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A B S T R A C T

Dominance and diversity are important characteristics for the description of communities. The most commonly
used indices are Simpson's dominance indexand Shannon's and Simpson's indices of diversity. This paper uses the
basic concepts of statistics as applied to community analysis to develop new dominance and diversity indices that
will enable scientists to establish correlations among various indices. The present study proves that the variance of
the number of individuals of different species in a sample can be used to calculateSimpson's dominance and
diversity indices. New indices have been developed from the ratios ofthe variance to number of species, and the
mean number of individuals per species in a quadrat. A wide range of data, varying from high dominance to high
evenness, was simulated for 25 quadrats, with each quadrat having ten species and 100 individuals in different
combinations. Variance and standard deviation-based indices were computed using the simulated data and were
found to be highly correlated with Simpson's and Shannon's indices. The proposed indices will give both the
dominance and diversity of a community on the same scale based on the same statistic. Another important
contribution of the present study relates to the variance of a sample consisting of a single value. It has been proved
that the variance of a sample having only one value is equal to the square of that value. The paper establishes a
new link between diversity studies and statistics.
1. Introduction

The computation of diversity indices is a key tool for the quantitative
characterisation of community statistics [1]. These indices help in the
appraisalof the ecological and biological features of the environment via
community structure [2]. Changes in the diversity of habitats wrought by
allogenic forces and pollutants can be assessed using biotic or diversity
indices [3]. Nature promotes diversity, whereas eutrophication increases
dominance by one or a few species [4]. Since the application of single
numerical indexesfor the determination of the community structure and
ecological status of its ambient environment oversimplifies the real
importance of its biodiversity, the literature suggests the use of multiple
indices for diversity evaluation [5, 6, 7, 8, 9]. The theory of community
diversity is based on two important features: the number of species, and
the evenness of species [3, 6, 10]. To formulate an index that links these
two features of diversity is a key challenge [11, 12, 13]. One of the key
featuresof species diversity evaluation is that the basic constituents of
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most of the indices are associated with each other, and frequently
participate together. In essence, diversity indices attempt to characterise
the dataset on the abundance and number of species present in a com-
munityintoa single number, i.e., the diversity index, from which com-
munity structure is hypothetically elucidated [9]. In an overall
assessment, species diversity is a function of the number of species and
theirrelative abundance. An increase in diversity requires a quintessen-
tial rise in the equitable distribution of species, even if the number of
species decreases. Diversity is a significant feature of the community
structure in which the presence of rare specieswould otherwise have
been oflittle significance [14].

There are many diversity indices – Shannon, Simpson, Renyi, Weiner,
etc. – which are used for determining the diversity and equitability of
diverse communities [15, 16, 17, 18].

These indices have been widely applied by various workers for
evaluating the communities in diverse ecosystem types [19, 20, 21, 22].
Biodiversity studies, in general, can be undertaken at three hierarchical
ail.com (V. Kumar).
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levels:

i) Within-community species diversity (α-diversity);
ii) Change of diversity between communities (β-diversity); and
iii) Multi-community diversity (γ-diversity).

Alpha (α) diversity indicates the richness of species [23] at the level of
individual communities, while beta (β) diversity represents the rate of
species turnover [24, 25] between two adjoining communities. Gamma
(γ) diversity represents the number of species in several adjoining com-
munities, and at the landscape level [23]. Among all the indices at the
level of α-diversity, Shannon's [15] index presents remarkable charac-
teristics and is used extensively [26, 27, 28]. Simpson [16] developed the
first index which indicates the probability of two randomly chosen in-
dividuals associating with the same species. Kempton and Taylor [29]
proposed a new α-diversity index, the Q-statistic,which depends upon the
quartiles of the species richness distributions. The first β-diversity index
was developed by Whittaker in the 1960s [24]. Wilson and Mohler [30]
developed another index that is dependent on the gradient length and the
species turnover. Okland [31] used the ordination of sample plots to
assess β-diversity with respect to the standard deviation of the species
turnover.

α-diversity can be studied essentially for its two most important
characteristics: dominance and diversity. Dominance is a measure of the
information energy of a system, whereas diversity is the information
entropy of a system. If a system consists of information which is
concentrated in one or a few species, i.e., if one or a few species have the
maximum number of individuals, then that system has more dominance.
On the other hand, if a system shares information more or less equally
among its species, i.e., the number of individuals of different species are
equal or nearly equal, it has more diversity.

Most of the dominance and diversity indices that are being exten-
sively used considerthe probability of occurrence of a species in a com-
munity, or a sample. A comprehensive look at the community
organisation reveals the patterns of diversity on the following accounts:

i) Number of species –single-species communities vs. multispecies
communities;

ii) Number of individuals of different species – dominant species vs.
evenly distributed species;

iii) Average number of individuals per species; and
iv) Total number of individuals of all the species in the community –

sparse community or a thick community.

Simpson's index of dominance and the sample variance share a
common feature:both of these characteristics involve sums of squares in
their formulae. In the case of Simpson's index, it is the sum of squares of
probabilities, whereasin case of variance it is the mean sum of squares of
deviations. Since the sum of squares of deviations can be converted to the
sum of squares of probabilities, we should be able to derive Simpson's
index fromthe sample variance. Furthermore, from the data on the
variance of the number of individuals of different species within a
community, we canalso develop new dominance and diversity indices. A
review of the literature reveals that variance, standard deviation, stan-
dard error and coefficient of variation are the most frequently used sta-
tistics in biology and can be used to assess the dominance and diversity of
communities. Diversity studies may also extend beyond the domain of
biology into other research areas. For example, we can compare two
languages on the basis of their information content using diversity
indices. Development of diversity indices from descriptive statistics will
give us a new tool to compare different systems based on their variabil-
ities. This paper, therefore, attempts to derive new dominance and di-
versity indices based on the numerical strength of different species in a
quadrat, or any other biological sample.

The new indices developed were computed for the simulated data and
were also regressed on the dominance and diversity indices already in
2

use. The problem was addressed as per the plan given below:

1. Derivation of the relationship between thevariance of a quadrat
consisting of two or more species (K > 1) and Simpson's dominance
index.

2. Sample variance,S2 ¼
PK

i¼1
ðxi�MÞ2

K�1 ; cannot be defined if (K ¼ 1). The
present paper envisages to define the variance of a sample for (K¼ 1).

3. Derivation of formulae for dominance and diversity indices from
community/quadrat statisticsconsisting of one or more species (K �
1).

4. To draw binary information plots of new derived indices.
5. To compute Shannon's, Simpson's and variance-based indices for

simulated data on 25 quadrats.
6. To correlate newdominance and diversity indices developed with

Shannon's and Simpson's indices.

2. Methods

The terms used in this paper are explained as follows:

2.1. Community

A community comprises of all the species (K species) present in an
area, each species being represented by (xi) number of individuals. In
statistical terms, a community can be treated as a population of size equal
to K, and the number of individuals of a species can be considered as the
number of observations (xi), or the values.

2.2. Quadrat

Community characterisation is generally carried out using sampling
units called quadrats. A quadrat is a sample drawn from a community,
and ideally represents the same species composition as that of the com-
munity consisting of K species.

It is presumed that each species in a quadrat hasthe number of in-
dividuals (xi) in the same proportion as in the community. In a statistical
context, a quadrat is a sample of size K. The number of individuals of a
speciesmay be considered as an observation (xi) of a sample. In this
paper, in order to avoid the multiplicity of terms, K and x have been used
as the number of species and number of individuals per species, respec-
tively, both for a community and a quadrat. In particular, for a single-
species community or quadrat, K is equal to 1. The indices derived
from quadrats are generally known as community indices.

2.3. Mean number of individuals

The mean number of individuals per species in a community, in sta-
tistical terms, is a population parameter, whereas for a quadrat, it is a
statistic. In this paper both the meanshave been represented as M.

2.4. Measures of dispersion

In statistical terms, the variance of the number of individuals of
different species (xi) around their mean Min a communityis a parameter
and is represented as (σ2). For a quadrat (sample) it will be a statistic (Var
or S2). Similarly, notations used for the standard deviation of a com-
munity anda quadrat are (σ) and (S) respectively. SE and CV represent
standard error and coefficient of variation of the number of individuals of
different species in a quadrat, respectively. Notations used in statistics
and community analysis are given in Table 1.

2.5. Maximum variance

The variance of a sample varies with its composition. A theoretical
statistic, Var(max), has been defined as the maximum variancethat a



Table 1
Terminology used in statistics and community analysis.

Population Sample Community Quadrat

Population size
(K)

Sample size (K) Number of spp. (K) Number of spp.
(K)

Observations or
Values (xi)

Observations or
Values (xi)

Number of
individuals of a sp.
(xi)

Number of
individuals of a sp.
(xi)

Population mean
(M)

Sample Mean (M) Mean number of
individuals per sp.
(M)

Mean number of
individuals per sp.
(M)

Population
variance (σ2)

Sample variance
(S2)

Community
variance (σ2)

Quadrat variance
(S2 or Var)

Population
standard
deviation (σ)

Sample standard
deviation (S)

Community
standard deviation
(σ)

Quadrat standard
deviation (SD)

Table 2
Example of a computation of Var(max) using theoretic single value variable.

Sample Quadrat Sample I Sample II Sample III

All values
equal

Single
value
variable

Experimental
Data

Sample size
(K)

Number of
species

5 5 5

Values (xi) Number of
individuals of
different species

2, 2, 2, 2, 2 10, 0, 0, 0,
0

2, 4, 1, 2, 1

Mean (M) Mean number of
individuals per
species

2 2 2

Sample
variance
(S2) or Var

Quadrat variance 0 Var(min) 20
Var(max)

1.5
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sample can have. Theoretically, a sample of size K and meanM will have
the maximum variance if one of its elements is assigned the sum of all the

values,
PK
i¼1

xi, and all other elements are zeros. Such a sample has been

named as a single-valuevariable. Any sample, with the same size (K) and
Table 3
Data used for 25 simulated samples with 10 species (Sp.) and 100 individuals per sa

Number of individuals in quadrats

Quad. Sp.1 Sp.2 Sp.3 Sp.4 Sp.5

Q1 10 10 10 10 10
Q2 91 1 1 1 1
Q3 35 3 26 8 9
Q4 3 5 4 2 1
Q5 1 13 4 9 20
Q6 32 1 2 12 23
Q7 1 2 4 23 8
Q8 1 32 7 23 1
Q9 31 22 17 4 7
Q10 8 3 13 24 12
Q11 8 9 12 18 21
Q12 3 6 5 3 23
Q13 12 24 3 29 3
Q14 2 3 7 6 1
Q15 4 34 2 2 3
Q16 1 3 13 12 25
Q17 7 12 32 4 7
Q18 1 4 66 3 4
Q19 12 19 9 3 3
Q20 2 22 44 1 2
Q21 4 6 27 18 20
Q22 2 3 17 4 7
Q23 3 3 9 8 21
Q24 3 4 45 6 23
Q25 54 13 2 1 6

3

mean (M), will have a variance between 0 (when all values are equal) and
Var(max) (single-valuevariable). An example is given in Table 2.

2.6. Shannon-Weiner's and Simpson's indices

The probability of occurrence of individuals of a species in a com-
munity or a quadrat (pi) is given as,

pi¼ Number of individuals of a species in a community or a quadrat
Total number of individuals of all the species in the community or quadrat

Shannon's and Simpson's indices were computed using the equations
as given below:

Shannon's diversity index, H ' ¼ � PK
i¼1

pi ln pi

Simpson's dominance index,C ¼ PK
i¼1

p2i

Simpson's diversity index,C' ¼ 1� PK
i¼1

p2i

2.7. Data for simulation studies

In order to understand the effectiveness and utility of the newly
developed indices, data were simulated for 25 quadrats, with each
quadrat consisting of 10 species and 100 individuals (Table 3) in
different proportions so as to mimica wide range of community charac-
teristics – from a community dominated byone species, to a communi-
tyconsisting of tenevenly distributed species. Dominance and diversity
indices were generated for all of the quadrats, andlinear, non-linear and
Spearman's rank correlations were calculated to correlate the newly
developed indiceswith the commonly used indices, using PAST-3 and
MS-Excelsoftware.

3. Results

3.1. Population variance as ameasure of information

Consider a large community consisting of K species, with xi repre-
senting the number of individuals of different species. LetM be the mean
mple to find correlations among with various dominance and diversity indices.

Sp.6 Sp.7 Sp.8 Sp.9 Sp.10

10 10 10 10 10
1 1 1 1 1
5 4 3 5 2
2 2 70 8 3
22 12 4 5 10
2 23 2 2 1
2 3 46 10 1
1 12 2 12 9
5 4 3 5 2
12 5 12 9 2
4 12 6 2 8
11 15 17 5 12
6 8 5 7 3
51 5 11 12 2
7 37 6 3 2
21 2 4 12 7
4 5 8 7 14
1 13 4 2 2
12 5 1 4 32
6 5 3 4 11
1 6 2 11 5
3 4 16 1 43
11 1 24 14 6
2 1 1 8 7
4 2 1 9 8
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number of individuals per species in the community; then the variance of
the community (σ2) may be treated as population variance and may be
defined as per Eq. (1) [32]

σ2 ¼
PK

i¼1ðxi �MÞ2
K

…ðK� 1Þ: (1)

Parkash and Thukral [26] proved that variance is a measure of in-
formation as given by Simpson's concentration. In Eq. (1), dividing and
multiplying (xi) with the total number of individuals of all species in the

community (
PK
i¼1

xi) we get,

σ2 ¼

PK
i¼1

  
xiPK

i¼1
xi

PK
i¼1xi

!
�M

!2

K
…ðK� 1Þ:

Substituting xiPK

i¼1
xi
¼ pi; and

PK
i¼1

xi ¼ KM;we get

σ2 ¼
PK

i¼1ðpiKM �MÞ2
K

:

Simplifying the equation, we get,

σ2 ¼M2
�
K
XK
i¼1

p2i � 1
�
…ðK� 1Þ: (2)

Eq. (2) proves that population variance (σ2) is a measure of infor-

mation (
PK
i¼1

p2i ).
3.2. Derivation of Simpson's indices from population variance

In terms of community characterisation, Simpson's index of domi-

nance, C ¼ PK
i¼1

p2i , (Simpson, 1948) is based on the probability that two

individuals drawn from a community belong to the same species. From
Eq. (2) we find that the variance-to-mean square ratioof individuals of
different species is a linear function of Simpson's index of dominance.

σ2

M2
¼K

XK
i¼1

p2i � 1…ðK� 1Þ:

Vice-versa, Simpson's indices of dominance (C)and diversity (C0) can
be derived from the community parameters of variance, number of
Table 4
Sample statistics for single value variables of different sample sizes (number of
species, K> 1), with x1> 0, and other sample values equal to 0, to extrapolate the
variance/mean square ratio for K ¼ 1.

Sample size, (number
of species, K)

2 3 4 5 6 7 8

x1 10 10 10 10 10 10 10
x2 0 0 0 0 0 0 0
x3 0 0 0 0 0 0
x4 0 0 0 0 0
x5 0 0 0 0
x6 0 0 0
x7 0 0
x8 0
MeanðMÞ 5 3.33 2.5 2 1.66 1.42 1.25
VarðMaxÞ 50 33.33 25 20 16.66 14.28 12.5
VarðMaxÞ

M2

2 3 4 5 6 7 8

SD 7.07 5.77 5 4.47 4.08 3.77 3.53
SE 5 3.33 2.5 2 1.66 1.42 1.25

Var(Max) is achieved when one of the values of x1 > 0, and other x values are
zeroes. SD ¼ Standard deviation, SE ¼ Standard error. The value 10 is tentative.
Any value of x1 > 0 will give the Var(Max)/M 2 ratio equal to K.

4

species and the number of individuals per species.

C¼
XK
i¼1

p2i ¼
σ2

KM2
þ 1
K
…ðK� 1Þ:

Putting the values of K ¼ 1, and x1 ¼ Min Eq. (1), σ2 is equal to 0.
Therefore, as per the equation given above, Simpson's index of domi-
nance will be equal to 1. Simpson's index of diversity (C0) [20, 33] is
given below:

C' ¼ 1�
XK
i¼1

p2i ¼ 1�
�

σ2

KM2
þ 1
K

�
…ðK� 1Þ:

If the variance of a large community consisting of only one species (K
¼ 1) is zero, then Simpson's index of diversity will also be zero (C’ ¼ 0).
3.3. Derivation of Simpson's index from sample variance for K > 1

Phytosociological studies are generally conducted using samples
called quadrats. Let a quadrat be taken froma community which repre-
sents the same proportions of individuals of species as in the community.

Then, the variance (Var, or S2) of number of individuals (x) of
different species in the quadrat, as per the definition of sample variance
will be

S2 ¼
PK

i¼1ðxi �MÞ2
K � 1

…ðK> 1Þ; (3)

whereM represents the average number of individuals per species, and K
is the number of species present in the quadrat. We know that the sample
variance (S2) is an unbiased estimator of population variance (σ2) [34,
35]:

σ2 ¼ðK � 1Þ
K

S2:

From Eqs. (2) and (3) we get,

Var¼ S2 ¼ KM2

K � 1

�
K
XK
i¼1

p2i � 1
�
…ðK> 1Þ: (4)

As shown in Eq. (4)
PK
i¼1

p2i < 1, the variance of a quadrat consisting of

more than one species will be less than that of a quadrat consisting of a
single species. Rearranging Eq. (4), Simpson's index of dominance may be
obtained for quadrat statistics

XK
i¼1

p2i ¼
�
K � 1
K2

�
S2

M2
þ 1
K
…ðK> 1Þ:

3.4. Derivation of sample variance forK ¼ 1

As per Eq. (3), the variance of a sample cannot be defined for K¼ 1. In
order to derive dominance and diversity indices from sample variance, it
is necessary to define the variance of a sample with a single observation.
Since the mean of a single value is the value itself, it is evident that as the
value of K approaches 1, the value of xi approaches the mean, and the
equation assumes an indeterminate form, i.e., the variance (S2) ap-
proaches 0/0.

Then, as per Eq. (4), the maximum variance of a sample will be ob-

tained if the value of
PK
i¼1

p2i ¼ 1. Assume that a sample consists

ofKobservations:½x1; x2; x3 ;…; xK �, such that
PK
i¼1

xi 6¼ 0. Then, numeri-

cally we can prove that among all the samples of size K,a sample con-

sisting of values in the form,½PK
i¼1

xi; 0; 0;…; 0�, will have the maximum



Fig. 1. Theoretical plot between sample size (K) and Var/Mean square ratio for quadrats in which all the individuals belong to one species using sample vari-
ance formula.
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variance. Putting the value of
PK
i¼1

p2i ¼ 1 in Eq. (4) gives us an equation for

the maximum variance,

VarðmaxÞ¼ KM2

ðK � 1Þ ðK� 1Þ¼KM2
…ðK� 1Þ: (5)

Eq. (5) is a result of (K-1)in the denominator, cancelling out (K-1) in
the numerator. This leads us to an important result to define the variance
of a sample for K ¼ 1,

Var
�
maxÞ¼Var¼M2 ¼ x21…ðK¼ 1

�
: (6)

Thus, the variance of a sample consisting of a single value is equal to
the square of the value. The result in Eq. (6) can also be proved from-
thegraphical analysis of data given in Table 4. In order to define the
variance of a single observation, let us define a single-valuevariable (X) in
which the first value of x > 0, and all other values are zeros. That is,

X : ½x1; 0; 0;…; 0�…ðx1 > 0Þ:
We can find the variance of a sample for K ¼ 1 by extrapolation. A

variable will have the maximum variance, Var(max), if,
PK
i¼1

p2i ¼
1:Among all the possible variables with the same K and M, the single-
valuevariable will have the maximumsample variance, Var(max). For
example, let us define different variables with K ¼ 4, and M ¼ 5,

X : ½20; 0; 0; 0�; A : ½10; 5; 5; 0�; B : ½8; 5; 4; 3�; C

: ½5; 4; 2; 9�; etc:
If we compute the variances of the samples given above andother

similar variables, the single-valuevariable (X), the first one given above,
will have the maximum sample variance.

We can find the sample variances of single-value variables for
different values viz., K ¼ 2, 3, 4, etc. Table 4 gives the single-value
variables, and their variance/mean ratios. It is seen in the Table that,
for a single-valuevariable, the following relationship holds,

VarðmaxÞ
M2

¼K…ðK> 1Þ:

Fig. 1 gives Var(max)/M2 ratios for K > 1. We can jointhese points to
get a straight line with a slope equal to 1. Extrapolating this straight
lineto K ¼ 1 gives the value of Var(max)/M2as equal to 1. This gives us a
5

graphical method to provethat the variance of a variableconsisting of
only a singlevalue, x > 0, is equal to x2. Using this method, we can find
the variances of single-species communities and quadrats, which we
proved mathematically in Eq. (6).

3.5. Population variance for K ¼ 1

On the other hand, using the population variance formula (Eq. 2), we
get,

σ2
max

M2
¼K

XK
i¼1

p2i � 1…ðK� 1Þ:

For
PK

i¼1p
2
i ¼ 1; σ2max

M2 ¼ K� 1,and

σ2
max ¼ 0…ðK¼ 1Þ:

3.6. Properties of sample variance with K ¼ 1

Sample variance for K ¼ 1 follows the important properties of sample
variance forK>1.

3.6.1. Multiplication of the variable (K ¼ 1) with a constant
Let X and Y be random variables, and c be a constant. Then, the

variance of (cX) will be [34],

VarðcXÞ¼ c2VarðXÞ ::: ðK> 1Þ:
For a sample with K ¼ 1,

VarðcXÞ¼ c2M2 ¼ c2VarðXÞ…ðK¼ 1Þ:

3.6.2. Covariance between two variables for K ¼ 1
Covariance is given by,

CovarðX;YÞ¼
PK

i¼1ðxi �MxÞ
�
yi �My

�
K � 1

;

where Mx and My are the means of X and Y, respectively. On simplifying
we get,

CovarðX;YÞ¼
PK

i¼1ðxiyiÞ � K
PK

i¼1
xi
PK

i¼1
yi

K2

K � 1
:



Table 5
Sample covariance between pairs of single value variables, X and Y, with one of the values of xi > 0, and the other values of x equal to zeroes.

Sample size, (number of species, K) K ¼ 2 K ¼ 3 K ¼ 4 K ¼ 5 K ¼ 6

Samples (X,Y) X Y X Y X Y X Y X Y

Species Number of individuals

x1 > 0 10 4 10 4 10 4 10 4 10 4
x2 0 0 0 0 0 0 0 0 0 0
x3 0 0 0 0 0 0 0 0
x4 0 0 0 0 0 0
x5 0 0 0 0
x6 0 0
Mean (M) 5 2 3.33 1.33 2.5 1 2 0.8 1.66 0.66
Covar:ðX;YÞ 20 13.33 10 8 6.66
Covar=ðMX ;MY Þ 2 3 4 5 6
Regr:ðX;YÞ 0.4 0.4 0.4 0.4 0.4

The values 10 and 4 are tentative. Any set of values of x1 > 0 will give the Covar/(M1M2) ratio equal to K.

Fig. 2. Graph to extrapolate the sample covariance of single value variables.

Fig. 3. Graph between Simpson's Dominance and Diversity indices.
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Table 6
Dominance indices developed from quadrat statistics.

Name of the Dominance
index

Statistic used as
Dominance index

Information equation for
Dominance index

Max. Dom.
for K spp.

Dom. for
single sp.

Dom. for evenly
distributed spp.

Comments

Variance Dominance index Var KM2

K � 1
ðK
XK
i¼1

p2i � 1Þ
KM2 M2 0 High scale of dominance. Not

preferred.

Variance to mean square
ratio Dominance index

Var
M2

K
K � 1

ðK
XK
i¼1

p2i � 1Þ
K 1 0 Gives dominance on a scale of

number of spp.

Variance to mean ratio
Dominance index

Var
M

KM
K � 1

ðK
XK
i¼1

p2i � 1Þ
KM M 0 Dominance on a scale of number of

individuals. Useful for sparse
communities.

Variance to mean square
per species Dominance
index

Var
KM2

1
K � 1

ðK
XK
i¼1

p2i � 1Þ
1 1 0 Dominance on a scale of 0–1. Most

useful. Similar to Simpson's
dominance.

Variance to mean per
species Dominance index

Var
KM

M
K � 1

ðK
XK
i¼1

p2i � 1Þ
M M 0 Dominance scale of 0 to mean

number of individuals per species.

Variance per species
Dominance index

Var
K

M2

K � 1
ðK
XK
i¼1

p2i � 1Þ
M2 M2 0 Large scale of 0 to number of

individuals per species squared.

Standard deviation
Dominance index

SD
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

K � 1
ðK
XK
i¼1

p2i � 1Þ
vuut M√K M 0 High scale variability. Useful for

sparse communities.

Coefficient of variation
Dominance index

CV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

K � 1
ðK
XK
i¼1

p2i � 1Þ
vuut √K 1 0 Scale of 0 to square root of species.

Standard error Dominance
index

SE
Mffiffiffiffi
K

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

K � 1
ðK
XK
i¼1

p2i � 1Þ
vuut M M 0 Scale of 0 to mean number of

individuals per species.

Simpson's Dominance
index

p
C ¼ PK

i¼1
p2i

1 1 1
K

Varies from 1 to 1/K. Most commonly
used index.

K¼ Number of species, M ¼Mean number of individuals per species, Var ¼ variance, SD ¼ Standard deviation, CV ¼ Coefficient of variation, SE ¼ Standard error, p ¼
probability of occurrence of a species.

A.K. Thukral et al. Heliyon 5 (2019) e02606
For single-value-variables X and Y, we get

CovarðX;YÞ¼
PK

i¼1ðxiyiÞ �
PK

i¼1
xi
PK

i¼1
yi

K

K � 1

¼ K2MxMy � K2MxMy

K

K � 1
Table 7
Diversity indices developed from quadrat statistics.

Name of the Diversity index Statistic used as
Diversity index

Div. for single sp.
community

Div. for e
spp. comm

Variance Diversity index KM2 � Var 0 KM2

Variance to mean square ratio
Diversity index

K� Var
M2

0 K

Variance to mean ratio
Diversity index

KM� Var
M

0 KM

Variance to mean square per
species Diversity index

1� Var
KM2

0 1

Variance to mean per species
Diversity index

M� Var
KM

0 M

Variance per species Diversity
index

M2 � Var
K

0 M2

Standard deviation Diversity
index

M
ffiffiffiffi
K

p � SD 0 M
ffiffiffiffi
K

p

Coefficient of variation
Diversity index

ffiffiffiffi
K

p � CV 0 √K

Standard error Diversity index M – SE 0 M
Simpson's Diversity index

C' ¼ 1� PK
i¼1

p2i
0 1� 1

K

Simpson's Reciprocal diversity
index

1
C

¼ 1PK
i¼1p

2
i

1 K

Shannon's Diversity index
H ' ¼ � PK

i¼1
pi lnpi

0 Ln K

Shannon's evenness index Exp (H0) 1 K

K¼ Number of species, M ¼ Mean number of individuals per species, Var ¼ variance,
probability of occurrence of a species.

7

¼ K2MxMy � KMxMy

K � 1
¼ KMxMyðK � 1Þ
K � 1

¼KMxMy:

Thus; for K¼ 1; CovarðX; YÞ¼MxMy: (7)
venly distributed
unity

Comments

Gives a very high value for evenness. May not be preferred.
Gives diversity on a scale of 0 to number of species. To some extent
comparable to Shannon's evenness index, Exp (H0).
Ranges from 0 to number of individuals in a sample. Useful for
sparse communities.
Defines diversity on a scale of 0–1. Best to use.

Diversity on a scale of 0 to mean number of individuals per species.

0 to squared mean number of individuals per species.

Defines diversity on the basis of standard deviation units.

Complementary to square root number of species. Good to use.

Scale of 0 to mean number of individuals per species.
Complementary to Simpson's dominance. Commonly used.

Reciprocal of Simpson's dominance. Widely used.

Shannon's entropy. Widely used.

Gives the evenness of distribution of species.

SD ¼ Standard deviation, CV ¼ Coefficient of variation, SE ¼ Standard error, p ¼



Table 8
Sample Variance/Mean square ratio for different simulated sample sizes (number of species, K) with equal distribution of species.

Species (K) 2 3 4 5 6 7 8

Number of individuals (xi)
x1 1 2 10 45 68 100 132
x2 1 2 10 45 68 100 132
x3 2 10 45 68 100 132
x4 10 45 68 100 132
x5 45 68 100 132
x6 68 100 132
x7 100 132
x8 132
Mean (M) 1 2 10 45 68 100 132

Dominance indices for even distribution of species

Simpson's C ½ 1/3 ¼ 1/5 1/6 1/7 1/8
Var 0 0 0 0 0 0 0
Var
M2

0 0 0 0 0 0 0

Diversity indices for even distribution of species

Simpson's 1/C 2 3 4 5 6 7 8

K� Var
M2

2 3 4 5 6 7 8

H0 0.693 1.098 1.386 1.609 1.791 1.945 2.079
Exp (H0) 2 3 4 5 6 7 8

The number of individuals of a species are simulated to demonstrate the universality of the statistic. A sample with equal number of individuals for all the species will
give K-(Var/M2) ¼ K.
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3.6.3. Variance of sum of two variables (K ¼ 1)
The variance of sum of variables X and Y for K > 1 is [34, 36]

VarðXþ YÞ¼VarðXÞþVarðYÞ þ 2 CovarðX; YÞ;

where Covar is the sample covariance between X and Y.

VarðXþ YÞ¼M2
x þM2

y þ 2MxMy ¼
�
Mx þMy

�2
::: ðK¼ 1Þ

Table 5 and Fig. 2 give the covariance of single-valuevariables X and
Y, with their first values being more than 0, the other values being zeros.
On extrapolation to K ¼ 1, the straight line gives covariance equal to the
product of their values.

3.6.4. Correlation and regression between two variables (K1)
Linear correlation between two variables, X and Y is given as,
Fig. 4. Plot between Exp (H0) and (K-Var/Mean sq) for all s

8

Correl: ðX; YÞ¼ Covar ðX;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞ VarðYÞp ;
where Var(X) and Var(Y)are variances of X and Y. From Eqs. (6) and (7),

Correl: ðX; YÞ¼ MxMyffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

xM
2
y

q ¼ 1…ðK¼ 1Þ:

Correlation between two single-valuevariables for x1 > 0 and y1 >,
0 is equal to 1, both empirically and by derivation. If one of the mean
values is negative, the correlation is -1. The same holds true for K¼1.

Linear regression of Y on X is,

Regression ðX;YÞ¼Covar ðX;YÞ
VarðXÞ

From Eqs. (6) and (7), we get,
pecies in a quadrat having equal number of individuals.
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Reg: ðX;YÞ¼MxMy

M2 ¼My

Mx
…ðK¼ 1Þ:
x

Regression between two single-valuevariables for x1> 0 and y1> 0, is
equal to theratio of means of Y and X, both empirically and by derivation.
The same holds for K¼1.
Table 9
Pearson's linear and Spearman's rank correlation coefficients between different
dominance indices based on 25 simulated quadrats, each quadrat having equal
numbers of individuals and species.

Simpson's dominance index (
P

p2i )

Variances based indices Pearson's Linear
Correlation

Spearman's Rank
Correlation

Var 1 1
Var
M2

1 1

Var
M

1 1

Var
KM2

1 1

Var
KM

1 1

Var
K

1 1

Standard deviation-based
indices

Logarithmic function
correlation

SD 0.999 1
CV 0.999 1
SE 0.999 1

All correlations are significant at p < 0.001. K¼ Number of species, M ¼ Mean
number of individuals per species, Var ¼ variance, SD ¼ Standard deviation, CV
¼ Coefficient of variation, SE¼ Standard error, p¼ probability of occurrence of a
species.
3.7. Derivation of variance-based dominance and diversity indices

We have proved that the variance of a sample for K¼ 1 is equal to the
square of its value. Therefore, we can calculate the variance of a single-
species community for the purpose of development of dominance and
diversity indices based on sample statistics. Simpson's index of domi-
nance may be given as,

XK
i¼1

p2i ¼
�
K � 1
K2

�
Var
M2

þ 1
K
…ðK� 1Þ:

Gini-Simpson's index of diversity can be obtained as follows:

1�
XK
i¼1

p2i ¼ 1�
	�

K � 1
K2

�
Var
M2

þ 1
K



…ðK� 1Þ

¼ K � 1
K

�
1� Var

KM2

�
…ðK� 1Þ:

Therefore, from the equations derived above, we can propose new
dominance and diversity indices for a quadrat or any other ecological
sample. Variance of a sample can be written as,

Var¼ KM2

K � 1

�
K
XK
i¼1

p2i � 1
�
…ðK> 1Þ (8)

Var¼M2
…ðK¼ 1Þ

VarðmaxÞ¼KM2
…ðK� 1Þ:

3.8. Relationship between variance-based dominance and diversity indices

The dominance and diversity indices for a quadrat consisting of K
species and M number of individuals per species can be defined as a
function of variance. Diversity is equal to the difference between the
maximum dominance for a single-value variable minus the actual
dominance. Asdominance increases, diversity decreases (Fig. 3). Domi-
nance will be at maximumfor K¼ 1, whereasthe diversity of a community
or a quadratconsisting of more than one species will be at maximum if all
the species have an equal number of individuals. The dominance-
diversity equation is,

Diversity ¼ Dominance (max) – Dominance (actual)

From Eq. (8), the variance-to-mean square ratio is a linear function of
Simpson's index and can be used as an index of dominance.

Var
M2

dominance index¼Var
M2

…ðK� 1Þ:

Since,

Var
M2

ðmaxÞ¼K…ðK� 1Þ;

we can derive the variance-to-mean square ratio index of diversity,

Var
M2

diversity index¼K � Var
M2

…ðK� 1Þ:

For a single-species quadrat (K¼1) andVar ¼ M2, the Var/M2 domi-
nance index will be 1, and the complementaryK-Var/M2 diversity index
9

will be equal to 0. The new indices of dominance and diversity, as derived
from variance and standard deviation, are given in Tables 6 and 7.
3.9. Dominance and diversity for even distribution of species

To determine the dominance and diversity of quadrats consisting of
equal numbers of individuals of allspecies, (x1 ¼ x2 … ¼ xK),Simpson's
index of dominance is,

XK
i¼1

p2i ¼
XK
1

x2i�PK
1 xi
�2 ¼ 1

K
:::ðx1 ¼ x2 ¼…¼ xKÞ:

Similarly, for a community with an equal number of individuals in
allspecies, we have,

Var
M2

¼ K
K � 1

�
K
XK
i¼1

p2i � 1
�
¼ K
K � 1

�
K

1
K
� 1
�
¼ 0…ðK� 1Þ:

Table 8 gives variance/mean square ratios for samples with equal
numbers of individuals for each species. It is seen that irrespective of the
number of individuals of a species in a sample, the variance/mean square
ratio is always zero. On the otherhand,K-(Var/M2)is always equal to the
number of species in the sample. Since sample variance for a single-
species cannot be calculated using the conventional variance formula
with a denominator equal to (K-1), an extrapolation of data reveals that
K-(Var/M2) for a sample with a single observation is equal to 1. A graph
between Exp (H') and K-(Var/M2) gives a straight line with a slope equal
to K (Fig. 4).
3.10. Binary informationplots for dominance and diversity

Information within a system can be studied at two levels: information

energy, ¼PK
i¼1

p2i , as described by Onisescu [37], and information entropy

H ' ¼ �PK
i¼1

pi ln pi as described by Shannon [15]. Information, as con-

tained in dominance, is a measure of energy, whereas diversity is a
measure of entropy. If information is plotted against a two-class variable,
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with probabilities p and (1-p), it gives a binary information plot.
Simpson's index of dominance is a measure of the energy of a system

and gives a convex curve against probability, whereas Shannon's index of
diversity is a measure of entropy within a system and gives a concave
curve [38].

If we consider a community with only two species, if the
probability of one species is p, the probability of the other species
will be (1-p). Fig. 5 gives dominance and diversity plots of the new
indices developed vis-�a-vis the commonly used Shannon's and
Simpson's indices.

Simpson's measure of dominance is ameasure of information energy
and gives a convex curve for its binary information plot (Fig. 5).
Similarly, the curves for Var, Var/M2, Var/M, Var/(KM2), Var/(KM),
and Var/K are also convex and are also information measures. The
10
other three statistics, SD, SE and CV, however, give convex vertices and
are not information measures. Nevertheless, as these indices have been
derived from variance, these can also be used for dominance statistics.
Fig. 5 also gives binary information plots for the diversity indices
proposed vis-�a-vis Simpson's index. We know that the curves for
Shannon's index of diversity (H0), Exp (H0), Gini-Simpson's diversity
and Simpson's reciprocal diversity indices are concave and are-
information measures. Similarly, the binary probability plots for (KM2-
Var), (K-Var/M2), KM-(Var/M), 1-(Var/KM2), M-(Var/KM), and M2-
(Var/K) are also concave curves. However, the graphs for diversity
indices proposed using SD, SE and CV are concave vertices and are not
information measures, although they can also be used as diversity
indices.
Fig. 5. Binary plots between probability
and dominance, and diversity indices.
For dominance, curves for Simpson's C,
Var, Var/M2, Var/M, Var/KM2, Var/KM,
and Var/K are convex. The curves for
Var, Var/M2, and Var/KM overlap.
Similarly, curves for Var/M, Var/KM2

overlap with each other. For diversity,
curves for Shannon's H0, Exp (H0), Simp-
son's diversity, Simpson's reciprocal,
KM2-Var, K-Var/M2, KM-Var/M, 1-Var/
KM2, M-Var/KM, and M2-Var/K are
concave. Simpson's diversity, K M2-Var,
and M-Var/KM overlap. Similarly,
curves for KM-Var/M, 1-Var/KM2 over-
lap with each other.



Table 10
Pearson's linear and Spearman's rank correlation coefficients between different
diversity indices based on 25 simulated samples with equal numbers of in-
dividuals and species in each quadrat.

H0 1�P p2i 1P
p2i

H0 1�P p2i 1P
p2i

Pearson's Linear Correlation Spearman's Rank Correlation

H0 0.983 0.895 0.994 0.994
Exp (H0) 0.961 0.901 0.979 1 0.994 0.994
1� P

p2i 0.983 0.819 0.994 1
1P
p2i

0.895 0.819 0.994 1

Variance based diversity indices

M2K�
Var

0.983 1 0.819 0.994 1 1

K� Var
M2

0.983 1 0.819 0.994 1 1

KM� Var
M

0.983 1 0.819 0.994 1 1

1� Var
KM2

0.983 1 0.819 0.994 1 1

M� Var
KM

0.983 1 0.819 0.994 1 1

M2 � Var
K

0.983 1 0.819 0.994 1 1

Standard deviation-based diversity indices

M
ffiffiffiffi
K

p �
SD

0.981 0.950 0.954 0.994 1 1

ffiffiffiffi
K

p � CV 0.981 0.950 0.954 0.994 1 1
M� SE 0.981 0.950 0.954 0.994 1 1

All correlations are significant at p < 0.001. Better correlations can be obtained
by using curvilinear regressions. K¼ Number of species, M ¼ Mean number of
individuals per species, Var ¼ variance, SD ¼ Standard deviation, CV ¼ Coeffi-
cient of variation, SE¼ Standard error, p¼ probability of occurrence of a species.

A.K. Thukral et al. Heliyon 5 (2019) e02606
3.11. Correlating new indices with Shannon's and Simpson'sindices

It was found that all the new dominance and diversity indices
developed have significant positive correlations with Simpson's and
Shannon's indices (Table 9). Variance-based dominance indices were
positively and linearly correlated with Simpson's dominance index with
correlation coefficients equal to one.

However, dominance indices based on standard deviation were
logarithmically correlated with Simpson's dominance with high degrees
of correlation (Fig. 6). All the new indices have the same rank orders as
that of Simpson's index. Similarly, diversity indices were also computed
for the simulated data (Table 10, Figs. 7 and 8).

Regarding diversity indices, all the indices gave significant pos-
itive linear correlations with Shannon's entropy and Simpson's index
of diversity. Spearman's rank correlation analysis revealed that all
the new variance and standard deviation-based indices follow the
same rank orders as Simpson's index of diversity. However, the rank
order correlations of the new diversity indices were slightly less
than those of Simpson's index of diversity. Regressions between
Shannon's and Simpson's diversity indices are not linear. Similarly,
Shannon's index is nonlinearly related to the variance- and standard
deviation-based diversity indices, and all these correlations are
highly significant.
3.12. A case study of dominance and diversity analysis

New variance-based indices developed were calculated using plant
abundance data from a community in the vicinity of the river Beas, in
Punjab, India. The minimumquadrat size was 1 sq. m., and aminimum of
five quadrats were required to sample the area. Table 11 gives the species
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composition of the site over 5 sq. m. area (5 quadrats X 1 sq. m.). The
different indices proposed, along with the Simpson's and Shannon's
indices calculated are given in Table 12.

4. Discussion

Some of the commonly used diversity indices include Chao's
method, Woodwell's Biodiversity index, Menhinick's index, Margalef's
index, Odum's index, Berger-Parker's dominance index, Fisher's α,
Brillouin's index, McIntosh's diversity index and Pielou's J, etc. [38].
The concept developed in this paper builds on the previous work
conducted by the authors. Parkash and Thukral [26] proved that,
similar to Shannon's and Simpson's indices, several statistics viz.,
geometric mean, harmonic mean, moments (μ3 and μ4), power mean,
log mean, exponential mean and population variance (σ2) are also in-
formation measures and can be used as measures of dominance and
diversity.

Sarangal et al. [39] gave a matrix method to develop Shannon's en-
tropy, Simpson's dominance and some other information measures using
diagonal and nondiagonal elements of a probability matrix. The binary
probability plot for the commonly used Simpson's dominance index is
convex, butis concave for Shannon's entropy [26, 38].

In the present study, the variance/mean square ratio diversity index
and coefficient of variation diversity index present diversity on a scale
of 0 to K species. This index is similar to the concept of the'number
equivalent’ or the ‘effective number of species’, which is defined as the
number of species that will give the same value as the diversity index
[40]. In these terms, Shannon's Exp (H0) and Simpson's reciprocal di-
versity index are alsothe ‘effective number of species’. The maximum
values of diversity indices having even distributions of species can be
explained by Justus [41]. For communities having the same number of
species, diversity is higher for communities representing species with
equal numbers of individuals. It is seen that changes in samples with a
lesser number of individuals will impact the index more. This can be
explained in Whittaker [23], with an example from Simpson's index of
dominance without replacement (C),

C ðwithout replacementÞ¼
XK
i¼1

niðni � 1Þ
NðN � 1Þ;

where, ni and N represent the number of individuals of ith species, and
thetotal number of individuals of all the species, respectively. If a quadrat
consists of only a few individuals, any small change inthe number of
individuals in the quadrat will affect the dominance and diversity indi-
cesto a greatextent. The variance-to-mean square per species diversity
index proposed by this paper will vary from 0 to 1 andis free from the
sample size. It can also be used across diverse ecosystems. Other indices
may also be used to quantify dominance and diversity depending upon
the purpose of the analysis, i.e., the number of species, the mean number
of individuals per species, or the total number of individuals in the
quadrat or sample. In contrast, Shannon's index is only a diversity index
and does not give the dominance of a community; instead, the new
variance-based indices can be presented on a common dominance-
diversity scale.

Correlation analysis revealed that the new variance and standard
deviation-based dominance and diversity indices are significantly
and positively correlated with probability-based Simpson's and
Shannon's indices. Beck et al. [42] proved that one of the common
drawbacks of measurement of β-diversity is under sampling, i.e.,
recording lesser numbers of the taxa than are actually present on the
site. The authors coupled empirical data analysis with simulation
studies and proved that this may lead to false conclusions. The
present study on a α-diversity also needs to be tested empirically in



Fig. 6. Plots between Simpson's dominance (C) using simulated data on 25 quadrats, each quadrat having 10 species and 100 individuals. Variance based indices give
linear functions, whereas, standard deviation based indices give logarithmic functions.
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order to work out appropriate sample sizes and the number of
samples required for accurate phytosociological interpretations. A
case study was undertaken to describe the procedure of deriving
variance-based dominance and diversity indices (Tables 11 and 12).
The present study proves that variance and standard
deviation-baseddominance and diversity indices are complementary
to each other and can be presented on a common scale.

If data on the number of individuals of different species is not avail-
able for the calculation of Shannon's and Simpson's indices, but data on
descriptive statistics such as the number of species, the mean number of
individuals and standard deviation is available, then the new indices may
be useful.

5. Conclusions

This study described the calculation of Simpson's indices of domi-
nance and diversity from the sample statistics. The study showed that
variance and standard deviation of field data can be used effectively to
describe the dominance and diversity in ecosystems. Rather than
employing different indices to measure the dominance and diversity of a
community on different scales, our hypothesis gives a method to measure
12
these indices on a common scale (Fig. 9). If Kis the number of species, Var
is the variance, andM is the mean number of individuals per species in a
quadrat, then Simpson's index of dominance may be determined from
quadrat statistics,

XK
i¼1

p2i ¼
�
K � 1
K2

�
Var
M2

þ 1
K
…ðK� 1Þ:

Gini-Simpson's index of diversity can be calculated accordingly as

ð1 � PK
i¼1

p2i Þ.Some of the new variance-based dominance and diversi-

tyindices proposed are:
Index Dominance index Diversity index Scale
Var.: mean sq. ratio
 Var
M2 dom: index
 K� Var

M2 div: index
 0 – Spp.
Var. per sp: mean sq.
ratio
Var
KM2 dom: index
 1� Var

KM2 div: index
 0–1
Coeff. variation
 CV dom: index ¼
CV
CV div: index ¼ √K �
CV
0 –

√Spp.
We have also managed to define the variance (S2) and covariance



Fig. 7. Plots between Shannon's H0 and some other previous and new diversity
indices using simulated data on 25 quadrats, each quadrat having 10 species and
100 individuals. All correlations are significant at p < 0.001.

Fig. 8. Plots between Simpson's indices of diversity with and some variance and
standard deviation based proposed diversity indices using simulated data on 25
quadrats, each quadrat having 10 species and 100 individuals. All correlations
are significant at p < 0.001.
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(Covar) of a sample with only one value (K ¼ 1) using the probability
method.

S2 ¼
XK

i¼1
ðxi �MÞ2

K � 1
…ðK > 1Þ

¼ M2 ¼ x21…ðK ¼ 1Þ:



Table 11
Number of individuals of different species from five quadrats of 1 sq. m. each
from a site near river Beas, Punjab, India.

S. No. Species Number of individuals (xi)

1 Ageratum conyzoidesL. 16
2 Argemone mexicanaL. 4
3 Cannabis sativa L. 4
4 Chenopodium ambrosioides L. 16
5 Erigeron bonariensisL. 5
6 Parthenium hysterophorusL. 12
7 Polygonum plebeiumR.Br. 7
8 RanunculussceleratusL. 3
9 RumexdentatusL. 5
Total K ¼ 9, M ¼ 8 P9

i¼1
xi ¼ 72

Table 12
Dominance and diversity analysis of data from Table 11.

Dominance index Dominance Diversity index Diversity Diversity scale

Var 27.5 (KM2)-Var 548.5 0–576
Var/M2 0.43 K-(Var/M2) 8.57 0–9
Var/M 3.44 KM-(Var/M) 68.56 0–72
Var/KM2 0.05 1-(Var/KM2) 0.95 0–1
Var/KM 0.38 M-(Var/KM) 7.62 0–8
Var/K 3.1 M2 -(Var/K) 60.94 0–64
SD 5.24 (M√K)-SD 18.76 0–24
CV 0.66 √K-CV 2.34 0–3
SE 1.7 M – SE 6.25 0–8
Simpson's C, C0 0.15 0.85
Shannon's H0 2.01
Exp (H0) 7.52

Fig. 9. Relation between dominance and diversity with number of species (K)
and variance.
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CovarðX; YÞ ¼
XK

i¼1
ðxi �MxÞ

�
yi �My

�
…ðK > 1Þ
K � 1

¼ MxMy ¼ x1y1…ðK ¼ 1Þ:
This study will provide a new link between diversitystudies and

statistics.
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