of DNA-binding models are available and
could be used to predict the effects of DNA mutations
on TF binding. However, information on the quality of
these models is scarce, making it hard to evaluate the
statistical significance of predicted binding changes.
Here, we present QBiC-Pred, a web server for pre-
dicting quantitative TF binding changes due to nu-
cleotide variants. QBiC-Pred uses regression models
of TF binding specificity trained on high-throughput
in vitro data. The training is done using ordinary least
squares (OLS), and we leverage distributional results
associated with OLS estimation to compute, for each
predicted change in TF binding, a P-value reflecting
our confidence in the predicted effect. We show that
OLS models are accurate in predicting the effects of
mutations on TF binding in vitro and in vivo, outper-
forming widely-used PWM models as well as recently
developed deep learning models of specificity. QBiC-
Pred takes as input mutation datasets in several for-
mats, and it allows post-processing of the results
through a user-friendly web interface. QBiC-Pred is
freely available at http://qbic.genome.duke.edu.

INTRODUCTION

Genetic variants and mutations play important roles in hu-
man disease (1). Most variants occur in non-coding ge-
nomic regions, where they can impact gene expression by
disrupting interactions between transcription factors (TFs)

and DNA. In previous work we have introduced an or-
dinary least squares (OLS)-based method for assessing
the impact of non-coding mutations on TF-DNA inter-
actions (2). Briefly, we used high-throughput in vitro TF
binding data from universal protein-binding microarray
(uPBM) experiments (3) to train regression models of TF-
DNA binding specificity using OLS estimation. Next, we
used the OLS models to predict changes in TF binding due
to DNA mutations, and we showed that our binding change
predictions correlate well with measured changes in gene ex-
pression.

Our approach is novel compared to previous models be-
cause, by using OLS, we obtain not only estimates of the
model coefficients, but also the variance of these estimates,
which allows us to compute normalized binding change
scores (z-scores) and significance levels (P-values) reflect-
ing our confidence that a mutation affects TF binding. The
computed P-values implicitly take into account the quality
of the model and of the training data, so in the case of poor
predictive models a large change in binding is required for
a mutation to be called significant (2).

Here, we introduce QBiC-Pred (Quantitative Predictions
of TF Binding Changes Due to Sequence Variants), or
QBiC for short, a web service that allows users to run our
OLS models through a user-friendly web interface.

Input

QBiC takes as input mutation/variant datasets containing
single nucleotide variants, in several formats: (i) variant files
in the standard variant call format (VCF); (ii) ‘simple so-
matic mutations’ files generated by the International Can-
cer Genome Consortium (ICGC) (4); (iii) tab- or comma-
separated values files with the columns: chromosome, chro-
mosome pos, mutated from and mutated to; and (iv) text
files containing 17-bp DNA sequences with the mutated
nucleotide in the center, followed by the ‘mutated to’ nu-
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Figure 1. The change in TF binding is computed as a linear combination
of the coefficient estimates for all 6-mers overlapping the variant.

cleotide, separated by a space character. The first three for-
mats can be used with genomic coordinates from versions
hg19 and hg38 of the reference human genome, while the
sequence format allows users to input custom DNA se-
quences. For the sequence format, the context of each vari-
ant (8-bp on each side) is needed in order to assess the
binding status of each allele, using uPBM 8-mer enrichment
scores (E-scores) (3,5). Examples of input mutation files are
described in the ‘About’ section of the website, and available
for download. QBiC also takes as input a list of TF pro-
teins of interest, from a list of 582 human TFs with available
OLS models. All TF names are specified using the standard
HUGO gene nomenclature (HGNC) (6). The list of avail-
able TFs and models is available on the QBiC website in the
‘Downloads’ section.

Output

For each input variant, QBiC runs the OLS models for the
list of specified human TFs and it computes the predicted
TF binding changes, the normalized changes (z-scores), the
significance of the changes according to each model (P-
values), as well as the predicted changes in binding status
(e.g. from specific binding, or ‘bound’, to non-specific bind-
ing, or ‘unbound’) assessed using uPBM 8-mer data. Sim-
ilarly to our previous work (7), we consider a site ‘bound’
if it contains two consecutive overlapping 8-mers with E-
scores > 0.4, and ‘unbound’ is it contains only 8-mers with
E-score < 0.35; all other sites are called ‘ambiguous’. The E-
score cutoffs can be modified by the user through the QBiC
interface. All computed values are reported as output, in ta-
ble format. The precise models used by QBiC for each TF
protein, as well as the PBM data used to train each model,
are reported as part the QBiC results. The user can further
process the results using the web interface (e.g. to specify a
more stringent P-value cutoff for the binding change pre-
dictions) and can download the full or filtered results. The
web interface also allows users to directly download models
or datasets used to obtain individual predictions, and pro-
vides links to the HGNC database (6) where users can find
additional information about individual TFs.

We are not aware of web servers with the same func-
tionality as QBiC. Users interested in evaluating the pu-
tative effects of non-coding mutations on TF-DNA bind-
ing can certainly use any of the available databases of po-
sition weight matrices (PWMs) (e.g. (8–11)) or deep learn-

ing models (12) of TF-DNA binding specificity, or search
existing databases of annotations for non-coding variants
(e.g. (13,14)). However, such databases do not provide in-
formation on the quality of the binding models, and, as
shown in the ‘Results’ section below, PWM and deep learn-
ing models are not as accurate as our OLS models in pre-
dicting the quantitative effects of DNA variants on TF bind-
ing. The OLS models used in QBiC also have the advantage
of providing a direct measure of the significance of each pre-
dicted TF binding change, given the model and the training
data. This unique feature of our models facilitates interpre-
tation of the results and allows users to prioritize variants
for further analysis and validation.

MATERIALS AND METHODS

OLS models of TF-DNA binding specificity

The OLS models used by QBiC were trained on curated
uPBM data from literature and our laboratory, mapped
to 582 human TF proteins. Each uPBM experiment mea-
sures the binding specificity of a TF for ∼44 000 60-bp long
DNA sequences, each containing a 36-bp variable region
followed by a constant 24-bp primer complement (neces-
sary for DNA double-stranding (3)). We use as features the
number of occurrences of each possible 6-mer within the 60-
bp sequences, and as outcomes the log-transformed fluores-
cence intensity signals, which reflect the levels of TF bind-
ing. The entire 60-bp sequence is used to count 6-mer occur-
rences, despite the fact that part of the sequence is constant,
because the TF proteins can bind at any location within the
60-bp DNA molecule. We consider each 6-mer and its re-
verse complement as the same variable and combine their
counts as one feature, resulting in a total of 2,080 features.
The relationship between the outcomes Y and the features
X is modeled by a multiple linear regression Y = Xβ + ε.

To characterize the TF binding change due to a single nu-
cleotide variant, we define binding scores for the wild-type
and the mutant sequences, as the sum of the coefficients for
all 6-mers overlapping the variant, in an 11-bp window. The
difference between these two scores, which represents the
binding change, can be expressed as a linear combination of
the regression coefficients: cTβ, where β is a vector contain-
ing the coefficients for all 2080 6-mer count features, and c
is a vector of the same length containing, for each 6-mer, the
difference in counts due to the variant (Figure 1). We note
that most components of c are 0, as the variant affects the
counts for up to twelve 6-mers.

By further assuming normality on the error term of the
linear regression model ε ∼ N(0, �2I), we are able to leverage
the statistical properties of OLS estimation in order to test
whether the binding change is statistically significant. The
null hypothesis H0: cTβ = 0 can be tested using a t-statistic:
t = cTβ̂/

√
cT�̂c. Here, β̂ is the OLS estimate for the co-

efficients vector: β̂ = (XT X)−1 XTY, and �̂ is an unbiased
estimate for the covariance matrix of β̂: �̂ = σ̂ 2(XT X)−1,
where σ̂ 2 = (Y − Xβ̂)T(Y − Xβ̂)/(n − p), with n being the
number of observations and p the number of features. Since
the regression contains ∼44 000 observations and 2080 vari-
ables, this t-statistic follows a t-distribution with ∼42 000
degrees of freedom. Thus, we can use a normal approxima-
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Figure 2. Web server results page for a sample mutation file containing ICGC breast cancer mutation data (the example use case ‘ICGC Breast Cancer
Mutations - Small’, available in QBiC). Output results were filtered to include only the FOXA1 transcription factor, and only mutations that create TF
binding sites, i.e. ‘unbound>bound’ mutations.

tion to derive the z-score and calculate the P-value of the
test. For each TF and variant given as input, QBiC calcu-
lates and reports the difference in TF binding, the corre-
sponding z-score and the associated P-value.

To select the uPBM data used in QBiC, we started
with 3342 datasets from CIS-BP (10), 245 datasets from
UniPROBE (8) that were not included in CIS-BP and
23 datasets generated in our laboratory (7). By using
the information in the Human Transcription Factors
database (15) for the publicly available uPBM data, and
manually curating the data generated in our laboratory, we
mapped 1451 uPBM datasets to 638 human TF proteins,
using both uPBM experiments that tested human TFs as
well as experiments for homologous TFs with high amino-
acid identity in the DNA-binding domain region, simi-
larly to Lambert et al. (15). Next, to assess the quality of
each uPBM data with respect to our task of training accu-
rate quantitative models of TF-DNA binding specificity, we
used the cross-validation accuracy of OLS models trained
on each uPBM dataset. We removed datasets of poor qual-
ity (cross-validation correlation <0.2 computed for the top
10% and top 20% sequences with the highest intensity), and
for each TF we selected at most six uPBM datasets, includ-
ing the top three datasets with the highest cross-validation
accuracy, as well as the top three datasets obtained for TFs
with the highest amino-acid identify to the human TFs.
The final mapping, which includes 667 uPBM datasets and
582 TFs, is available on the QBiC website in the ‘About’ sec-
tion.

In vitro measurements of TF binding changes due to single
nucleotide variants

The PBM technology can be used, with custom-designed

DNA libraries, to directly measure the in vitro effects of
single nucleotide variants on TF binding. To build custom
DNA libraries we first selected, at random, DNA sequences
containing binding sites for the TFs of interest, and then
we introduced all possible single nucleotide variants in the
binding site and the immediate flanking regions. Next, we
measured the TF binding intensity for all the sequences, and
we computed the log ratio of the binding signal between
each mutant and the corresponding wild-type sequence to
denote the TF binding change due to each variant.

We designed two such DNA libraries and used them to
perform custom PBM experiments for six TFs. The DNA
library for CREB1, RUNX1 and STAT3 included all single
nucleotide variants in the TF binding site (10–12 bp), while
the library for ETS1, ELK1 and GATA1 included all sin-
gle nucleotide variants in the TF binding site and the flank-
ing regions (36 bp). Because several TFs were tested against
each DNA library, for each TF we obtain binding data both
for variants in their specific binding sites, as well as variants
in non-specific regions (which were present in the DNA li-
brary because they are specific to other TFs). We used all
measurements to evaluate the accuracy of our predictions
of TF binding changes (see ‘Results’ section).

In vivo allele-specific binding data

Allele-specific measurements of TF binding from in vivo
ChIP-seq data have contributed to the identification of ge-
netic variants that have the potential to change TF binding
in the cell (16,17). After mapping ChIP-seq reads to each al-
lele of heterozygous variants, allele-specific binding (ASB)
events can be identified as the ones with significantly differ-
ent read counts between the alleles. Here, we used 32 252
ASB events and 79 827 non-ASB events across 81 TFs, as
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Figure 3. Performance of OLS models in predicting in vitro TF binding changes, compared to PWM and DeepBind models. When multiple PWM models
are available for a TF, we choose the one that gives the best prediction result. We note that DeepBind ChIP-seq models are not available for RUNX1, and
DeepBind SELEX models are not available for GATA1, CREB1 and STAT3. The in vitro binding data used in this analysis is available in Supplementary
Table S1.

reported in (16), to compare the performance of our OLS-
based models versus existing models of TF binding speci-
ficity (see ‘Results’ section).

QBiC-Pred web server implementation

QBiC-Pred was developed using the Flask web framework
and it runs under Apache 2.4. Predictions of the effects of
input variants on TF binding are made using pre-computed
12-mer tables encoding the predicted TF binding changes,
z-scores and P-values for all possible mutations in all pos-
sible contexts (please see the QBiC About page for de-
tails). To further speed up the computations, QBiC uses
asynchronous multiprocessing with the Celery framework,
where four workers (i.e. processes) are spawned for each
request. Each worker extracts predictions for a subset of
the input TFs. The prediction results are saved in a Redis
database for 2 days; during this time the user can access the
results using a unique job identifier, and can interactively
process the results within QBiC (Figure 2). Users can also
download the prediction results and re-upload them later,
even after the job expired, for further processing within the
QBiC framework.

Users can leave the QBiC website while the predictions
are being calculated, and return to the job later using the
link provided in the ‘Recent Jobs’ dropdown menu. Im-
portantly, the time needed to execute a prediction job de-
pends mostly on the number of TFs selected as input, as
QBiC needs to read into memory the 12-mer table corre-
sponding to each TF. Adding more variants to the input
mutation/variant file will have an almost negligible impact
on the processing time. After all predictions are computed,
they are displayed in a table format with filtering capabili-

ties. Users can post-process the results and download them
as csv or tsv files.

RESULTS

In previous work we showed that our OLS model-based pre-
dictions of TF binding changes due to DNA mutations cor-
relate well with measured changes in gene expression (2). We
also analyzed a large set of pathogenic non-coding variants,
showing that these variants lead to more significant differ-
ences in TF binding between alleles, compared to common
variants, which indicates that there is a strong regulatory
component to pathogenic non-coding variants (2). Here, we
complement our previous evaluations of the OLS models
by assessing their accuracy in predicting in vitro and in vivo
TF binding changes, and by comparing our OLS models to
PWMs and deep learning models of TF binding specificity.

OLS models of TF binding specificity outperform PWMs and
DeepBind models in predicting in vitro TF binding changes

As described in ‘Materials and Methods’ section, we
designed custom DNA libraries for PBM experiments
to test the effects of all single nucleotide variants within
binding sites of six human TFs. We used the log ratio of the
binding intensity between a mutant and its corresponding
wild-type site to represent the TF binding change. Next,
we made predictions of these binding changes using
six types of models: OLS models, PWM models used
in (16), PWM-based sTRAP models (18) and DeepBind
models (12) trained on in vivo ChIP-seq data, in vitro
HT-SELEX data and in vitro uPBM data. The uPBM
datasets used to train DeepBind and OLS models were the
same. The PWMs were obtained from the JASPAR (11)
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Figure 4. Measured and predicted effects of single nucleotide mutations in an ELK1 binding site and its flanking regions. Since the wild-type sequence
contains an ELK1 binding site, most of the variants decrease binding. The A to T mutation in the middle generates a perfect match to the core ELK1
motif TTCC. This, however, does not increase the binding signal, likely because the flanking regions already made the ATCC site very strong. Both the
PWM and DeepBind models incorrectly predict a dramatic increase in binding due to the A to T mutation. The OLS model, however, correctly predicts
the TF binding to be nearly unchanged. There are also positions where the magnitude of the TF binding change seems to be overestimated by our OLS
model but not so much by PWM-based and DeepBind models, such as the T to C mutation at the last position. We note, however, that in this case the
correctness of the magnitude of the predicted increase is difficult to assess. For the PWM and the DeepBind SELEX models, the largest predicted increases
are incorrect, so we cannot compare them directly to predicted increase at the last position. For the PWM-based sTRAP model and the DeepBind PBM
model, the magnitude of the predicted increase at the last position is larger than for other correctly predicted increases, similarly to our OLS model. Thus,
it is difficult to judge which model performed best at predicting this particular increase. Nevertheless, over all mutations tested, the OLS model performs
best (see also Figure 3).

and HOCOMOCO (19) databases. For TFs with multiple
PWMs available, the results we report below are for the
PWM that performed best in our evaluation (ETS1:
HOCOMOCO ETS1 HUMAN.H11MO.0.A, ELK1:
HOCOMOCO ELK1 HUMAN.H11MO.0.B, GATA1:
JASPAR MA0035.2, CREB1: JASPAR MA0018.2,
RUNX1: JASPAR MA0002.2, STAT3: HOCOMOCO
STAT3 HUMAN.H11MO.0.A). For DeepBind ChIP-seq
and SELEX models, we used the v0.11 tools made available
for download by the authors (12). For DeepBind PBM
models, the authors kindly provided assistance training the
models on our uPBM data.

OLS models can directly predict the TF binding change
due to a variant in a fixed-length or variable-length se-
quence. In contrast, for PWM and DeepBind models we
computed likelihood scores for the wild-type and mutant
sequences, based on fixed-length window scores. For these
models, we predicted the binding change as the difference
between the maximum of all wild-type window scores and
the maximum of all mutant window scores. This definition

is the same as delta track metric defined in Wagih et al. (16),
which performed best in their study.

The correlations between model predictions and the
TF binding changes measured using custom PBM exper-
iments across the six TFs are shown in Figure 3. Except
for RUNX1, for which the DeepBind SELEX model was
slightly better than the rest of the models, DeepBind PBM
models and our OLS models outperformed the other mod-
els in predicting TF binding changes in vitro. Compared to
DeepBind PBM models, our OLS models are simpler and
much faster for training and for predictions. In addition,
OLS models can be used to assess the statistical significance
of the TF binding changes predicted for each variant.

Figure 4 shows a detailed comparison of five models
(OLS, PWM, sTRAP, DeepBind SELEX and DeepBind
PBM) for a binding site of TF ELK1. The input mutation
file used in QBiC to generate the ELK1 binding change pre-
dictions shown in Figure 4 is available as Supplementary Ta-
ble S2, and can also be downloaded from the QBiC website
as the sample input file in sequence format.
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Figure 5. Relationship between OLS model quality (assessed as the in-
sample cross-validation correlation) and the prediction accuracy on in-
dependent in vitro mutation data. Figure shows the performance of OLS
models trained on nine different uPBM datasets for TF ELK1.

The cross-validation accuracy of OLS models correlates with
their accuracy in predicting in vitro TF binding changes

A TF can have multiple PWM models and DeepBind mod-
els available, and it is often difficult to choose which model
to use for prediction. In contrast, for our OLS-based ap-
proach, we are able to rank the models based on cross-
validation accuracy on the uPBM training dataset. As ex-
pected, we found that there is a positive relationship be-
tween the in-sample cross-validation accuracy and the TF
binding change prediction accuracy on independent in vitro
data (Figure 5). Thus, when a TF has multiple OLS models,
we recommend choosing the model with the highest cross-
validation accuracy. Detailed information on the available
OLS models for each human TF can be found in the ‘About’
section of the QBiC website.

OLS models of TF binding specificity outperform PWMs and
DeepBind models in predicting in vivo allele-specific binding
variants

To test the performance of OLS models on in vivo data, we
used the allele-specific binding (ASB) and non-ASB vari-
ants in (16). We compared the performance of OLS mod-
els, PWM models and DeepBind models in distinguishing
ASB variants from non-ASB variants. The performance
of each model was assessed using the area under the Re-
ceiver Operating Characteristic curve (AUROC) measure.
For PWMs and DeepBind ChIP-seq models, we used the
binding change scores reported by Wagih et al. (16). For
DeepBind SELEX and PBM models we derived the binding
change scores similarly to Wagih et al. (16), and used them
for the classification. For OLS models we used the z-score
outputs to classify the variants. The DeepBind PBM and
OLS models were trained on the same sets of PBM data.
To illustrate how QBiC can be used to analyze ASB and
non-ASB variants, in Supplementary Table S3 we provide
the input mutation file corresponding to the ASB data for

TF MAFK, in VCF format. This file is also available on the
QBiC website, as the sample input file for the VCF format.

A total of 14 human TFs have PWM models, OLS mod-
els, and DeepBind models available. For these TFs we di-
vided their ASB variants into gain-of-binding and loss-of-
binding variants (for which the TF binding changes have
opposite signs), and for each set we used the different
TF binding models to distinguish between ASB and non-
ASB variants. OLS models clearly outperformed PWMs
(Figure 6A), which was expected given the limitations of
PWM models in capturing TF binding specificity (7,20–22).
OLS models also outperformed DeepBind SELEX models
trained on in vitro binding data from HT-SELEX experi-
ments (Figure 6B) and DeepBind PBM models trained on
in vitro data from PBM experiments (Figure 6C) demon-
strating that, when using only DNA sequence information
for training, OLS models perform best in predicting in vivo
allele-specific binding variants.

We also compared the performance of OLS models to
DeepBind models trained on in vivo ChIP-seq data (Fig-
ure 6D). Using OLS models we obtained larger AUROC
values for about half of the TFs, and overall the two mod-
els had similar power in distinguishing ASB from non-ASB
variants. Nevertheless, we note that the DeepBind ChIP-
seq models were trained on ChIP-seq data from the same
cell type as the ChIP-seq data from which the ASB variants
were called. Therefore, OLS models managed to reach sim-
ilar performance to models trained on the ChIP-seq data
itself, despite the fact that OLS models do not use any cell
type-specific information.

DISCUSSION

Quantitative predictions of TF binding changes can help
us understand the functional roles of genetic variants, and
prioritize variants that are likely to have regulatory effects.
QBiC-Pred provides a fast and accurate approach to predict
TF binding changes due to genetic variants, based solely on
their sequence context. QBiC-Pred models are trained on
in vitro high-throughput universal PBM data, and they out-
perform current PWM-based models and DeepBind mod-
els, which are also based mainly on DNA sequence infor-
mation. In addition, QBiC-Pred offers a way to statistically
test the significance of each variant, taking the quality of the
predictive models into account. The quality measure of the
models also helps circumvent the problem of deciding which
model to use when multiple models are available, which is
often encountered when making predictions using PWMs.

Several recent methods, including Sasquatch (23),
DeepSEA (24) and deltaSVM (25), predict the impact
of non-coding variants by taking advantage of cell- and
tissue-specific information, oftentimes beyond TF binding
data. These methods are complementary to ours: they
focus on overall functional changes caused by non-coding
variants, while we examine more specifically the potential
binding changes for each individual TF. For example,
Sasquatch predicts the change in the DNase footprint due
to a variant, but does not directly pinpoint the binding of
which TF(s) is affected by the variant (unless one post-
processes the results using specific TF binding models). In
contrast, QBiC-Pred can make quantitative predictions in
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Figure 6. Performance of OLS, DeepBind and PWM models in distinguishing between ASB and non-ASB variants identified from in vivo ChIP-seq data.

a TF-specific manner, for a large number of TFs, although
it cannot predict the effect of the variant in any specific cell
type. Using these methods together would give us a better
understanding of the functional impact of non-coding
variants in the cell.

Annotation-based methods such as rVarBase (26), IN-
FERNO (27), HaploReg (28) and RegulomeDB (14) can
also be used to investigate potential regulatory variants.
These methods test whether the input variants fall within
known regulatory regions annotated, for example, using
PWM models and cell type-specific data. Thus, predictions
made by annotation-based methods depend on the quality
of the existing annotations, and, in the case of TF binding

sites, these methods are unlikely to detect variants that lead
to the creation of new binding sites in the genome. In ad-
dition, we note that none of the methods mentioned above
provides a direct measure of the confidence in the predicted
changes in TF binding, based on the quality of the binding
data and model, which is a distinguishing feature of QBiC-
Pred.

In summary, QBiC-Pred uses OLS models of TF-DNA
binding specificity to make accurate predictions of TF bind-
ing changes due to single nucleotide variants. In addition to
the current functionalities of QBiC-Pred, a natural exten-
sion would be to allow input sequences containing multiple
variants. As shown in our previous work, OLS models per-



W134 Nucleic Acids Research, 2019, Vol. 47, Web Server issue

form very well on data containing multiple variants, being
able to predict ∼50% of the resulting variation in gene ex-
pression (2). Another extension would be to include mod-
els trained on other types of high-throughput in vitro TF
binding data, such as HT-SELEX data (29,30). This would
extend the list of human TFs that can be analyzed using
QBiC-Pred beyond the 582 TFs with available high-quality
uPBM data. This extension, however, will require the de-
velopment of new methodology that takes into account the
statistical properties of the HT-SELEX data, in order to al-
low us to use the data directly to compute significance levels
(P-values) reflecting our confidence in the predicted effects
of mutations on TF binding.
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