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Abstract: The dyeing process commonly deteriorates the luster of pre-mercerized cotton fabric,
so post-mercerization processes are regularly applied to compensate for this. Herein, the influ-
ence of combining pre-mercerization with CS (caustic solution) or LA (liquid ammonia) and post-
mercerization with CS or LA on the morphological structure, dyeing performance, tensile strength,
and stiffness of woven cotton fabric was investigated. The crystallinity index values greatly decreased
from 73.12 to 51.25, 58.73, 38.42, and 40.90% after the combined mercerization processes of LA–LA,
CS–CS, LA–CS, and CS–LA, respectively. Additionally, the CS–LA- and LA–CS-treated samples
exhibited a mixture of cellulose II and cellulose III allomorphs. The combined mercerization process-
ing of cotton fabric resulted in slightly worse thermal stability. The LA and CS pre-mercerization
processes increased the dye exhaustion, although the former decreased the dye fixation rate while the
latter increased it by 4% for both dyes. The color strength of the dyed cotton fabric increased after
both post-mercerization processes. Moreover, the fabric stiffness and mechanical properties showed
an increasing trend due to the combined mercerization efforts.

Keywords: pre-mercerization; post-mercerization; combined mercerization; woven cotton fabric; stiffness

1. Introduction

Cotton fiber is popularly used in the production of apparel because of its inherent
hydrophilicity, comfort, dyeability, flexibility, and breathability [1–4]. However, cotton fiber
requires tedious modification processes, such as ultraviolet irradiation [5], ultrasound [6],
microwave irradiation [7], gamma irradiation [8], and plasma treatment [9] to overcome the
limited surface wettability, functional characteristics, and dyeing performance. However,
these processes are costly, environmentally unpleasant, and lack scale-up feasibility. Thus,
customization of the conventional mercerization process through various approaches can
be an interesting choice to improve the characteristics of cotton fiber.

Mercerization treatment by either strong caustic solution (CS) or liquid ammonia
(LA) with tension has an attractive effect on the dyeability of cotton fiber and the luster
of the resulting fabric [10,11]. Through mercerization, the crystallinity of the cotton fiber
decreases and the amorphous characteristics increase, producing more pores and effective
hydroxyl groups in the fiber, which is beneficial for dye exhaustion [12] and fixation [13,14],

Materials 2022, 15, 2092. https://doi.org/10.3390/ma15062092 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15062092
https://doi.org/10.3390/ma15062092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-6187-5351
https://orcid.org/0000-0002-7925-3144
https://orcid.org/0000-0002-3395-3276
https://doi.org/10.3390/ma15062092
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15062092?type=check_update&version=1


Materials 2022, 15, 2092 2 of 15

leading to improved dyeability [10]. Thus, pre-mercerization (mercerization before dyeing)
is usually selected to enhance cotton dyeing properties.

Post-mercerization (mercerization after dyeing) is preferentially applied to produce a
luster for dyed cotton fabric to meet special requirements. However, post-mercerization
causes a color shift due to the hydrolysis of the covalent bond (ether bond) between the
reactive group of the reactive dye and the hydroxyl group of the cotton fiber for the
morphological structure transformation of the cotton fiber [15]. Moreover, the morpho-
logical structure transformation also alters the mechanical properties and hand feel of
dyed cotton fabric [15]. Thus, this indicates that morphological structure transformation is
an important factor contributing to mercerization performance. Since the morphological
structure transformation effectively contributes to the mercerization performance of cotton
fabric, the morphological differences between the dyed cotton fabric with and without pre-
mercerization may result in different post-mercerization performances, such as differences
in the color shade, mechanical properties, hand feel, and so on, which is a research gap
regarding the mercerization treatment of cellulosic fabric.

Sometimes, the luster of cotton fabric produced by pre-mercerization is lessened
by the subsequent dyeing process, so post-mercerization is used to compensate for this
loss in luster. However, there are no reports regarding the combination of pre- and post-
mercerization for cotton fabric. Thus, pre-mercerization by CS or LA, dyeing with reactive
dye, and post-mercerization of cotton fabric by CS or LA were investigated.

The driving forces of this work are to explain the contradictory phenomenon whereby
LA pre-mercerization of cotton fabric is occasionally ineffective in promoting cotton dye-
ability and to clarify the influence of the morphological structure of cotton fiber on CS
or LA post-mercerization, including the morphological structure, mechanical properties,
and color shade. These research achievements are significant in guiding and instructing
mercerization treatment, especially for the combination of pre- and post-mercerization for
cotton fabric.

2. Materials and Methods
2.1. Materials

Commercially scoured and bleached, 100% plain woven cotton fabric (160 g m−2 GSM,
0.39 mm thickness, 1/1 repeat unit cell) was received from the TST Group Holding, Ltd.
(Guangzhou, China). Two commercial reactive dyes, C. I. Reactive Red 2 (R2) and C. I.
Reactive Red 195 (R195), were supplied by Shanghai Jiaying Chemical Co. Ltd. (Shanghai,
China) and directly used in the dyeing process. The detailed properties of these two dyes
are listed in Table 1. Liquid ammonia (purity of 99.99%) was purchased from Wuhan
Niuruide Gas Co., Ltd. (Wuhan, China). Non-ionic detergent (Luton 500) was purchased
from Dalton UK Company (Shanghai, China). All other chemicals and reagents used in
this work were of analytical grade.

Table 1. Reactive dye structures and molecular weights [16,17].

Dye Molecular Structure Molecular Weight (g mol−1)

R2
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Diverse cotton fabrics were prepared and analyzed, including O-Dye (original dyed
cotton fabric), CS-Dye (CS pre-mercerized and dyed cotton fabric), LA-Dye (LA pre-
mercerized and dyed cotton fabric), Dye-CS (CS post-mercerized and dyed cotton fab-
ric that without pre-mercerization), Dye-LA (LA post-mercerized and dyed cotton fab-
ric that without pre-mercerization), CS-Dye-CS (CS post-mercerized and dyed cotton
fabric with CS pre-mercerization), CS-Dye-LA (LA post-mercerized dyed cotton fabric
with CS pre-mercerization), LA-Dye-CS (CS post-mercerized dyed cotton fabric with
LA pre-mercerization), and LA-Dye-LA (LA post-mercerized dyed cotton fabric with
LA pre-mercerization).

2.2. Mercerization
2.2.1. Caustic Mercerization

For pre-mercerization, fabric under tension was immersed in 250 g L−1 NaOH solution
at room temperature (23 ◦C) for 3 min and then washed twice in hot water at 60–70 ◦C
for 5 min, followed by washing in water with 2 g L−1 HCl at room temperature for 5 min.
Finally, it was rinsed with tap water until neutral. While, for post-mercerization, after
treatment, the post-mercerized and dyed cotton fabric was cleaned with a 2 g L−1 of
non-ionic detergent solution for 30 min at 95 ◦C with a liquor ratio of 100:1.

2.2.2. Liquid Ammonia Mercerization

For pre-mercerization, fabric under tension was immersed in anhydrous liquid ammo-
nia at −40 ◦C for 3 min, followed by drying in an oven at 60 ◦C for 10 min. Subsequently,
the dried fabric was rinsed with tap water until neutral. For post-mercerization, after treat-
ment, the post-mercerized and dyed cotton fabric was cleaned with a 2 g L−1 of non-ionic
detergent solution for 30 min at 95 ◦C with a liquor ratio of 100:1.

2.3. Dyeing Performance
2.3.1. Dyeing Process of Cotton Fabrics

The dyeing process (Figure 1) was carried out using a laboratory infrared dyeing
machine (HB-HW × 24, Huibao, Foshan, China). The fabric was dyed with R2 at 40 ◦C or
R195 at 60 ◦C at a liquor ratio of 20:1 using 3% o.m.f (on the mass of fiber) with 40 g L−1

of NaCl and 10 g L−1 of Na2CO3. After dyeing, the dyed fabric was cleaned in a solution
containing 2 g L−1 non-ionic detergent for 30 min at 95 ◦C using a liquor ratio of 50:1.
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2.3.2. Measurement of Dyeing Performance

The exhaustion percentage (E%) of dye can be defined as the mass of dye adsorbed
onto the fabric after the dyeing process (Equation (1)) [18,19], where A0 is the absorbance
of dye solution before dyeing and A1 indicates the residual dye solution absorbance after
dyeing. Next, the dye fixation rate (F%) was determined by measuring the mass of dye
fixed in the fabric, followed by the soaping process with the mass of dye adsorbed after
exhaustion dyeing onto the fabric (Equation (2)), where A2 is the absorbance of the soaped
solution. The total dye fixation efficiency (T%) was used to represent the total efficiency of
dye mass application by measuring the mass of dye fixed in the fabric after the soaping
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stage with an initial amount of dye applied (Equation (3)). The absorbance value of the dye
solution was assessed at the maximum wavelength for R2 (540 nm) and R195 (542 nm) using
a Cary 100 UV–visible spectrophotometer (Agilent Technologies, Melbourne, Australia).

E% =
A0 − A1

A0
× 100%, (1)

F% =
A0 − A1 − A2

A0 − A1
× 100%, (2)

T% = E% × F% × 100, (3)

2.3.3. Color Strength and Color Uniformity

The color strength of the dyed fabric sample (expressed by K/S value) was measured
using a laboratory spectrophotometer (Datacolor 110, Datacolor International, Rotkreuz,
Switzerland). Twenty places were randomly selected for measuring and average values
were reported. The standard deviations of these 20 K/S values were used to evaluate the
color uniformity of dyed fabric, and the color uniformity of the dyed sample was higher
when the value of the standard deviation was lower [20]. Moreover, the average value of
20 K/S values was used to calculate the promoted K/S efficiency (P%) via mercerization
using Equation (4):

P% =
(K/S)1 − (K/S)0

(K/S)0
× 100%, (4)

where (K/S)0 is a predicted value that represents the original dyed fabric’s predicted K/S
value, which has the same dye concentration as the pre-mercerized and dyed fabric; (K/S)1
is an experimental value that represents the pre-mercerized and dyed fabric’s K/S value.

2.3.4. Colorfastness to Washing and Rubbing

Colorfastness to washing was measured in accordance with ISO 105-C06:2010
“Textiles—Tests for Colorfastness—Part C06: Colorfastness to Domestic and Commer-
cial Laundering” (test number: C2S). Colorfastness to washing is graded by measuring the
staining on cotton fiber of a multi-fiber strip and comparing it with ISO grayscale standard.
The colorfastness to rubbing was evaluated using a crock meter by following the method of
ISO 105-X12:2016 “Textiles—Tests for Colorfastness—Part X12: Colorfastness to Rubbing”.

2.3.5. Dye Removal Percentage by CS and LA Post-Mercerization Processes

After post-mercerization, the light absorbance of the residual soaped solution was
measured and the dye removal percentage was calculated using Equation (5):

R% =
A3

(A0 − A1 − A2)
× 100%, (5)

where A0 and A1 represent the dye solution absorbance value before and after the dyeing
process, respectively. A2 is the residual soaping solution absorbance value and A3 is the
residual washing solution absorbance of both CS- or LA-mercerized dyed fabric.

2.4. Measurements and Characterization
2.4.1. X-ray Diffraction

X-ray diffraction (XRD) analysis was performed for the cotton fabrics using a powder
X-ray diffractometer (Rigaku Ultima III, Tokyo, Japan). Before measurements, the samples
were converted into a fine powder using a scissor. Afterwards, about 0.15 g of powder was
pressed through the use of a hydraulic press at 127 MPa using a circular disk. The diameter
was then converted into a 2.5-cm-diameter scale. The samples were placed onto a holder
and scan parameters ranged from 2θ values of 5◦ to 50◦ with a 2θ step of 0.02◦ under CuKα

radiation (λ = 1.54056Å).
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2.4.2. Thermogravimetric Analysis

To investigate the thermal properties of the samples, a thermogravimetric (TG) ana-
lyzer (TGA/DSC1, Mettler-Toledo, LLC, Shanghai, China) was used, which maintained
heating rates at around 10 ◦C min−1 over a range of 30 to 700 ◦C. TG analysis was performed
at a flow rate of 50 mL min−1 under nitrogen.

2.4.3. Stiffness

The stiffness properties of the woven cotton fabrics were characterized by their bending
behavior, which was determined according to GB/T 18318.1-2009 “Textiles—Determination
of Bending Behavior—Part 1: Incline method”.

2.4.4. Breaking Force and Elongation of Fabrics

The breaking force and elongation at break were detected according to the standard
method of GB/T 3923.1-1997 “Textiles—Tensile Properties of Fabrics—Part 1: Determina-
tion of Breaking Force and Elongation at Breaking Force—Strip Method”.

3. Results and Discussion
3.1. XRD Analysis

After different mercerization processes, changes in crystallinity and cellulose allo-
morphs of each sample were investigated using XRD patterns. The FitYK 1.3.1 program was
used to subtract the background and divide the diffraction peaks. In order to calculate the
crystalline index (CI) of the samples, Equation (6) was used to calculate the area occupied
by the diffraction peaks in each sample.

CI% =
Ic

Ic + Ia
× 100%, (6)

where Ic represents the crystalline phase integrated intensity and Ia is the amorphous
phase-integrated intensity.

The values of CI for the original and mercerized samples are summarized in Table 2.
The CI values decreased from 71.52% (original) to 52.61% and 63.19% after LA and CS
mercerization processes, respectively. The CI value further decreased to 51.25% and 58.73%
after LA–LA and CS–CS mercerization processes. The patterns recorded from LA–CS and
CS–LA-treated cotton consisted of 38.42% and 40.90% CI, respectively. The decreased CI
values of the samples suggest that these mercerization processes, either individually or in
combination, resulted in micro-fibril swelling, rearrangement of compact hydrogen bonds
in crystalline regions leading to crystallite disruption, and the formation of new amorphous
regions. Treatments with combined mercerization processes resulted in a greater degree of
crystallite disruption, which exhibited an advantage with the rearrangement of hydrogen
bonding to cellulose crystals and the generation of a high-volume amorphous region. These
results can mainly be attributed to the collaborative mercerization effect by LA and CS.

Table 2. The CI values of pre-mercerized and post-mercerized cotton in LA and CS.

Sample Original LA CS LA–LA CS–CS LA–CS CS–LA

CI (%) 73.12 52.61 63.19 51.25 58.73 38.42 40.90

Besides the changes in CI, the cellulose allomorph conversion by these mercerization
processes was also investigated. Figure 2 compares the diffraction patterns of the original
and mercerized cotton fabrics. As shown in Figure 2a, the diffraction pattern of original
cotton displayed obvious characteristics of the cellulose I allomorph, consisting of peaks
at 2θ values of about 14.7, 16.8, 22.6, and 34.8◦, which were attributed to (110), (110),
(200), and (004) lattice planes, respectively [21–23]. In addition, the peaks were sharper,
which suggests that large crystals were present in the cellulose phase [24]. There was
also a significant shift in diffraction patterns following LA- and CS-mercerized cotton
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fabrics (Figure 2b–g). The LA pre-mercerization and combined LA–LA mercerization
processes led to the formation of a diffraction pattern of cellulose III allomorph consisting
of (010), (011), (100/110), and (013/022) lattice planes at 2θ values of 11.7, 15.5, 21.0, and
35.0◦, respectively [21,25]. Using CS pre-mercerization as well as the combined CS–CS
mercerization processes, cellulose I was converted to a cellulose II allomorph, with the
lattice planes of (110/100), (110), (020), and 004 being found at 2θ values of 12.2, 20.2,
21.8, and 34.7◦, respectively [26,27]. Interestingly, with the combined LA–CS and CS–LA
mercerization processes, the obtained diffraction pattern revealed the presence of both
cellulose II and cellulose III allomorphs in the cotton.
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Figure 2. XRD images of the (a) original, (b) LA, (c) CS, (d) LA–LA, (e) CS–CS, (f) LA–CS, and (g)
CS–LA-mercerized cotton samples.

The patterns exhibited (110/100), (110), (020), and (004) lattice planes of cellulose
II and (010) and (100/110) lattice planes of cellulose III. Cellulose allomorph conversion
occurred as a result of the appearance of a new crystalline domain in the mercerized cotton
fibers. Briefly, in cellulose microfibrils, NH3 and NaOH systems penetrated through the
amorphous and crystalline regions to result in fiber swelling and cellulose I transformation
into Na–cellulose and NH3–cellulose. The Na–cellulose I complex was converted into Na–
cellulose II, while the complex NH3–cellulose I was turned into NH3–cellulose III. However,
new hydrogen bonding networks with completely different patterns and cross-binding
patterns, named cellulose II and cellulose III, were generated with the removal of NaOH
and NH3 from these cellulose complexes in the amorphous and crystalline regions [11,28].
Besides this, the cellulose microfibrils led to difficult recrystallization and the treated
samples were mainly composed of smaller crystallites within the fibers [29].

3.2. Thermal Performance

The thermal stability of a cotton fabric is an essential property with respect to its
practical applications. Therefore, the thermal behaviors of original and mercerized fabrics
with different conditions were thoroughly investigated using TG analysis. As shown in
Figure 3a, the TG thermogram patterns were similar for both the original and mercerized
fabrics. However, slight variations were noticed with respect to the weight loss percent-
age for each sample at various temperatures and their char residue amounts (Table 3).
It was shown that the initial cleavage onset temperature was higher (Tonset, 321 ◦C) for
the original fabric than the mercerized fabrics, which means that the mercerized samples
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decomposed much more rapidly than the original sample. The maximum weight loss
began at 372 ◦C for the original fabric because of the depolymerization behavior mediated
by trans-glycosylation [30]. Meanwhile, the maximum weight loss temperatures (Tmax)
decreased to 370 and 361 ◦C for CS- and LA-mercerized fabrics, respectively, and for the
combined mercerization processes, these values were significantly lower. These results
can be explained by the higher amount of amorphous cellulose in the combined merceriza-
tion samples, meaning they underwent faster thermal decomposition than the crystalline
phase [31].
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Table 3. TG and DTG data for original and mercerized cotton fabrics.

Sample Temperature at Initial
Cleavage (Tonset, ◦C)

Temperature at Maximum
Degradation (Tmax, ◦C) Char Residue at 700 ◦C (wt%)

Original 321 372 10.80
CS 319 370 10.73
LA 317 361 8.18

CS–LA 312 363 11.40
LA–CS 316 365 10.41
CS–CS 302 370 12.31
LA–LA 300 360 10.01

In addition, as shown the char amounts were 10.80% for the original fabric, 10.73%
for CS-mercerized fabric, and 8.18% for the LA-mercerized fabric. Moreover, the highest
char amount for the combination of CS–CS-mercerized fabric was 12.31%, and in the case
of combined LA–LA mercerization, the char amount was less (10.01%). These phenomena
were further verified from the DTG curves (Figure 3b), which were the derivatives of the
TG curves. Overall, the data suggests that LA-mercerized fabric has slightly less thermal
stability than CS-mercerized fabric, in agreement with a previous report [25].

3.3. Influence of Pre-Mercerization on Dyeing Performance of Cotton Fabric

The E%, F%, and T% values after dyeing original and CS and LA pre-mercerized
cotton fabrics using R2 and R195 are shown in Figure 4. It is obvious that CS and LA
pre-mercerization processes enhanced the E% values of cotton fabrics after dyeing, which
is consistent with the results of a previous report [14]. During dyeing, dye molecules are
only located in the amorphous region of the cotton fiber; thus, a more crystalline cotton
fiber usually exhibits lower dye exhaustion. Both CS and LA pre-mercerization processes
partially damaged the crystallinity, which resulted in a decreased crystalline region and
increased amorphous region. Therefore, the cotton fabrics pre-mercerized by CS or LA
showed a higher E% level.
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Figure 4. Dyeing performance of woven cotton fabric pre-mercerized by CS and LA using R2 and
R195 dyes.

In the dyeing of cotton fiber, dye adsorption is achieved in the amorphous area
through dye migration from the surface of the fiber via pores, and a small pore size allows
small-molecule transfer but impedes larger molecule migration [25]. After both CS and
LA pre-mercerization processes, the cumulative accessible pore volume of cotton fiber
increased [32], as identified by the decreased CI value; however, the former enlarged
the pore size while the latter contracted it [33]. In dyeing with R2, the CS and LA pre-
mercerization processes contributed a similar increment to the E% of cotton fabric dyeing,
of which the E% values were 85.1% and 85.7%, respectively. However, in dyeing with R195,
CS pre-mercerization promoted an apparently higher E% than with LA pre-mercerization,
where the E% values were 65.5 and 56.6% for the CS and LA pre-mercerization processes,
respectively. This result indicated that the E% was influenced by the molecular size of
the dye (molecular weight) and the pore size of the cotton fiber, which can be seen by the
molecular size of R2 (molecular weight: 615.32 g mol−1, Table 1) showing a smaller size
than that of R195 (molecular weight: 1136.28 g mol−1, Table 1).

In dye fixing, the reactive group of the reactive dye forms a covalent bond with the
hydroxyl group of the cotton fiber. In contrast with the original cotton fibers, the F%
values of CS pre-mercerized cotton fabrics dyed using R2 and R195 were promoted slightly,
but the F% values decreased in the dyeing of LA pre-mercerized cotton fabric using R2
and R195 dyes, although more hydroxyl groups in the cotton fiber were produced due
to the crystallinity damage caused by CS and LA pre-mercerization processes. R195 has
bifunctional reactive groups and R2 has a dichlorotriazinyl group, although the F% values
did not show the superiority of R195 in dye fixing, which was possibly due to the more
active dichlorotriazinyl group facilitating the formation of the covalent bond with the
cellulosate under fixation conditions.

In the dye fixation stage, after the addition of soda ash, the dye fixing reaction is
expedited, accompanied by the deterioration of the dye adsorption balance between the
dye in the fiber and dye bath, resulting in further transference of the dye from the dye
bath to the fiber, i.e., dye exhaustion and fixation simultaneously occurred. Therefore, dye
fixation also contributed to the E% increase, which was one factor of the higher E% values
for R2 dyeing compared to R195 dyeing.

T% is dependent on E% and F%, so the increases in E% and F% by CS pre-mercerization
caused the T% values of CS pre-mercerized cotton fabrics dyed using R2 and R195 to
be higher than that of the original and LA pre-mercerized cotton fabrics. In LA pre-
mercerized cotton fabrics, the T% values of fabrics dyed using R2 and R195 decreased in
comparison with original fabrics. However, when comparing T% values, the R2 dyeing
process exhibited a higher value than R195 dyeing, which was due to the higher E%. In
addition, the standard deviation values of E%, F%, and T% (error bars in Figure 4) were
smaller, which indicated that the dyeing performance was repeatable.
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3.4. Influence of Post-Mercerization on Dye Removal

In CS and LA post-mercerization of dyed cotton fabrics, dye stability is a significant
factor. The results of these processes are displayed in Figure 5. After post-mercerization,
we attempted to wash the R2 and R195 dyes from the fabrics. In contrast with CS post-
mercerization, LA post-mercerization showed low hydrolysis of the ether bonds between
the cellulose and reactive dyes of R2 and R195 [34] (Figure 6). It is worth noting that in
the CS post-mercerization of woven fabrics, the dye removal percentage (R%) of the R2
dye was obviously higher than that of R195, which was caused by the type of reactive
group. R195 has one vinyl sulfone group and one monochrolotriazinyl group, while R2 has
one dichlorotriazinyl group (Table 1). The reactive groups influence the fixed strength of
the dye, whereby the R195-dyed fabrics were shown to be more stable when compared to
R2-dyed fabrics after CS post-mercerization.
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Moreover, after the ether bond was broken, the hydrolyzed dyes inside the fiber were
easily washed out, since the CS post-mercerization enlarged the pore size of the cotton
fiber, which possibly contributed to the higher R% of R2-dyed fabric treated by the CS
post-mercerization process because the molecular size of R2 is smaller than that of R195. In
addition, the CS and LA pre-mercerization processes were shown to be beneficial to the
fixed R2 dye stability, especially in CS post-mercerization. The R2 R% of Dye-CS was 4.09%,
while the same values for fabrics pre-mercerized by CS (CS-Dye-CS) and LA (LA-Dye-CS)
were shown to be 3.43% and 3.86%, respectively.
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3.5. Color Strength and Color Uniformity

The K/S values of the original, pre-mercerized, and post-mercerized samples are shown
in Figure 7. According to the Kubelka–Munk principle, the value of K/S is related to the dye
concentration in the sample, i.e., the larger the value of K/S, the greater the dye concentration
in the sample [35]. However, the T% values of woven fabrics dyed with R2 and R195, as
well as the K/S values of these respective samples (O-Dye, CS-Dye, and LA-Dye in Table 4),
indicate that this relationship is undesirable for mercerized woven cotton fabrics. The T%
values of R2-dyed samples follow a decreasing order from CS-Dye (77.7%) to O-Dye (67.2%)
and LA-Dye (60.4%), while the order of their K/S values is from CS-Dye (13.8) to LA-Dye
(8.1) and O-Dye (7.1). This implies that the pre-mercerization obviously increased the
color shade of the dyed woven cotton fabrics, owing to a decrease in light scattering of the
mercerized fabrics. With the CS and LA pre-mercerization, the morphological structures
of the fabrics and fibers, as well as the presence of voids, were changed, which possibly
altered the irradiated light route in the fabrics and fibers. Additionally, the material features,
such as the micropores of the cotton fiber and cell cavity, were probably reduced in size or
eliminated. This resulted in reduced light scattering and increased color intensity [10,11].
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Table 4. T% values and K/S values of the original and pre-mercerized woven cotton fabrics.

Dye Index O-Dye
O-Dye

Predicted
Value-1

CS-Dye
O-Dye

Predicted
Value-2

LA-Dye

R2 T% 67.2 77.7 77.7 60.4 60.4
K/S 7.1 8.2 13.8 6.4 8.1

R195 T% 40.3 55.5 55.5 40.5 40.5
K/S 3.1 4.3 7.7 3.1 5.2

In Table 4, based on the Kubelka–Munk principle, the K/S values have a linear rela-
tionship with the dye concentration in the dyed fiber. Since the T% of the original fiber
was 67.2% with a K/S value of 7.1, if the T% values of R2 were 77.7% and 60.4% in the
original woven cotton fabric, the K/S values for both dyed fabrics would be 8.2 (O-Dye pre-
dicted value-1) and 6.4 (O-Dye predicted value-2), respectively. However, the experimental
K/S values of the R2-dyed fabrics with CS pre-mercerization (77.7% of T%) and LA pre-
mercerization (60.4% of T%) were 13.8 and 8.1, respectively. Thus, in the R2 dye processes,
considering the dye concentration increase in the dyed fabric, the promoted K/S efficiency
(Equation (4)) was 68.1% for CS pre-mercerization and 26.3% for LA pre-mercerization.
Additionally, the promoted K/S efficiencies in the R195 dye processes were 77.9% and
63.7% for CS-Dye and LA-Dye, respectively. A higher color strength was found in the
CS pre-mercerized fabric than the LA pre-mercerized fabric. The enhanced K coefficient
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in the K/S likely accounted for the higher color strength of the CS pre-mercerized fabrics.
Additionally, the light scattering was reduced by the missing cell cavity, resulting in a
decrease in the S coefficient of K/S. The CS pre-mercerization increased the swelling of
cotton fibers more than the LA pre-mercerization, which reduced the cell size of the fiber
of the secondary cell wall and core [11]. Furthermore, as a result of the inner cell’s color
migration to the outside cell, the color strength of the fiber was enhanced [36]. Therefore,
CS pre-mercerization to the woven cotton fabric showed a more highly promoted K/S
efficiency than the LA pre-mercerization.

As shown in Figure 7, CS and LA post-mercerization enhanced the dyed fabric K/S
value regardless of whether the fabrics had been pre-mercerized. In the dyed fabric without
pre-mercerization (O-Dye), the CS post-mercerization (Dye-CS) was more effective in
promoting the K/S value compared to the LA post-mercerization (Dye-LA). This result is
consistent with the findings of the pre-mercerization contribution to the K/S increase. In
the CS and LA pre-mercerized and dyed fabrics (CS-Dye and LA-Dye), both CS and LA
post-mercerization (CS-Dye-CS, CS-Dye-LA, LA-Dye-CS, or LA-Dye-LA) further increased
the K/S value of the dyed fabrics, but the increases were low compared to the increases
of the original dyed fabric treated by CS and LA post-mercerization process (Dye-CS and
Dye-LA). Additionally, the LA post-mercerization (CS-Dye-LA and LA-Dye-LA) provided a
slight increase to the K/S value in the CS and LA pre-mercerized and dyed fabrics compared
to the CS post-mercerization process (CS-Dye-CS and LA-Dye-CS). Therefore, this indicated
that the morphological structure change influenced the color shade of the cotton fabric
during post-mercerization, specifically the LA post-mercerization process, which most
effectively promoted an increased K/S value in contrast with CS post-mercerization.

The color uniformities of all dyed fabrics were investigated and the results are shown
in Figure 8. Notably, color uniformity was expressed by measuring the standard deviation
value. All of the sample’s standard deviation values were less than 0.4, meaning that
the color uniformity was very good for all dyed fabrics. This also implies that the pre-
mercerization, post-mercerization, and the combination of pre- and post-mercerization
processes did not cause a color unevenness problem on the dyed fabric.
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3.6. Colorfastness to Washing and Rubbing

The colorfastness values to washing and rubbing of dyed fabrics are listed in Table 5.
The wash fastness grade was evaluated by the dye stained in the cotton fiber of the tested
multifiber, according to the gray scale. It was noticed that excellent wash fastness values
of all samples (Grade 5) were achieved as a result of the strong covalent link formed
between the cotton fiber and reactive dye. Meanwhile, the contribution from the practical
washing process was significant, which was effective in washing off the unfixed dyes in the
dyed fabrics. This efficient washing of the dyed fabrics was also beneficial to the rubbing
fastness. In the R2-dyed fabric, the dry rubbing fastness was of grade 4–5, while grade
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4 was observed for the wet rubbing fastness. In the R195 dyed fabric, the dry and wet
rubbing fastness levels were grade 5 and grade 4–5, respectively. The latter values were a
half grade higher for the R195-dyed fabrics than the R2-dyed fabrics in terms of dry and
wet rubbing fastness.

Table 5. Colorfastness to washing and rubbing of the original and mercerized cotton fabrics.

Sample

Wash Fastness (Grade) Rubbing Fastness (Grade)

R2 R195
R2 R195

Dry Wet Dry Wet

O-Dye 5 5 4–5 4 5 4–5
Dye-CS 5 5 4–5 4 5 4–5
Dye-LA 5 5 4–5 4 5 4–5
CS-Dye 5 5 4–5 4 5 4–5

CS-Dye-CS 5 5 4–5 4 5 4–5
CS-Dye-LA 5 5 4–5 4 5 4–5

LA-Dye 5 5 4–5 4 5 4–5
LA-Dye-CS 5 5 4–5 4 5 4–5
LA-Dye-LA 5 5 4–5 4 5 4–5

3.7. Fabric Stiffness

The stiffness values of the original, pre-mercerized, and post-mercerized woven cotton
fabrics dyed with R2 are listed in Table 6. The results indicate that the fabric became stiffer
as a result of the combination of pre- and post-mercerization, particularly the combination
of CS pre- and post-mercerization. In comparing the CS and LA pre-mercerization, the
former (CS-Dye) made the fabric stiffer than the latter (LA-Dye). The total bending length
and total flexural rigidity values of the fabric with LA pre-mercerization (LA-Dye) were
1.69 cm and 0.82 mg cm, respectively, which were slightly higher than the values for
original sample (O-Dye) at 1.64 cm and 0.75 mg cm, respectively. The CS and LA post-
mercerization processes also followed the same patterns with respect to stiffness. The
CS post-mercerization still exhibited a more significant effect on stiffness enhancement
than the LA post-mercerization process, with values of 2.25 cm and 1.94 mg cm for the
total bending length and the total flexural rigidity of Dye-CS, respectively, compared to
1.78 cm and 0.96 mg cm for Dye-LA, respectively. Despite the pre- and post-mercerization
conditions of CS or LA being the same, the stiffness distinctions were different. For the
CS mercerization process, the total bending length and total flexural rigidity of the fabric
with CS pre-mercerization (CS-Dye) were 1.79 cm and 0.97 mg cm, respectively, while in
the fabric with CS post-mercerization (Dye-CS) the values were 2.25 cm and 1.94 mg cm,
respectively. These results are similar to the findings for LA mercerization. The differences
showed that the dyeing processes could weaken the stiffness enhancement resulting from
the CS and LA mercerization processes. In the combination of pre- and post-mercerization,
regardless of whether CS or LA pre-mercerization was used for the fabric, the stiffness was
more affected by CS post-mercerization than LA post-mercerization.

3.8. Breaking Force and Elongation

The breaking force and elongation at break of the woven cotton fabrics dyed with
R2 are displayed in Figure 9. Generally, the pre-mercerization, post-mercerization, and
combination of pre- and post-mercerization improved the breaking force of the woven
cotton fabric. According to the comparison of breaking forces between CS-Dye and LA-Dye,
Dye-CS and Dye-LA, and LA-Dye-CS and LA-Dye-LA, respectively, the CS mercerization
was slightly more effective than the LA mercerization; however, it was exceptional in the
comparison of CS-Dye-LA and CS-Dye-CS. The CS and LA mercerization swelled the fiber,
reduced the convolutions from the surface, and enhanced fiber binding [27]. Additionally,
the internal stresses in the yarn and fabric were released after mercerization [26]. Therefore,
the weak links from the fibers, yarns, and fabric were effectively eliminated, likely due to
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the improved breaking force of the fabric [37]. In elongation testing, post-mercerization
conferred a positive attribute to the woven cotton fabric, and the LA post-mercerization
process afforded more positive contributions than the CS post-mercerization process. The
CS and LA pre-mercerization processes decreased the elongation of the fabrics, but the
reduction by LA pre-mercerization was lower than that by CS pre-mercerization process.

Table 6. Stiffness data for the original and mercerized woven cotton fabrics dyed with R2.

O-Dye Dye-CS Dye-LA CS-Dye CS-Dye-CS CS-Dye-LA LA-Dye LA-Dye-CS LA-Dye-LA

Warp-wise bending
length (cm) 1.72 2.30 1.88 2.02 2.10 2.12 1.89 2.42 2.07

Weft-wise bending
length (cm) 1.57 2.21 1.69 1.58 1.96 1.77 1.51 2.02 1.71

Total bending
length (cm) 1.64 2.25 1.78 1.79 2.03 1.94 1.69 2.21 1.88

Warp-wise flexural
rigidity (mg·cm) 0.87 2.07 1.12 1.40 1.57 1.62 1.15 2.41 1.51

Weft-wise flexural
rigidity (mg cm) 0.66 1.83 0.82 0.67 1.28 0.94 0.59 1.40 0.85

Total flexural
rigidity (mg cm) 0.75 1.94 0.96 0.97 1.42 1.24 0.82 1.84 1.13Materials 2022, 15, x FOR PEER REVIEW 14 of 16 
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with R2.

4. Conclusions

In this work, a caustic solution (CS) and liquid ammonia (LA) were used for pre-
mercerization, post-mercerization, and a combination of pre- and post-mercerization pro-
cesses on plain woven cotton fabrics. According to the results, the mercerization of cotton
fabrics with CS, LA, and a combination of CS and LA changed the allomorphs of cellulose
I to cellulose II, cellulose III, and a mixture of cellulose II and cellulose III, respectively.
The combined mercerization process further decreased the crystallinity. Furthermore,
these observations were verified by TG analysis, as the fabrics underwent faster thermal
decomposition in the amorphous phase than the crystalline phase after the combined
mercerization treatment. In dyeing with R2 and R195, the pre-mercerization of CS and LA
increased the dye exhaustion during cotton fabric dyeing; however, the larger molecular
dye (R195) showed a lower dye exhaustion rate upon dyeing of LA pre-mercerized cotton
fabric. During post-mercerization, R195 exhibited higher stability and fixation with cot-
ton cellulose. Meanwhile, the K/S values of the dyed cotton fabrics increased with both
post-mercerization and LA post-mercerization showed higher effectiveness. The colorfast-
ness to washing and rubbing values were satisfactory. Moreover, pre-mercerization and
post-mercerization brought about higher stiffness values, and CS mercerization resulted in
higher stiffness than LA mercerization. The breaking force for the CS-mercerized cotton
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fabric increased, while the elongation was higher for the LA-mercerized fabric. From the
abovementioned results, a conclusion was made that it would be reasonable to consider a
combination of pre- and post-mercerization with CS and LA to enhance the properties of
woven cotton fabrics for the textile industry.
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